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SCC0602 - Algoritmos e 
Estruturas de Dados I

Recurrence

Professor: André C. P. L. F. de Carvalho, ICMC-USP 
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos
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Today

 Defining bounds

 The Divide-and-conquer technique for 
algorithm design

 Example problems:

 Tromino puzzle

 Searching (binary search)

 Sorting (merge sort)
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Defining bounds
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(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime  f(n) = 
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which value of �� makes 
the inequality true?

Choose �
�� ≥ 1
�� > 0
�� > 0

Defining bounds
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(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) = 
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which value of �� makes 
the inequality true? 1? 

Choose �
�� ≥ 1
�� > 0
�� > 0

Defining bounds
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(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) = 
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which value of �� makes 
the inequality true? 2? 

Choose �
�� ≥ 1
�� > 0
�� > 0

Defining bounds
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(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) = 
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which value of �� makes 
the inequality true? 6? 

Choose �
�� ≥ 1
�� > 0
�� > 0
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Defining bounds
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(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) = 
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which value of �� makes 
the inequality true? 7? 

Choose �
�� ≥ 1
�� > 0
�� > 0

Defining bounds
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(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) = 
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
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−
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�
≤ ��

Which values of �� and ��

make the inequality true? 

Choose �
�� = 7
�� > 0
�� > 0

Defining bounds
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(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) = 
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that
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�� − 3� ≤ ����

�� ≤
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−
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Which values of �� and ��

make the inequality true? 

Choose �

�� = 7

��= 
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�� > 0

Defining bounds
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(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) = 
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which values of �� and ��

make the inequality true? 

Choose �

�� = 7

��= 
�

��

��= 1

Exercise
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(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) = 3�� − 4� + 5 = (n3)
Find n0, c1 and c2 such that
���� ≤ 3�� − 4� + 5 ≤ ����

Which value of ��, �� and ��

Make the inequality true? 

Choose �
�� ≥ 1
�� > 0
�� > 0

Exercise
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(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) = 3�� − 4� + 5 = (n3)
Find n0, c1 and c2 t
���� ≤ 3�� − 4� + 5 ≤ ����

�� ≤ 3 −
�

�� +
�

�� ≤ ��

Choose �
�� ≥ 1
�� > 0
�� > 0

Which value of ��, �� and ��

Make the inequality true? 
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Exercise
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(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) = an2 + bn + c = (n2)

Exercise
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(g(n)) = {f(n) :  positive constants c1, c2, and n0, 

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) = an2 + bn + c = (n2)

If any of  a, b, and c are less than 0 replace the constant 
with its absolute value

an2 + bn + c  (a+b+c)n2 + (a+b+c)n + (a+b+c)
 3(a + b + c)n2 for n  1

Let c’ = 3(a + b + c) and let n0 = 1

Exercise

 Show that insertion sort is O(n2)

 Is insertion  sort O(n3) ?

Tromino puzzle

 Tromino: group of 3 squares with an L shape

 Board: mxm array of squares, where m = 2n

 There is one forbidden tile (hole) in the board

 Goal: tiling (filling) of the board

 All squares are covered

 Apart from the forbidden tile

 Trominoes do not overlap

 All trominoes are completely inside the board

© André de Carvalho - ICMC/USP 16

Tromino tile

2nx2n board with a hole

Tromino puzzle

 How to play the 8-by-8 Tromino Puzzle

 Place the square tile on one of the 64 
square grid cells

 Repeat

 Place the L-shaped trominoes into a position 
one at a time

 Until there is no empty cell

© André de Carvalho - ICMC/USP 17

Tiling

Tromino tile:

2nx2n board  
with a hole:

A tiling of the board 
with trominoes:

© André de Carvalho - ICMC/USP 18
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Tiling: Trivial Case (n = 1)

 Trivial case (n = 1): tiling a 2x2 board 
with a hole:

 Suggestion:

 Try to reduce the size of the original 
problem until get to 2x2 boards

 which are easy to solve…

© André de Carvalho - ICMC/USP 19

Tiling: Dividing the Problem

 To get smaller square boards, the original 
board can be divided into four boards

