
1

SCC0602 - Algoritmos e
Estruturas de Dados I

Recurrence

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

© André de Carvalho - ICMC/USP 1

Today

 Defining bounds

 The Divide-and-conquer technique for
algorithm design

 Example problems:

 Tromino puzzle

 Searching (binary search)

 Sorting (merge sort)

© André de Carvalho - ICMC/USP 2

Defining bounds

© André de Carvalho - ICMC/USP 3

(g(n)) = {f(n) : positive constants c1, c2, and n0,

such that n n0, 0 c1g(n) f(n) c2g(n)}

Show that the runtime f(n) =
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which value of �� makes
the inequality true?

Choose �
�� ≥ 1
�� > 0
�� > 0

Defining bounds

© André de Carvalho - ICMC/USP 4

(g(n)) = {f(n) : positive constants c1, c2, and n0,

such that n n0, 0 c1g(n) f(n) c2g(n)}

Show that the runtime f(n) =
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which value of �� makes
the inequality true? 1?

Choose �
�� ≥ 1
�� > 0
�� > 0

Defining bounds

© André de Carvalho - ICMC/USP 5

(g(n)) = {f(n) : positive constants c1, c2, and n0,

such that n n0, 0 c1g(n) f(n) c2g(n)}

Show that the runtime f(n) =
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which value of �� makes
the inequality true? 2?

Choose �
�� ≥ 1
�� > 0
�� > 0

Defining bounds

© André de Carvalho - ICMC/USP 6

(g(n)) = {f(n) : positive constants c1, c2, and n0,

such that n n0, 0 c1g(n) f(n) c2g(n)}

Show that the runtime f(n) =
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which value of �� makes
the inequality true? 6?

Choose �
�� ≥ 1
�� > 0
�� > 0

2

Defining bounds

© André de Carvalho - ICMC/USP 7

(g(n)) = {f(n) : positive constants c1, c2, and n0,

such that n n0, 0 c1g(n) f(n) c2g(n)}

Show that the runtime f(n) =
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which value of �� makes
the inequality true? 7?

Choose �
�� ≥ 1
�� > 0
�� > 0

Defining bounds

© André de Carvalho - ICMC/USP 8

(g(n)) = {f(n) : positive constants c1, c2, and n0,

such that n n0, 0 c1g(n) f(n) c2g(n)}

Show that the runtime f(n) =
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which values of �� and ��

make the inequality true?

Choose �
�� = 7
�� > 0
�� > 0

Defining bounds

© André de Carvalho - ICMC/USP 9

(g(n)) = {f(n) : positive constants c1, c2, and n0,

such that n n0, 0 c1g(n) f(n) c2g(n)}

Show that the runtime f(n) =
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which values of �� and ��

make the inequality true?

Choose �

�� = 7

��=
�

��

�� > 0

Defining bounds

© André de Carvalho - ICMC/USP 10

(g(n)) = {f(n) : positive constants c1, c2, and n0,

such that n n0, 0 c1g(n) f(n) c2g(n)}

Show that the runtime f(n) =
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which values of �� and ��

make the inequality true?

Choose �

�� = 7

��=
�

��

��= 1

Exercise

© André de Carvalho - ICMC/USP 11

(g(n)) = {f(n) : positive constants c1, c2, and n0,

such that n n0, 0 c1g(n) f(n) c2g(n)}

Show that the runtime f(n) = 3�� − 4� + 5 = (n3)
Find n0, c1 and c2 such that
���� ≤ 3�� − 4� + 5 ≤ ����

Which value of ��, �� and ��

Make the inequality true?

Choose �
�� ≥ 1
�� > 0
�� > 0

Exercise

© André de Carvalho - ICMC/USP 12

(g(n)) = {f(n) : positive constants c1, c2, and n0,

such that n n0, 0 c1g(n) f(n) c2g(n)}

Show that the runtime f(n) = 3�� − 4� + 5 = (n3)
Find n0, c1 and c2 t
���� ≤ 3�� − 4� + 5 ≤ ����

�� ≤ 3 −
�

�� +
�

�� ≤ ��

Choose �
�� ≥ 1
�� > 0
�� > 0

Which value of ��, �� and ��

Make the inequality true?

