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Today

= Defining bounds
= The Divide-and-conquer technique for
algorithm design
= Example problems:
= Tromino puzzle
= Searching (binary search)
= Sorting (merge sort)
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:-‘ Defining bounds

©(g(n)) = {f(n) : I positive constants c,, c,, and n,,
such that Vn 2 ng, 0 < ¢,g(n) < fin) < c,g(n)}

Show that the runtime f{n) = %nz —3n=0(m)

Find no,lc1 and c, such that ne =1
cn? <-n? —3n < c,n? Choose { ¢; > 0

< 1 23 < ;>0
1 = E —; S G

Which value of ny makes
the inequality true?
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;’ Defining bounds

O(g(n)) = {f(n) : A positive constants c,, c,, and n,,
such that Vn 2 ng, 0 < ¢,g(n) < fin) < c,g(n)}
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;’ Defining bounds

O(g(n)) = {f(n) : A positive constants c,, c,, and n,,
such that Vn 2 ng, 0 < ¢,g(n) < fin) < c,g(n)}

Show that the runtime f{n) = %nz —3n=0(n?

Find n,, 1(:1 and c, such that no =1
n? < Enz —3n < cn? Choose { ¢; > 0
1 3 ;>0
G <>—-= 0 .
2 n Which value of ny makes
the inequality true? 6?
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:-‘ Defining bounds

®(g(n)) = {f(n) : I positive constants c,, c,, and n,,
such that Vn 2 ng, 0 < ¢,g(n) £ fin) < c,g(n)}

Show that the runtime f{n) = %nz —3n=0m)

Find no,lc1 and c, such that ne =1
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:.’ Defining bounds

®(g(n)) = {f(n) : A positive constants c,, ¢, and n,,
such that Vn 2 ng, 0 < ¢,g(n) < fin) < c,g(n)}

Show that the runtime f{n) = %nz —3n=0(n2)
Find n,, ¢, and ¢, such that

ng =7

1
n? < Enz —3n < cn? Choose { ¢; > 0
>0

1 3
=>——-= 0 )

2 n Which values of ¢; and ¢,
make the inequality true?
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;‘ Defining bounds

©(g(n)) = {f(n) : I positive constants c,, c,, and n,,
such that Vn 2 ng, 0 < ¢,g(n) < fin) < c,g(n)}

Show that the runtime f{n) = %nz —3n=0(m)

Find no,lc1 and c, such that ne =7
2 2 2
an® =-n”—3n< ;n Choose § ¢;= -~
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:.’ Defining bounds

O(g(n)) = {f(n) : A positive constants c,, c,, and n,,
such that Vn 2 ng, 0 < ¢,g(n) < fin) < c,g(n)}

Show that the runtime f{n) = %nz —3n=0(n2)
Find n,, ¢, and ¢, such that 1o
cn? < %nz —3n < ¢n?

1 3
Cq <-—=< Cy . C2
2 n Which values of ¢; and ¢;
make the inequality true?
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hy 1=
Choose < ¢, ”

=7

1
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;‘ Exercise

©(g(n)) = {f(n) : I positive constants c,, c,, and n,,
such that Vn 2 ng, 0 < ¢,g(n) < fin) < c,g(n)}

Show that the runtime f{n) = 3n3 — 4n + 5 = O(n%)
Find ny, ¢, and c, such that
3 <3n3 —4n+5< ¢pn

ng=1
Choose§¢; >0

;>0

Which value of ng, ¢; and ¢,
Make the inequality true?
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:.’ Exercise

O(g(n)) = {f(n) : A positive constants c,, c,, and n,,
such that Vn 2 ng, 0 < ¢,g(n) < fin) < c,g(n)}

Show that the runtime f{n) = 3n® — 4n + 5= O(n%)
Findny, ¢, and c, t

cn® <3n3—4n+5 < ¢nd Mo

3 4 5 Choose { ¢1
<3-=+42<

1 < Zztas=c c

Which value of ng, ¢; and ¢,
Make the inequality true?
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:-‘ Exercise

®(g(n)) = {f(n) : I positive constants c,, c,, and n,,
such that Vn 2 ng, 0 < ¢,g(n) £ fin) < c,g(n)}

Show that the runtime f(n) = an? + bn + ¢ = O(n?)

© André de Carvalho - ICMC/USP 13

Exercise

= Show that insertion sort is O(n2)
= Isinsertion sort O(n3) ?

:.’ Exercise

®(g(n)) = {f(n) : A positive constants c,, ¢, and n,,
such that Vn 2 ng, 0 < ¢,g(n) < fin) < c,g(n)}

Show that the runtime f(n) = an? + bn + ¢ = O(n?)