 One of the problems                                 
has size 2n-1x2n-1

 But the other three are                                 
different from the                                
original problem

 They do not have holes

 What should we do? 
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Tiling: Algorithm

INPUT: n  – the board size (2nx2n board), L – location of the hole 
OUTPUT: tiling of the board

Tile(n, L)
if n = 1 then

Trivial case
Tile with one tromino
return

Divide the board into four equal-sized boards
Place one tromino at the center to simulate 3 additional holes
Let L1, L2, L3, L4 denote the positions of the 4 holes   
Tile(n-1, L1)
Tile(n-1, L2) 
Tile(n-1, L3) 
Tile(n-1, L4) 

INPUT: n  – the board size (2nx2n board), L – location of the hole 
OUTPUT: tiling of the board

Tile(n, L)
if n = 1 then

Trivial case
Tile with one tromino
return

Divide the board into four equal-sized boards
Place one tromino at the center to simulate 3 additional holes
Let L1, L2, L3, L4 denote the positions of the 4 holes   
Tile(n-1, L1)
Tile(n-1, L2) 
Tile(n-1, L3) 
Tile(n-1, L4) 
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Divide and Conquer

 Divide-and-conquer method for algorithm 
design:
 If the problem size is small enough to be 

directly solved, solve it

 Else:
 Divide: Divide the problem into two or more 

disjoint subproblems

 Conquer: Apply divide-and-conquer recursively to 
solve the subproblems

 Combine: Combine the solutions to the 
subproblems into a solution to the original problem

© André de Carvalho - ICMC/USP 22

Divide and conquer
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Big problem

Smaller 
problem

Smaller 
problem

Yet smaller 
problem

Yet smaller 
problem

Yet smaller 
problem

Yet smaller 
problem

Often recursively

Break problem up 
into smaller (easier) 
sub-problems

Tiling: Divide-and-Conquer

 Tiling is a divide-and-conquer algorithm:

 If the board is 2x2 , do it trivially

 Else:

 Divide the board into four smaller boards 
(introduce holes at the corners of three smaller 
boards to make them look like original problems)

 Conquer using the same algorithm recursively

 Combine by placing a single tromino in the center 
of the board to cover the three introduced holes 

© André de Carvalho - ICMC/USP 24



5

 Find a number in a sorted array:
 If the array is of one element, just do it trivially 

 Else 
 Divide into two equal halves and solve each half

 Combine the results

Binary Search

INPUT: A[1..n]: a sorted (non-decreasing) array of integers, s: an integer 
OUTPUT: an index j such that A[j] = s. . NIL, if "j (1jn): A[j] s
Binary-search(A, l, r, s):

if l = r then 
if A[l] = s then return l
else return NIL 
q (l+r)/2
ret  Binary-search(A, l, q, s)
if ret = NIL then 

return Binary-search(A, q+1, r, s)
else return ret      

INPUT: A[1..n]: a sorted (non-decreasing) array of integers, s: an integer 
OUTPUT: an index j such that A[j] = s. . NIL, if "j (1jn): A[j] s
Binary-search(A, l, r, s):

if l = r then 
if A[l] = s then return l
else return NIL 
q (l+r)/2
ret  Binary-search(A, l, q, s)
if ret = NIL then 

return Binary-search(A, q+1, r, s)
else return ret      
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Recurrences

 divide-and-conquer paradigm three
steps:

 Divide

 Conquer

 Combine

 Naturally solved by recurrence

 A base case

 A recursive case

© André de Carvalho - ICMC/USP 26

Recurrences

 Base case

 Recursive case

© André de Carvalho - ICMC/USP 27

Recurrences

 The three steps of the divide-and-
conquer paradigm makes it recursive

 Large problems are solved with

 A base case

 A recursive case

 Fits very well with the divide-and-
conquer paradigm

 Provides a easy way to define th running
time of divide-and-conquer algorithms© André de Carvalho - ICMC/USP 28

Recurrences

 Recursive calls in algorithms can be described 
using recurrences

 It is an equation or inequality that describes a 
function in terms of its value on smaller inputs

 Example: Binary search

(1)   if 1
( )

2 ( / 2) ( )   if 1

n
T n

T n n n

 
 

 

solving_trivial_problem   if 1
( )

num_pieces ( / subproblem_size_factor) dividing combining   if 1

n
T n

T n n


 

  
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Binary Search (improved)

 T(n) = (n) – not better than brute force!