3

Exercise

© André de Carvalho - ICMC/USP 13

(g(n)) = {f(n) : positive constants c1, c2, and n0,

such that n n0, 0 c1g(n) f(n) c2g(n)}

Show that the runtime f(n) = an2 + bn + c = (n2)

Exercise

© André de Carvalho - ICMC/USP 14

(g(n)) = {f(n) : positive constants c1, c2, and n0,

such that n n0, 0 c1g(n) f(n) c2g(n)}

Show that the runtime f(n) = an2 + bn + c = (n2)

If any of a, b, and c are less than 0 replace the constant
with its absolute value

an2 + bn + c (a+b+c)n2 + (a+b+c)n + (a+b+c)
 3(a + b + c)n2 for n 1

Let c’ = 3(a + b + c) and let n0 = 1

Exercise

 Show that insertion sort is O(n2)

 Is insertion sort O(n3) ?

Tromino puzzle

 Tromino: group of 3 squares with an L shape

 Board: mxm array of squares, where m = 2n

 There is one forbidden tile (hole) in the board

 Goal: tiling (filling) of the board

 All squares are covered

 Apart from the forbidden tile

 Trominoes do not overlap

 All trominoes are completely inside the board

© André de Carvalho - ICMC/USP 16

Tromino tile

2nx2n board with a hole

Tromino puzzle

 How to play the 8-by-8 Tromino Puzzle

 Place the square tile on one of the 64
square grid cells

 Repeat

 Place the L-shaped trominoes into a position
one at a time

 Until there is no empty cell

© André de Carvalho - ICMC/USP 17

Tiling

Tromino tile:

2nx2n board
with a hole:

A tiling of the board
with trominoes:

© André de Carvalho - ICMC/USP 18

4

Tiling: Trivial Case (n = 1)

 Trivial case (n = 1): tiling a 2x2 board
with a hole:

 Suggestion:

 Try to reduce the size of the original
problem until get to 2x2 boards

 which are easy to solve…

© André de Carvalho - ICMC/USP 19

Tiling: Dividing the Problem

 To get smaller square boards, the original
board can be divided into four boards

 One of the problems
has size 2n-1x2n-1

 But the other three are
different from the
original problem

 They do not have holes

 What should we do?

© André de Carvalho - ICMC/USP 20

Tiling: Algorithm

INPUT: n – the board size (2nx2n board), L – location of the hole
OUTPUT: tiling of the board

Tile(n, L)
if n = 1 then

Trivial case
Tile with one tromino
return

Divide the board into four equal-sized boards
Place one tromino at the center to simulate 3 additional holes
Let L1, L2, L3, L4 denote the positions of the 4 holes
Tile(n-1, L1)
Tile(n-1, L2)
Tile(n-1, L3)
Tile(n-1, L4)

INPUT: n – the board size (2nx2n board), L – location of the hole
OUTPUT: tiling of the board

Tile(n, L)
if n = 1 then

Trivial case
Tile with one tromino
return

Divide the board into four equal-sized boards
Place one tromino at the center to simulate 3 additional holes
Let L1, L2, L3, L4 denote the positions of the 4 holes
Tile(n-1, L1)
Tile(n-1, L2)
Tile(n-1, L3)
Tile(n-1, L4)

© André de Carvalho - ICMC/USP 21

Divide and Conquer

 Divide-and-conquer method for algorithm
design:
 If the problem size is small enough to be

directly solved, solve it

 Else:
 Divide: Divide the problem into two or more

disjoint subproblems

 Conquer: Apply divide-and-conquer recursively to
solve the subproblems

 Combine: Combine the solutions to the
subproblems into a solution to the original problem

