SCC0602 - Algoritmos e Estruturas de Dados I

Recurrence

Professor: André C. P. L. F. de Carvalho, ICMC-USP PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos
© André de Carvalho - ICMC/USP

Today

- Defining bounds
- The Divide-and-conquer technique for algorithm design
- Example problems:
- Tromino puzzle
- Searching (binary search)
- Sorting (merge sort)

Defining bounds

$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and n_{0}, such that $\left.\forall n \geq n_{0}, 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}$

Show that the runtime $f(n)=\frac{1}{2} n^{2}-3 n=\Theta\left(\mathrm{n}^{2}\right)$
Find $\mathrm{n}_{0}, \mathrm{c}_{1}$ and c_{2} such that
$c_{1} n^{2} \leq \frac{1}{2} n^{2}-3 n \leq c_{2} n^{2}$

$$
\begin{aligned}
& \text { Choose }\left\{\begin{array}{l}
n_{0} \geq 1 \\
c_{1}>0 \\
c_{2}>0
\end{array}\right. \\
& \text { makes } \\
& ? 1 ?
\end{aligned}
$$

$c_{1} \leq \frac{1}{2}-\frac{3}{n} \leq c_{2}$
Which value of n_{0} makes the inequality true? 1 ?

Defining bounds

$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and n_{0}, such that $\left.\forall n \geq n_{0}, 0 \leq c_{1} g(n) \leq f(n) \leq \mathrm{c}_{2} g(n)\right\}$

Show that the runtime $f(n)=\frac{1}{2} n^{2}-3 n=\Theta\left(n^{2}\right)$
Find $\mathrm{n}_{0}, \mathrm{c}_{1}$ and c_{2} such that
$c_{1} n^{2} \leq \frac{1}{2} n^{2}-3 n \leq c_{2} n^{2}$

$$
\text { Choose }\left\{\begin{array}{l}
n_{0} \geq 1 \\
c_{1}>0 \\
c_{2}>0
\end{array}\right.
$$

$c_{1} \leq \frac{1}{2}-\frac{3}{n} \leq c_{2}$

$$
\text { Which value of } n_{0} \text { makes }
$$ the inequality true? 2 ?

Defining bounds

$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and n_{0}, such that $\left.\forall n \geq n_{0}, 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}$

Show that the runtime $f(n)=\frac{1}{2} n^{2}-3 n=\Theta\left(n^{2}\right)$
Find $\mathrm{n}_{0}, \mathrm{c}_{1}$ and c_{2} such that
$c_{1} n^{2} \leq \frac{1}{2} n^{2}-3 n \leq c_{2} n^{2}$
Choose $\left\{\begin{array}{l}n_{0} \geq 1 \\ c_{1}>0 \\ c_{2}>0\end{array}\right.$
$c_{1} \leq \frac{1}{2}-\frac{3}{n} \leq c_{2}$
Which value of n_{0} makes the inequality true? 6 ?

Defining bounds

$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and n_{0}, such that $\left.\forall n \geq n_{0}, 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}$

Show that the runtime $f(n)=\frac{1}{2} n^{2}-3 n=\Theta\left(\mathrm{n}^{2}\right)$

> Find $\mathrm{n}_{0}, \mathrm{c}_{1}$ and c_{2} such that $c_{1} n^{2} \leq \frac{1}{2} n^{2}-3 n \leq c_{2} n^{2} \quad$ Choose $\left\{\begin{array}{l}n_{0} \geq 1 \\ c_{1}>0 \\ c_{2}>0\end{array}\right.$ $c_{1} \leq \frac{1}{2}-\frac{3}{n} \leq c_{2} \quad \begin{aligned} & \text { Which value of } n_{0} \text { makes } \\ & \text { the inequality true? } 7 ?\end{aligned}$

Defining bounds
 $\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and n_{0}, such that $\left.\forall n \geq n_{0}, 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}$

Show that the runtime $f(n)=\frac{1}{2} n^{2}-3 n=\Theta\left(n^{2}\right)$
Find $\mathrm{n}_{0}, \mathrm{c}_{1}$ and c_{2} such that
$c_{1} n^{2} \leq \frac{1}{2} n^{2}-3 n \leq c_{2} n^{2}$
Choose $\left\{\begin{array}{l}n_{0}=7 \\ c_{1}>0 \\ c_{2}>0\end{array}\right.$
$c_{1} \leq \frac{1}{2}-\frac{3}{n} \leq c_{2}$
Which values of c_{1} and c_{1} make the inequality true?