 Clever way to conquer:

 Solve only one half!
INPUT: A[1..n]: a sorted (non-decreasing) array of integers, s: an integer
OUTPUT: an index j such that A[j] = s. NIL, if "j (1jn): A[j] s
Binary-search(A, l, r, s):

if l = r then 
if A[l] = s then return l
else return NIL 
q (l+r)/2 
if A[q]  s then return Binary-search(A, l, q, s)

else return Binary-search(A, q+1, r, s)

INPUT: A[1..n]: a sorted (non-decreasing) array of integers, s: an integer
OUTPUT: an index j such that A[j] = s. NIL, if "j (1jn): A[j] s
Binary-search(A, l, r, s):

if l = r then 
if A[l] = s then return l
else return NIL 
q (l+r)/2 
if A[q]  s then return Binary-search(A, l, q, s)

else return Binary-search(A, q+1, r, s)

© André de Carvalho - ICMC/USP 30
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Running Time of Binary Search

(1)   if 1
( )

( / 2) (1)   if 1

n
T n

T n n

 
 

 

© André de Carvalho - ICMC/USP 31

 Can be expressed as a recurrence

� � = (lg �)

Merge Sort: Algorithm

 Divide: If S has at least 2 elements (nothing 
needs to be done if S has 1 element) 

 Remove all the elements from S and put them into 
2 sequences, S1 and S2

 Each with half of the elements of S 
 S1 contains the first n/2elements and 

S2 contains the remaining n/2elements

 Conquer: Sort sequences S1 and S2 using Merge 
Sort

 Combine: Put the elements back into S by 
merging the sorted sequences S1 and S2 into one 
sorted sequence

© André de Carvalho - ICMC/USP 32

Merge Sort Algorithm

Merge-Sort(A, l, r)
if l < r then

q(l+r)/2
Merge-Sort(A, l, q)
Merge-Sort(A, q+1, r)
Merge(A, l, q, r)

Merge-Sort(A, l, r)
if l < r then

q(l+r)/2
Merge-Sort(A, l, q)
Merge-Sort(A, q+1, r)
Merge(A, l, q, r)

Merge(A, l, q, r)
Take the smallest of the two topmost elements of 

sequences A[l..q] and A[q+1..r] and put into the 
resulting sequence. Repeat this, until both sequences 
are empty. Copy the resulting sequence into A[l..r]. 

Merge(A, l, q, r)
Take the smallest of the two topmost elements of 

sequences A[l..q] and A[q+1..r] and put into the 
resulting sequence. Repeat this, until both sequences 
are empty. Copy the resulting sequence into A[l..r]. 
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Merge Sort (Example) - 1
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Merge Sort (Example) - 2
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Merge Sort (Example) - 3

© André de Carvalho - ICMC/USP 36
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Merge Sort (Example) - 4
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Merge Sort (Example) - 5
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Merge Sort (Example) - 6
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Merge Sort (Example) - 7
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Merge Sort (Example) - 8
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Merge Sort (Example) - 9
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Merge Sort (Example) - 10
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Merge Sort (Example) - 11
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Merge Sort (Example) - 12
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Merge Sort (Example) - 13
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Merge Sort (Example) - 14
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Merge Sort (Example) - 15
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Merge Sort (Example) - 16
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Merge Sort (Example) - 17
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Merge Sort (Example) - 18
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Merge Sort (Example) - 19
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Merge Sort (Example) - 20
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Merge Sort (Example) - 21

© André de Carvalho - ICMC/USP 54
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Merge Sort (Example) - 22

© André de Carvalho - ICMC/USP 55

Merge Sort summarized

 To sort n numbers
 If n=1 done!