© André de Carvalho - ICMC/USP 22

Divide and conquer

© André de Carvalho - ICMC/USP 23

Big problem

Smaller
problem

Smaller
problem

Yet smaller
problem

Yet smaller
problem

Yet smaller
problem

Yet smaller
problem

Often recursively

Break problem up
into smaller (easier)
sub-problems

Tiling: Divide-and-Conquer

 Tiling is a divide-and-conquer algorithm:

 If the board is 2x2 , do it trivially

 Else:

 Divide the board into four smaller boards
(introduce holes at the corners of three smaller
boards to make them look like original problems)

 Conquer using the same algorithm recursively

 Combine by placing a single tromino in the center
of the board to cover the three introduced holes

© André de Carvalho - ICMC/USP 24

5

 Find a number in a sorted array:
 If the array is of one element, just do it trivially

 Else
 Divide into two equal halves and solve each half

 Combine the results

Binary Search

INPUT: A[1..n]: a sorted (non-decreasing) array of integers, s: an integer
OUTPUT: an index j such that A[j] = s. . NIL, if "j (1jn): A[j] s
Binary-search(A, l, r, s):

if l = r then
if A[l] = s then return l
else return NIL
q (l+r)/2
ret Binary-search(A, l, q, s)
if ret = NIL then

return Binary-search(A, q+1, r, s)
else return ret

INPUT: A[1..n]: a sorted (non-decreasing) array of integers, s: an integer
OUTPUT: an index j such that A[j] = s. . NIL, if "j (1jn): A[j] s
Binary-search(A, l, r, s):

if l = r then
if A[l] = s then return l
else return NIL
q (l+r)/2
ret Binary-search(A, l, q, s)
if ret = NIL then

return Binary-search(A, q+1, r, s)
else return ret

© André de Carvalho - ICMC/USP 25

Recurrences

 divide-and-conquer paradigm three
steps:

 Divide

 Conquer

 Combine

 Naturally solved by recurrence

 A base case

 A recursive case

© André de Carvalho - ICMC/USP 26

Recurrences

 Base case

 Recursive case

© André de Carvalho - ICMC/USP 27

Recurrences

 The three steps of the divide-and-
conquer paradigm makes it recursive

 Large problems are solved with

 A base case

 A recursive case

 Fits very well with the divide-and-
conquer paradigm

 Provides a easy way to define th running
time of divide-and-conquer algorithms© André de Carvalho - ICMC/USP 28

Recurrences

 Recursive calls in algorithms can be described
using recurrences

 It is an equation or inequality that describes a
function in terms of its value on smaller inputs

 Example: Binary search

(1) if 1
()

2 (/ 2) () if 1

n
T n

T n n n

solving_trivial_problem if 1
()

num_pieces (/ subproblem_size_factor) dividing combining if 1

n
T n

T n n

© André de Carvalho - ICMC/USP 29

Binary Search (improved)

 T(n) = (n) – not better than brute force!

 Clever way to conquer:

 Solve only one half!
INPUT: A[1..n]: a sorted (non-decreasing) array of integers, s: an integer
OUTPUT: an index j such that A[j] = s. NIL, if "j (1jn): A[j] s
Binary-search(A, l, r, s):

if l = r then
if A[l] = s then return l
else return NIL
q (l+r)/2
if A[q] s then return Binary-search(A, l, q, s)

else return Binary-search(A, q+1, r, s)

INPUT: A[1..n]: a sorted (non-decreasing) array of integers, s: an integer
OUTPUT: an index j such that A[j] = s. NIL, if "j (1jn): A[j] s
Binary-search(A, l, r, s):

if l = r then
if A[l] = s then return l
else return NIL
q (l+r)/2
if A[q] s then return Binary-search(A, l, q, s)

else return Binary-search(A, q+1, r, s)

© André de Carvalho - ICMC/USP 30

6

Running Time of Binary Search

(1) if 1
()