If any of a, b, and c are less than 0 replace the constant
with its absolute value
an? + bn + ¢ < (atb+tc)n? + (at+b+c)n + (atbtc)
<3(@+b+cm>forn>1
Letc’=3(a+b+c)andletn,=1
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;’ Tromino puzzle

= Tromino: group of 3 squares with an L shape
= Board: mxm array of squares, where m = 27
= There is one forbidden tile (hole) in the board
= Goal: tiling (filling) of the board ] 5
= All squares are covered B
= Apart from the forbidden tile Tromino tie
. 2"x2" board with a hole
= Trominoes do not overlap

= All trominoes are completely inside the board
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;‘ Tromino puzzle

= How to play the 8-by-8 Tromino Puzzle

= Place the square tile on one of the 64
square grid cells

= Repeat

= Place the L-shaped trominoes into a position
one at a time

= Until there is no empty cell
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;’ Tiling
Tromino tile: E

2"x2" board A tiling of the board
with a hole: with trominoes:

- Sk
= oot
S
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!-‘ Tiling: Trivial Case (n = 1)

= Trivial case (n = 1): tiling a 2x2 board
with a hole:

o BN ="

= Suggestion:

= Try to reduce the size of the original
problem until get to 2x2 boards
= which are easy to solve...
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!.’ Tiling: Dividing the Problem

= To get smaller square boards, the original
board can be divided into four boards
= One of the problems ‘

has size 2"x2™! O
= But the other three are | I
different from the AN O N S
original problem
» They do not have holes
= What should we do?
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!-‘ Tiling: Algorithm

INPUT: n — the board size (2"x2" board), L — location of the hole
OUTPUT: tiling of the board

Tile(n, L)
ifn=1then
Trivial case
Tile with one tromino
return
Divide the board into four equal-sized boards
Place one tromino at the center to simulate 3 additional holes
Let L1, L2, L3, L4 denote the positions of the 4 holes
Tile(n-1, L1)
Tile(n-1, L2)
Tile(n-1, L3)
Tile(n-1, L4)
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Divide and Conquer

= Divide-and-conquer method for algorithm
design:
= If the problem size is small enough to be
directly solved, solve it
= Else:

= Divide: Divide the problem into two or more
disjoint subproblems

= Conquer: Apply divide-and-conquer recursively to
solve the subproblems

= Combine: Combine the solutions to the
subproblems into a solution to the original problem
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!-‘ Divide and conquer

Break problem up
into smaller (easier)
sub-problems

Smaller Smaller
problem problem

Often recursively

Yet smaller Yet smaller Yet smaller Yet smaller
problem problem problem problem
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Tiling: Divide-and-Conquer

= Tiling is a divide-and-conquer algorithm:
= If the board is 2x2 , do it trivially
= Else:

= Divide the board into four smaller boards
(introduce holes at the corners of three smaller
boards to make them look like original problems)

= Conquer using the same algorithm recursively

= Combine by placing a single tromino in the center
of the board to cover the three introduced holes
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:-‘ Binary Search

= Find a number in a sorted array:
= If the array is of one element, just do it trivially
= Else

= Divide into two equal halves and solve each half
= Combine the results

INPUT: A[1..n]: a sorted (non-decreasing) array of integers, s: an integer
OUTPUT: an index j such that Afj] =s. NIL, if V] (15j<n): A[j] # s
Binary-search(4, 1, ; s):
if1 = rthen

if A[l] = s then return |

else return NIL

qela+r) /2]

ret « Binary-search(4, I, q, s)

if ret = NIL then
return Binary-search(A, q+1,1,5)
else return ret
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Recurrences

= divide-and-conquer paradigm three
steps:
= Divide
= Conquer
= Combine
= Naturally solved by recurrence
= A base case
= A recursive case
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;‘ Recurrences

= Base case
= Recursive case
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Recurrences

= The three steps of the divide-and-
conquer paradigm makes it recursive

= Large problems are solved with
= A base case
= A recursive case

= Fits very well with the divide-and-
conquer paradigm
= Provides a easy way to define th running

time of divide-pndsconqugr algorithms

Recurrences

= Recursive calls in algorithms can be described
using recurrences

= It is an equation or inequality that describes a
function in terms of its value on smaller inputs

T(n) solving_trivial_problem ifn=1
n)=
num_pieces 7(n/subproblem_size factor) + dividing + combining ifn >1

= Example: Binary search

o o) ifn=1
=127/ 2)+0(n) ifn>1
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Binary Search (improved)

= T(n) = ©(n) — not better than brute force!
= Clever way to conquer:
= Solve only one half!