 Else

 Recursively sort 2 lists of numbers 
n/2 and n/2 elements

 Merge 2 sorted lists in (n) time

 Strategy
 Break problem into similar 

(smaller) subproblems

 Recursively solve subproblems

 Combine solutions to answer

© André de Carvalho - ICMC/USP 56

Running Time of Merge Sort

 Can also be expressed as a recurrence

© André de Carvalho - ICMC/USP 57

(1)   if 1
( )

2 ( / 2) ( )   if 1

n
T n

T n n n

 
 

 

solving_trivial_problem   if 1
( )

num_pieces ( / subproblem_size_factor) dividing combining   if 1

n
T n

T n n


 

  

� � =Q(� lg �)

Recurrence

 There are three methods to solve 
recurrence (obtain O and Q  bounds)

 Substitution method

 Based on mathematical induction

 Recursion-tree method

 Bases on trees

 Master method

 Requires memorization of three cases

© André de Carvalho - ICMC/USP 58

Substitution method

 Two steps

 Guess the form of the solution

 Applied to cases when it is easy to guess the answer

 Use mathematical induction to find the constants 
and show that the solution works

 Can be used to estimate upper (lower) bound 
of a recurrence

 Substitutes the guesses answer by the function 
defined using induction

© André de Carvalho - ICMC/USP 59

Substitution method

 Find the running time (upper bound) of merge 
sort 
 Assume that n=2b, for some b

© André de Carvalho - ICMC/USP 60

T(n) = 2T(n/2) + Q (n) 

Guess that � � =Q(�����)
Prove that T(n) ≤  cn lg n for a proper choice of c 

(1)   if 1
( )

2 ( / 2) ( )   if 1

n
T n

T n n n

 
 

 

Assume Q(n)= n

T(n) = 2T(n/2) + n 



11

Substitution method

 Find the running time (upper bound ) of merge 
sort 
 Assume that n=2b, for some b

1   if 1
( )

2 ( / 2)   if 1

n
T n

T n n n


 

 
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T(n) = 2T(n/2) + n 

Guess that � � =Q(�����)
Prove that T(n) ≤  cn lg n for a proper choice of c 

Substitution method

 Find the running time (upper bound) of merge 
sort 
 Assume that n=2b, for some b

© André de Carvalho - ICMC/USP 62

1   if 1
( )

2 ( / 2)   if 1

n
T n

T n n n


 

 

T(n) = 2T(n/2) + n 

Guess that � � =Q(�����)
Prove that T(n) ≤  cn lg n for a proper choice of c 

n0 = 1 → T(1) = 1
1 ≤ clg 1 → No

Substitution method

 Find the running time (upper bound) of merge 
sort 
 Assume that n=2b, for some b

1   if 1
( )

2 ( / 2)   if 1

n
T n

T n n n


 

 
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T(n) = 2T(n/2) + n 

Guess that � � =Q(����)
Prove that T(n) ≤  cn lg n for a proper choice of c 

n0 = 1 → T(1) = 1
1 ≤ clg 1 → No
Replace T(1) by T(2) and T(3):
T(2) = 4
T(3) = 5
n0 = 2
For n> 3, recurrence 
does not depend on T(1)

Substitution method

© André de Carvalho - ICMC/USP 64

T(n) = 2T(n/2) + n
Prove that T(n) ≤  cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤  
cn/2 lg (n/2)
T(n) ≤  2[cn/2 lg (n/2)] + n

≤  cn lg (n/2) + n
≤  cn lg n – cnlg 2 + n
≤  cn lg n – cn + n
≤  cn lg n

Choose positive value of c 
that holds for T(2) and T(3)

Substitution method
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T(n) = 2T(n/2) + n
Prove that T(n) ≤  cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤  
cn/2 lg (n/2)
T(n) ≤  2[cn/2 lg (n/2)] + n