Defining bounds

$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and n_{0}, such that $\left.\forall n \geq n_{0}, 0 \leq c_{1} g(n) \leq f(n) \leq \mathrm{c}_{2} g(n)\right\}$
Show that the runtime $f(n)=\frac{1}{2} n^{2}-3 n=\Theta\left(n^{2}\right)$ Find $\mathrm{n}_{0}, \mathrm{c}_{1}$ and c_{2} such that $c_{1} n^{2} \leq \frac{1}{2} n^{2}-3 n \leq c_{2} n^{2}$
$c_{1} \leq \frac{1}{2}-\frac{3}{n} \leq c_{2}$
Choose $\left\{\begin{array}{l}n_{0}=7 \\ c_{1}=\frac{1}{14} \\ c_{2}>0\end{array}\right.$
Which values of c_{1} and c_{1} make the inequality true?

Defining bounds

$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and n_{0}, such that $\left.\forall n \geq n_{0}, 0 \leq c_{1} g(n) \leq f(n) \leq \mathrm{c}_{2} g(n)\right\}$

Show that the runtime $f(n)=\frac{1}{2} n^{2}-3 n=\Theta\left(n^{2}\right)$
Find $\mathrm{n}_{0}, \mathrm{c}_{1}$ and c_{2} such that
$c_{1} n^{2} \leq \frac{1}{2} n^{2}-3 n \leq c_{2} n^{2}$
$c_{1} \leq \frac{1}{2}-\frac{3}{n} \leq c_{2}$

$$
\text { Which values of } c_{1} \text { and } c_{1}
$$ make the inequality true?

Exercise

$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and n_{0}, such that $\left.\forall n \geq n_{0}, 0 \leq c_{1} g(n) \leq f(n) \leq \mathrm{c}_{2} g(n)\right\}$
Show that the runtime $f(n)=3 n^{3}-4 n+5=\Theta\left(n^{3}\right)$
$\begin{aligned} & \text { Find } \mathrm{n}_{0}, \mathrm{c}_{1} \text { and } \mathrm{c}_{2} \mathrm{t} \\ & c_{1} n^{3} \leq 3 n^{3}-4 n+5 \leq c_{2} n^{3} \\ & c_{1} \leq 3-\frac{\mathbf{4}}{\mathbf{n}^{2}}+\frac{\mathbf{5}}{\mathbf{n}^{3}} \leq c_{2}\end{aligned} \quad$ Choose $\left\{\begin{array}{l}n_{0} \geq 1 \\ c_{1}>0 \\ c_{2}>0\end{array}\right.$
Which value of n_{0}, c_{1} and c_{1}
Make the inequality true?
©Andé de Cavalho - IcMc/USP

Show that the runtime $f(n)=3 n^{3}-4 n+5=\Theta\left(\mathrm{n}^{3}\right)$
Find $\mathrm{n}_{0}, \mathrm{c}_{1}$ and c_{2} such that
$c_{1} n^{3} \leq 3 n^{3}-4 n+5 \leq c_{2} n^{3}$

$$
\text { Choose }\left\{\begin{array}{l}
n_{0} \geq 1 \\
c_{1}>0 \\
c_{2}>0
\end{array}\right.
$$

Which value of n_{0}, c_{1} and c_{1} Make the inequality true?
© André de Carvalho - ICMC/USP

Exercise

$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and n_{0}, such that $\left.\forall n \geq n_{0}, 0 \leq c_{1} g(n) \leq f(n) \leq \mathrm{c}_{2} g(n)\right\}$

Show that the runtime $f(n)=a n^{2}+b n+c=\Theta\left(n^{2}\right)$
$\Theta(g(n))=\left\{f(n): \exists\right.$ positive constants c_{1}, c_{2}, and n_{0},

$$
\leq 3(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{n}^{2} \text { for } \mathrm{n} \geq 1
$$

Exercise

 such that $\left.\forall n \geq n_{0}, 0 \leq c_{1} g(n) \leq f(n) \leq c_{2} g(n)\right\}$Show that the runtime $f(n)=a n^{2}+b n+c=\Theta\left(n^{2}\right)$

If any of a, b, and c are less than 0 replace the constant with its absolute value

$$
\mathrm{an}^{2}+\mathrm{bn}+\mathrm{c} \leq(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{n}^{2}+(\mathrm{a}+\mathrm{b}+\mathrm{c}) \mathrm{n}+(\mathrm{a}+\mathrm{b}+\mathrm{c})
$$

Let $\mathrm{c}^{\prime}=3(\mathrm{a}+\mathrm{b}+\mathrm{c})$ and let $n_{0}=1$

Exercise

- Show that insertion sort is $\mathrm{O}\left(\mathrm{n}^{2}\right)$
- Is insertion sort $\mathrm{O}\left(\mathrm{n}^{3}\right)$?