INPUT: A[1..n]: a sorted (non-decreasing) array of integers, s: an integer
OUTPUT: an index j such that A[j] = s. NIL, if ¥j (1<j<n): A[j] # s
Binary-search(4, I, r, 5):
if1=rthen
ifA[l] = s then return |
else return NIL
q «La+me]
if A[q] < s then return Binary-search(4, 1, g, s)
else return Binary-search(4, q+1,r, s)
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Running Time of Binary Search

= Can be expressed as a recurrence

I B O P
D=1 P2 +0) ifns1

T(n) = O(Ign)
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Merge Sort: Algorithm

= Divide: If Shas at least 2 elements (nothing
needs to be done if Shas 1 element)
= Remove all the elements from Sand put them into
2 sequences, S; and S,

= Each with half of the elements of S

S, contains the first /2] elements and
S, contains the remaining | n/2| elements

= Conquer: Sort sequences S; and S, using Merge
Sort
= Combine: Put the elements back into Sby
merging the sorted sequences S; and S, into one
sorted sequence
© André de Carvalho - ICMC/USP 32

Merge Sort Algorithm

Merge-Sort (A, 1, r)
if 1 < r then
qe(1+r) /2
Merge-Sort (A, 1, q)
Merge-Sort (A, g+l, r)
Merge (A, 1, g, 1)

Merge (A, 1, g, r)

Take the smallest of the two topmost elements of
sequences A[l..q] and A[qg+l..r] and put into the
resulting sequence. Repeat this, until both sequences
are empty. Copy the resulting sequence into A[l..r].
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Merge Sort (Example) - 1

Merge Sort (Example) - 2
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Merge Sort (Example) - 4
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Merge Sort (Example) - 5

Qh

Merge Sort (Example) - 6
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Merge Sort (Example) - 8
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Merge Sort (Example) - 7
© André de Carvalho - ICMC/USP 40
Merge Sort (Example) - 9
31 06 iiJD
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Merge Sort (Example) - 10
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Merge Sort (Example) - 11

96 50))
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Merge Sort (Example) - 12

Merge Sort (Example) - 13
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Merge Sort (Example) - 14
(175 31 96 S(D)
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Merge Sort (Example) - 15
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:-‘ Merge Sort (Example) - 16

( (17 31 96 5@)

:.’ Merge Sort (Example) - 17

( (17 31 96 50))
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Merge Sort (Example) - 18
( 24 45 64 85) (l 7 31 96 5@)
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:-‘ Merge Sort (Example) - 20
((24 45 64 KS) )
( ) ((17 31 50 ‘MD)
N\ 7N
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:.’ Merge Sort (Example) - 19
G = o = )
C Y )
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Merge Sort (Example) - 21
(> a5 64 ss) (17 31 50 20))
/ \
C ) (C )
AN AN
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:-‘ Merge Sort (Example) - 22

((1 7 63 85 U(D)

/\

AN /(\

NN N
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:.’ Merge Sort summarized

= To sort n numbers Ao e e
« If n=1 done! T —
1 5 2 4 6 3 |
= Else

. Fecujrsivel soﬁt 2 lists of numbers
nf2])and | n/2 | elements
= Merge 2 sorted lists in ©(n) time A A P NEVEN

= Strategy AVANRVARR VAN V4
= Break problem into similar DA
(smaller) subproblems S Sz
= Recursively solve subproblems A R R

= Combine solutions to answer

Output.
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;‘ Running Time of Merge Sort

= Can also be expressed as a recurrence

T(m) solving_trivial_problem ifn=1
n)=
num_pieces 7'(n/subproblem_size_factor)+ dividing + combining if n>1

{ o) ifn=1
T(n)= .
2T(n/2)+0O(n) ifn>1

T(n)=0O(nlgn)

© André de Carvalho - ICMC/USP 57

Recurrence

= There are three methods to solve
recurrence (obtain O and @ bounds)
= Substitution method
= Based on mathematical induction
= Recursion-tree method
= Bases on trees
= Master method
= Requires memorization of three cases
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;‘ Substitution method

= Two steps
= Guess the form of the solution
= Applied to cases when it is easy to guess the answer

= Use mathematical induction to find the constants
and show that the solution works

= Can be used to estimate upper (lower) bound
of a recurrence

= Substitutes the guesses answer by the function
defined using induction
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;’ Substitution method

= Find the running time (upper bound) of merge
sort

= Assume that n=25, for some b

o 0 ifn=1
D=1 2rmr2)+0(n) ifn>1

T(n) =2T(n/2) + @)  Assume G(n)=n
T(n) =2T(m/2) + n

Guess that T(n) =&(nlogn)
Prove that T(n) < cn Ig n for a proper choice of ¢
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:-‘ Substitution method

= Find the running time (upper bound ) of merge
sort
= Assume that n=22, for some b

1 ifn=1
T(n)= .
2T (n/2)+n ifn>1

T(n) =2T(n/2) +n

Guess that T(n) =& (nlogn)
Prove that T(n) < cn Ig n for a proper choice of ¢
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!.’ Substitution method