(/ 2) (1) if 1

n
T n

T n n

© André de Carvalho - ICMC/USP 31

 Can be expressed as a recurrence

� � = (lg �)

Merge Sort: Algorithm

 Divide: If S has at least 2 elements (nothing
needs to be done if S has 1 element)

 Remove all the elements from S and put them into
2 sequences, S1 and S2

 Each with half of the elements of S
 S1 contains the first n/2elements and

S2 contains the remaining n/2elements

 Conquer: Sort sequences S1 and S2 using Merge
Sort

 Combine: Put the elements back into S by
merging the sorted sequences S1 and S2 into one
sorted sequence

© André de Carvalho - ICMC/USP 32

Merge Sort Algorithm

Merge-Sort(A, l, r)
if l < r then

q(l+r)/2
Merge-Sort(A, l, q)
Merge-Sort(A, q+1, r)
Merge(A, l, q, r)

Merge-Sort(A, l, r)
if l < r then

q(l+r)/2
Merge-Sort(A, l, q)
Merge-Sort(A, q+1, r)
Merge(A, l, q, r)

Merge(A, l, q, r)
Take the smallest of the two topmost elements of

sequences A[l..q] and A[q+1..r] and put into the
resulting sequence. Repeat this, until both sequences
are empty. Copy the resulting sequence into A[l..r].

Merge(A, l, q, r)
Take the smallest of the two topmost elements of

sequences A[l..q] and A[q+1..r] and put into the
resulting sequence. Repeat this, until both sequences
are empty. Copy the resulting sequence into A[l..r].

© André de Carvalho - ICMC/USP 33

Merge Sort (Example) - 1

© André de Carvalho - ICMC/USP 34

Merge Sort (Example) - 2

© André de Carvalho - ICMC/USP 35

Merge Sort (Example) - 3

© André de Carvalho - ICMC/USP 36

7

Merge Sort (Example) - 4

© André de Carvalho - ICMC/USP 37

Merge Sort (Example) - 5

© André de Carvalho - ICMC/USP 38

Merge Sort (Example) - 6

© André de Carvalho - ICMC/USP 39

Merge Sort (Example) - 7

© André de Carvalho - ICMC/USP 40

Merge Sort (Example) - 8

© André de Carvalho - ICMC/USP 41

Merge Sort (Example) - 9

© André de Carvalho - ICMC/USP 42

8

Merge Sort (Example) - 10

© André de Carvalho - ICMC/USP 43

Merge Sort (Example) - 11

© André de Carvalho - ICMC/USP 44

Merge Sort (Example) - 12

© André de Carvalho - ICMC/USP 45

Merge Sort (Example) - 13

© André de Carvalho - ICMC/USP 46

Merge Sort (Example) - 14

© André de Carvalho - ICMC/USP 47

Merge Sort (Example) - 15

© André de Carvalho - ICMC/USP 48

9

Merge Sort (Example) - 16

© André de Carvalho - ICMC/USP 49

Merge Sort (Example) - 17

© André de Carvalho - ICMC/USP 50

Merge Sort (Example) - 18

© André de Carvalho - ICMC/USP 51

Merge Sort (Example) - 19

© André de Carvalho - ICMC/USP 52

Merge Sort (Example) - 20

© André de Carvalho - ICMC/USP 53

Merge Sort (Example) - 21

© André de Carvalho - ICMC/USP 54

10

Merge Sort (Example) - 22

© André de Carvalho - ICMC/USP 55

Merge Sort summarized

 To sort n numbers
 If n=1 done!