Tromino puzzle

- How to play the 8-by-8 Tromino Puzzle
- Place the square tile on one of the 64 square grid cells
- Repeat
- Place the L-shaped trominoes into a position one at a time
- Until there is no empty cell

Tromino puzzle

- Tromino: group of 3 squares with an L shape
- Board: $m x m$ array of squares, where $m=2^{n}$
- There is one forbidden tile (hole) in the board
- Goal: tiling (filling) of the board
- All squares are covered - Apart from the forbidden tile
- Trominoes do not overlap
- All trominoes are completely inside the board
© André de Carvalho - ICMC/USP

Tiling: Trivial Case ($\mathrm{n}=1$)

- Trivial case $(\mathrm{n}=1)$: tiling a 2×2 board with a hole:

- Suggestion:
- Try to reduce the size of the original problem until get to 2×2 boards - which are easy to solve...

Tiling: Algorithm

INPUT: n - the board size ($2^{n} x 2^{n}$ board), L - location of the hole OUTPUT: tiling of the board

Tile(n, L)

if $n=1$ then
Trivial case
Tile with one tromino
return
Divide the board into four equal-sized boards
Place one tromino at the center to simulate 3 additional holes
Let L1, L2, L3, L4 denote the positions of the 4 holes
Tile(n-1, L1)
Tile(n-1, L2)
Tile(n-1, L3)
Tile($n-1, L 4$)

Tiling: Divide-and-Conquer

- Tiling is a divide-and-conquer algorithm:
- If the board is 2×2, do it trivially
- Else:
- Divide the board into four smaller boards (introduce holes at the corners of three smaller boards to make them look like original problems)
- Conquer using the same algorithm recursively
- Combine by placing a single tromino in the center of the board to cover the three introduced holes

Binary Search

- Find a number in a sorted array:
- If the array is of one element, just do it trivially
- Else
- Divide into two equal halves and solve each half
- Combine the results

INPUT: A I I..n]: a sorted (non-decreasing) array of integers, s: an integer
OUTPUT: an index isuch that $A[i]=s$. OUTPUT: an index j such that $A[i]=s$. NIL, if $\forall j(1 \leq i \leq n)$: A $[j] \neq s$
Binary-search (A, l, r, s) : if $l=r$ then
if $A[I]=$ s then return I
else return NIL
$\mathrm{q} \leftarrow\lfloor(1+\mathrm{r}) / 2\rfloor$
$\mathrm{ret} \leftarrow \operatorname{Binary}$-search (A, l, q, s)
if ret $=$ NIL then
return Binary-se
else return ret
© André de Carvalho - ICMC/USP

Recurrences

- Base case

- Recursive case

Recurrences

- divide-and-conquer paradigm three steps:
- Divide
- Conquer
- Combine
- Naturally solved by recurrence
- A base case
- A recursive case

Recurrences

- The three steps of the divide-andconquer paradigm makes it recursive
- Large problems are solved with
- A base case
- A recursive case
- Fits very well with the divide-andconquer paradigm
- Provides a easy way to define th running time of diyidde-and-conaquer algorithms

Recurrences

- Recursive calls in algorithms can be described using recurrences
- It is an equation or inequality that describes a function in terms of its value on smaller inputs

$$
T(n)=\left\{\begin{array}{cc}
\text { solving_trivial_problem } & \text { if } n=1 \\
\text { num_pieces } T(n / \text { subproblem_size_factor })+\text { dividing }+ \text { combining } & \text { if } n>1
\end{array}\right.
$$

- Example: Binary search

$$
T(n)=\left\{\begin{array}{cc}
\Theta(1) & \text { if } n=1 \\
2 T(n / 2)+\Theta(n) & \text { if } n>1
\end{array}\right.
$$

Binary Search (improved)

- $T(n)=\Theta(n)-n o t ~ b e t t e r ~ t h a n ~ b r u t e ~ f o r c e!~$
- Clever way to conquer:
- Solve only one half!