≤  cn lg (n/2) + n
≤  cn lg n – cnlg 2 + n
≤  cn lg n – cn + n
≤  cn lg n

Choose positive value of c 
that holds for T(2) and T(3)
If c = 1

T(2) ≤ 1x2lg2 
4 ≤ 2 → does not hold

If c = 2
T(2) ≤ 2x2lg2
4 ≤ 4 → holds

Substitution method

© André de Carvalho - ICMC/USP 66

T(n) = 2T(n/2) + n
Prove that T(n) ≤  cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤  
cn/2 lg (n/2)
T(n) ≤  2[cn/2 lg (n/2)] + n

≤  cn lg (n/2) + n
≤  cn lg n – cnlg 2 + n
≤  cn lg n – cn + n
≤  cn lg n (holds if c > 1)

Choose positive value of c 
that holds for T(2) and T(3)
If c = 1

T(3) ≤ 1x3lg3 
5 ≤ 3x1,6 → does not hold

If c = 2
T(3) ≤ 2x3lg3
5 ≤ 6x1,6 → holds



12

Substitution method

 Necessary to shows that the solution 
holds for the boundary conditions

 Show that they are suitable as base cases

 For the previous example, show that we can 
choose a positive c such that T(n) ≤  cn lg n 
(for n ≥ n0) works for the boundary conditions

 Be n0  = 2

 It can be easily shown that any choice of c ≥ 2, the 
solution holds 
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Observations

 Important to distinguish between

 The base case of of the recurrence

 When n =1

 The base case of the inductive proof

 When n =2 and n = 3

 For most recurrences, boundary conditions 
can be extended 

 In order to make inductive assumption to 
work for small values of n
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Substitution method

 Why the name substitution?

 Because it substitutes the function 

 By the guessed solution

 And access if the guessed solution works 
for small values
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T(n) = 2T(n/2) + n 

� � =Q(����)

Example: Finding Min and Max

 Given an unsorted array, find a 
minimum and a maximum element in 
the arrayINPUT: A[l..r] – an unsorted array of integers, l r.

OUTPUT: (min, max) such that "j (ljr): A[j]  min and A[j]  max

MinMax(A, l, r):
if l = r then return (A[l], A[r])
q(l+r)/2
(minl, maxl) MinMax(A, l, q)                 
(minr, maxr) MinMax(A, q+1, r)
if minl < minr then min = minl else min = minr
if maxl > maxr then max = maxl else max = maxr
return (min, max)      

INPUT: A[l..r] – an unsorted array of integers, l r.
OUTPUT: (min, max) such that "j (ljr): A[j]  min and A[j]  max

MinMax(A, l, r):
if l = r then return (A[l], A[r])
q(l+r)/2
(minl, maxl) MinMax(A, l, q)                 
(minr, maxr) MinMax(A, q+1, r)
if minl < minr then min = minl else min = minr
if maxl > maxr then max = maxl else max = maxr
return (min, max)      
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Example: Finding Min and Max

 Given an unsorted array, find a 
minimum and a maximum element in 
the arrayINPUT: A[l..r] – an unsorted array of integers, l r.

OUTPUT: (min, max) such that "j (ljr): A[j]  min and A[j]  max

MinMax(A, l, r):
if l = r then return (A[l], A[r])        Trivial case
q(l+r)/2Divide 
(minl, maxl) MinMax(A, l, q)                 
(minr, maxr) MinMax(A, q+1, r)
if minl < minr then min = minl else min = minr
if maxl > maxr then max = maxl else max = maxr
return (min, max)      

INPUT: A[l..r] – an unsorted array of integers, l r.
OUTPUT: (min, max) such that "j (ljr): A[j]  min and A[j]  max

MinMax(A, l, r):
if l = r then return (A[l], A[r])        Trivial case
q(l+r)/2Divide 
(minl, maxl) MinMax(A, l, q)                 
(minr, maxr) MinMax(A, q+1, r)
if minl < minr then min = minl else min = minr
if maxl > maxr then max = maxl else max = maxr
return (min, max)      

Conquer

Combine
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Next Week

 Continue analysis of the running time of 
recursive algorithms 

 Like divide-and-conquer

 Master algorithm
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Questions
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