= Find the running time (upper bound) of merge
sort

= Assume that n=25, for some b
) ny=1-T()=1
T(n)= 1 ifn=1 j<cg1—>No
2T(n/2)+n ifn>1

T(n) =2T(n/2) + n

Guess that T(n) =&(nlogn)
Prove that T(n) < cn Ig n for a proper choice of ¢
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!-‘ Substitution method

= Find the running time (upper bound) of merge
sort
= Assume that n=22, for some b

) n, =1
T(n):{ ! ifn=1 los%m

2T(n/2)+n ifn>1 Replace T(1) by T(2) and T(3):

T2)=4
T(n) = 2T(n/2) + n 3 =3
n,=2

For n> 3, recurrence
Guess that T(n) =6(nign) does not depend on T(1)
Prove that T(n) < cn Ig n for a proper choice of ¢
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Substitution method

T(n) =2T(m/2) +n
Prove that T(n) < cnlgn

Assuming that the bound holds for n/2, T(n/2) <

cn/2 lg (}’l/Z) Choose positive value of ¢
T(n) 2[cen/2 Ig (n/2)] +n that holds for T(2) and T(3)
cnlg m/2) +n

cnlgn—cnlg2 +n

cnlgn—cn+n

cnlgn

INIAIN TN IA
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Substitution method

T(m) =2T(m/2) +n
Prove that T(n) < cnlgn

Assuming that the bound holds for n/2, T(n/2) <

cn/2 lg (}’l/Z) Choose positive value of ¢
T(n) < 2[cn/2lg (n/2)] +n  thatholds for T(2) and T(3)
Ife=1
<cnlgm/2) +n T02) < 1x212
<cnlgn—cnlg2+n 4 <2 — does not hold
< _ Ifc=2
Scnlgn—cntn T(2) < 2x2lg2
<cnlgn 4<4— holds
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Substitution method

T(n) =2T(n/2) +n
Prove that T(n) < cnlgn

Assuming that the bound holds for n/2, T(n/2) <

cn/2 lg (’1/2) Choose positive value of ¢
T(n) < 2[6!1/2 lg (}’l/Z)] +n that holds for T(2) and T(3)
Ifc=1
<cnlg(m2) +n T(3) < 1x31g3
<cnlgn—cnlg2+n 5 <3x1,6 — does not hold
Ifc=2
Scnlgn—cn+ n T(3) <2x31g3
< cnlgn (holdsifc>1) 5<6x1.6— holds
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Substitution method

= Necessary to shows that the solution
holds for the boundary conditions

= Show that they are suitable as base cases

= For the previous example, show that we can
choose a positive ¢ such that 7(n) < cnlg n
(for n > ny) works for the boundary conditions
Ben, =2
It can be easily shown that any choice of ¢ > 2, the
solution holds
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:.’ Observations

= Important to distinguish between
= The base case of of the recurrence
=« When n =1
= The base case of the inductive proof
=« Whenn=2andn=3
= For most recurrences, boundary conditions
can be extended

= In order to make inductive assumption to
work for small values of n
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Substitution method

= Why the name substitution?
= Because it substitutes the function
T(n) =2T(n/2) + n
= By the guessed solution
T(n)=6(nlgn)
= And access if the guessed solution works
for small values
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;’ Example: Finding Min and Max

= Given an unsorted array, find a
minimum and a maximum element in

INPUT: A[l..r] — an unsorted array of integers, / <r.
OUTPUT: (min, max) such that Vj (I<j<r): A[j] = min and A[j] < max

MinMax (A, 1, r):
if 1 = r then return (A[l], A[r])
gL (1+r) /2]
(minl, maxl)<« MinMax (A, 1, q)
(minr, maxr)<« MinMax (A, g+l, r)
if minl < minr then min = minl else min
if maxl > maxr then max = maxl else max
return (min, max)

minr

maxr
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;‘ Example: Finding Min and Max

= Given an unsorted array, find a
minimum and a maximum element in

INPUT: A[l..r1 — an unsorted array of integers, /<r.
OUTPUT: (min, max) such that Vj (I<j<r): A[j] = min and A[j] < max

MinMax (A, 1, r):

if 1 = r then return (A[l], Alr]) Trivial case
aeL+r /2] Divide
(minl, maxl)<« MinMax (2, 1, q) Conguer

(minr, maxr)<« MinMax (A, g+l, 1)
if minl < minr then min minl else min
if maxl > maxr then max maxl else max

mine Combine
maxr

return (min, max)
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;’ Next Week

= Continue analysis of the running time of
recursive algorithms
= Like divide-and-conquer

= Master algorithm
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i Questions
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