OUTPUT: an index j such that $\mathrm{A}[j]=s$. NIL, if $\forall j(1 \leq j \leq n)$: $\mathrm{A}[j \neq s$
Binary-search (A, l, r, s)
if $A[l]=s$
else return then return
q else return NLL
if $A[q] \leq s$ then return Binary-search (A, l, q, s)
else return Binary-search $(A, q+1, r, s)$

Running Time of Binary Search

- Can be expressed as a recurrence

$$
\begin{aligned}
& T(n)=\left\{\begin{array}{cc}
\Theta(1) & \text { if } n=1 \\
T(n / 2)+\Theta(1) & \text { if } n>1
\end{array}\right. \\
& T(n)=\Theta(\lg n)
\end{aligned}
$$

Merge Sort Algorithm

```
Merge-Sort (A, l, r)
    if l<r then
        Merge-S
        Merge-Sort(A, l, q)
        Merge-Sort (A, q+1, r)
        Merge (A, 1, q, r)
```

 \(\operatorname{Merge}(A, 1, q, r)\)
 Take the smallest of the two topmost elements of
 sequences \(A[1 . . q]\) and \(A[q+1 . r]\) and put into the
 resulting sequence. Repeat this, until both sequences
 are empty. Copy the resulting sequence into \(A[1 . . r]\).

Merge Sort (Example) - 22

© André de Carvalho - ICMC/USP

Running Time of Merge Sort

- Can also be expressed as a recurrence

$$
\begin{aligned}
& T(n)=\left\{\begin{array}{cc}
\begin{array}{c}
\text { solving_trivial_problem } \\
\text { num_pieces } T(n / \text { subproblem_size_factor })+\text { dividing }+ \text { combining }
\end{array} & \text { if } n=1 \\
\text { if } n>1
\end{array}\right. \\
& T(n)=\left\{\begin{array}{cl}
\Theta(1) & \text { if } n=1 \\
2 T(n / 2)+\Theta(n) & \text { if } n>1
\end{array}\right. \\
& T(n)=\Theta(n \lg n)
\end{aligned}
$$

Merge Sort summarized

- To sort n numbers
- If $\mathrm{n}=1$ done!
- Else
- Recursively sort 2 lists of numbers $\lfloor n / 2\rfloor$ and $\lceil n / 2\rceil$ elements
- Merge 2 sorted lists in $\Theta(n)$ time
- Strategy
- Break problem into similar (smaller) subproblems
- Recursively solve subproblems
- Combine solutions to answer

Substitution method

- Find the running time (upper bound) of merge sort
- Assume that $n=2^{b}$, for some b

$$
\begin{aligned}
& T(n)=\left\{\begin{array}{cc}
\Theta(1) & \text { if } n=1 \\
2 T(n / 2)+\Theta(n) & \text { if } n>1
\end{array}\right. \\
& T(n)=2 T(n / 2)+\Theta(n) \quad \text { Assume } \Theta(\mathrm{n})=\mathrm{n} \\
& T(n)=2 T(n / 2)+n \\
& \text { Guess that } T(n)=\Theta(n \log n) \\
& \text { Prove that } T(n) \leq \text { cn lg } n \text { for a proper choice of } c
\end{aligned}
$$

Substitution method

- Find the running time (upper bound) of merge sort
- Assume that $n=2^{b}$, for some b

$$
\begin{aligned}
& T(n)=\left\{\begin{array}{cc}
1 & \text { if } n=1 \\
2 T(n / 2)+n & \text { if } n>1
\end{array}\right. \\
& T(n)=2 T(n / 2)+n \\
& \text { Guess that } T(n)=\Theta(n \log n) \\
& \text { Prove that } T(n) \leq \text { cn lg } n \text { for a proper choice of } c
\end{aligned}
$$

© André de Carvalho - ICMC/USP

Substitution method

- Find the running time (upper bound) of merge sort
- Assume that $n=2^{b}$, for some b

$$
T(n)=\left\{\begin{array}{ccl}
1 & \text { if } n=1 & \mathrm{n}_{0}=1 \rightarrow \mathrm{~T}(1)=1 \\
2 T(n / 2)+n & \text { if } n>1 &
\end{array}\right.
$$

$T(n)=2 T(n / 2)+n$

Guess that $T(n)=\Theta(n \log n)$
Prove that $T(n) \leq$ cn $\lg n$ for a proper choice of c

Substitution method

- Find the running time (upper bound) of merge sort
- Assume that $n=2^{b}$, for some b
$T(n)=\left\{\begin{array}{lll}1 & \text { if } n=1 & \mathrm{n}_{0}=1<T(1)=1\end{array}\right.$
$T(n)=\left\{\begin{array}{lll}2 T(n / 2)+n & \text { if } n>1 & \text { Replace } \mathrm{T}(1) \text { by } \mathrm{T}(2) \text { and } \mathrm{T}(3):\end{array}\right.$ $\mathrm{T}(2)=4$
$T(n)=2 T(n / 2)+n$
$\mathrm{n}_{0}=2$
$\mathrm{n}_{0}=2$
For $\mathrm{n}>3$, recurrence
Guess that $T(n)=\Theta(n l g n) \quad$ does not depend on $T(1)$
Prove that $T(n) \leq$ cn $\lg n$ for a proper choice of c

Substitution method

$T(n)=2 T(n / 2)+n$
Prove that $T(n) \leq$ cn $\lg n$

Assuming that the bound holds for $n / 2, T(n / 2) \leq$

$$
\begin{array}{ll}
c n / 2 \lg (n / 2) & \text { Choose positive value of } \mathrm{c} \\
T(n) \leq 2[c n / 2 \lg (n / 2)]+n & \text { that holds for } \mathrm{T}(2) \text { and } \mathrm{T}(3)
\end{array}
$$

$\leq c n \lg (n / 2)+n$
$\leq c n \lg n-c n \lg 2+n$
$\leq c n \lg n-c n+n$ $\leq c n \lg n$
© André de Carvalho - ICMC/USP

Substitution method

$T(n)=2 T(n / 2)+n$
Prove that $T(n) \leq c n \lg n$

Assuming that the bound holds for $n / 2, T(n / 2) \leq$
$\mathrm{cn} / 2 \lg (n / 2) \quad$ Choose positive value of c
$T(n) \leq 2[c n / 2 \lg (n / 2)]+n \quad$ that holds for $\mathrm{T}(2)$ and $\mathrm{T}(3)$
\leq cn $\lg (n / 2)+n \quad$ If $\mathrm{c}=1$
$\mathrm{T}(3) \leq 1 \times 3 \lg 3$
$5 \leq 3 \times 1,6 \rightarrow$ does not hold
$\leq c n \lg n-c n+n \quad$ If $\mathrm{c}=2$
$\begin{array}{ll}\leq \text { cn } \lg n \text { (holds if } c>1) & \begin{array}{l}\mathrm{T}(3) \leq 2 \times 3 \lg 3 \\ 5 \leq 6 \times 1,6 \rightarrow \text { holds }\end{array}\end{array}$
© André de Carvalho - ICMC/USP

Substitution method

- Necessary to shows that the solution holds for the boundary conditions
- Show that they are suitable as base cases
- For the previous example, show that we can choose a positive c such that $T(n) \leq c n \lg n$ (for $n \geq n_{0}$) works for the boundary conditions Be $n_{0}=2$
It can be easily shown that any choice of $c \geq 2$, the solution holds

Observations

- Important to distinguish between
- The base case of of the recurrence
- When $\mathrm{n}=1$
- The base case of the inductive proof
- When $n=2$ and $n=3$
- For most recurrences, boundary conditions can be extended
- In order to make inductive assumption to work for small values of n

Substitution method

- Why the name substitution?
- Because it substitutes the function
$T(n)=2 T(n / 2)+n$
- By the guessed solution

$$
T(n)=\Theta(n \lg n)
$$

- And access if the guessed solution works for small values
- Given an unsorted array, find a minimum and a maximum element in
nMax (A, $1, r)$
if $l=r$ then return ($A[1], A[r]$)
$q \leftarrow\lfloor(1+r) / 2\rfloor$
$(\operatorname{minl}, \operatorname{maxl}) \leftarrow \operatorname{MinMax}(A, 1, q)$
$(\operatorname{minr}, \operatorname{maxr}) \leftarrow \operatorname{MinMax}(A, q+1, r)$
if minl < minr then min $=\operatorname{minl}$ else $\min =\operatorname{minr}\}$ Combine
if maxl $>\operatorname{maxr}$ then $\max =\operatorname{maxl}$ else $\max =\operatorname{maxr}\}$ Combine return (min, max)
if $1=r$ then
f $1=r$ then return ($A[1], A[r]$)
$\mathrm{a} \leftarrow\lfloor(1+r) / 2\rfloor$
$(\operatorname{minl}, \operatorname{maxl}) \leftarrow \operatorname{MinMax}(A, l, q)$
$(\operatorname{minr}, \operatorname{maxr}) \leftarrow \operatorname{MinMax}(A, q+1, r$
if minl < minr then min $=\operatorname{minl}$ else $\min =\operatorname{minr}$
if maxl $>\operatorname{maxr}$ then $\max =\operatorname{maxl}$ else max $=\operatorname{maxr}$
return (min, max)
- Given an unsorted array, find a minimum and a maximum element in
INPUT: A[l..r] - an unsorted array of integers, $I \leq r$.
OUTPUT: (min, max) such that $\forall j(l \leq j \leq r)$: $\mathrm{A}[j] \geq \min$ and $\mathrm{A}[j \leq \max$