 Else

 Recursively sort 2 lists of numbers
n/2 and n/2 elements

 Merge 2 sorted lists in (n) time

 Strategy
 Break problem into similar

(smaller) subproblems

 Recursively solve subproblems

 Combine solutions to answer

© André de Carvalho - ICMC/USP 56

Running Time of Merge Sort

 Can also be expressed as a recurrence

© André de Carvalho - ICMC/USP 57

(1) if 1
()

2 (/ 2) () if 1

n
T n

T n n n

solving_trivial_problem if 1
()

num_pieces (/ subproblem_size_factor) dividing combining if 1

n
T n

T n n

� � =Q(� lg �)

Recurrence

 There are three methods to solve
recurrence (obtain O and Q bounds)

 Substitution method

 Based on mathematical induction

 Recursion-tree method

 Bases on trees

 Master method

 Requires memorization of three cases

© André de Carvalho - ICMC/USP 58

Substitution method

 Two steps

 Guess the form of the solution

 Applied to cases when it is easy to guess the answer

 Use mathematical induction to find the constants
and show that the solution works

 Can be used to estimate upper (lower) bound
of a recurrence

 Substitutes the guesses answer by the function
defined using induction

© André de Carvalho - ICMC/USP 59

Substitution method

 Find the running time (upper bound) of merge
sort
 Assume that n=2b, for some b

© André de Carvalho - ICMC/USP 60

T(n) = 2T(n/2) + Q (n)

Guess that � � =Q(�����)
Prove that T(n) ≤ cn lg n for a proper choice of c

(1) if 1
()

2 (/ 2) () if 1

n
T n

T n n n

Assume Q(n)= n

T(n) = 2T(n/2) + n

11

Substitution method

 Find the running time (upper bound) of merge
sort
 Assume that n=2b, for some b

1 if 1
()

2 (/ 2) if 1

n
T n

T n n n

© André de Carvalho - ICMC/USP 61

T(n) = 2T(n/2) + n

Guess that � � =Q(�����)
Prove that T(n) ≤ cn lg n for a proper choice of c

Substitution method

 Find the running time (upper bound) of merge
sort
 Assume that n=2b, for some b

© André de Carvalho - ICMC/USP 62

1 if 1
()

2 (/ 2) if 1

n
T n

T n n n

T(n) = 2T(n/2) + n

Guess that � � =Q(�����)
Prove that T(n) ≤ cn lg n for a proper choice of c

n0 = 1 → T(1) = 1
1 ≤ clg 1 → No

Substitution method

 Find the running time (upper bound) of merge
sort
 Assume that n=2b, for some b

1 if 1
()

2 (/ 2) if 1

n
T n

T n n n

© André de Carvalho - ICMC/USP 63

T(n) = 2T(n/2) + n

Guess that � � =Q(����)
Prove that T(n) ≤ cn lg n for a proper choice of c

n0 = 1 → T(1) = 1
1 ≤ clg 1 → No
Replace T(1) by T(2) and T(3):
T(2) = 4
T(3) = 5
n0 = 2
For n> 3, recurrence
does not depend on T(1)

Substitution method

© André de Carvalho - ICMC/USP 64

T(n) = 2T(n/2) + n
Prove that T(n) ≤ cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤
cn/2 lg (n/2)
T(n) ≤ 2[cn/2 lg (n/2)] + n

≤ cn lg (n/2) + n
≤ cn lg n – cnlg 2 + n
≤ cn lg n – cn + n
≤ cn lg n

Choose positive value of c
that holds for T(2) and T(3)

Substitution method

© André de Carvalho - ICMC/USP 65

T(n) = 2T(n/2) + n
Prove that T(n) ≤ cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤
cn/2 lg (n/2)
T(n) ≤ 2[cn/2 lg (n/2)] + n

≤ cn lg (n/2) + n
≤ cn lg n – cnlg 2 + n
≤ cn lg n – cn + n
≤ cn lg n

Choose positive value of c
that holds for T(2) and T(3)
If c = 1

T(2) ≤ 1x2lg2
4 ≤ 2 → does not hold

If c = 2
T(2) ≤ 2x2lg2
4 ≤ 4 → holds

Substitution method

© André de Carvalho - ICMC/USP 66

T(n) = 2T(n/2) + n
Prove that T(n) ≤ cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤
cn/2 lg (n/2)
T(n) ≤ 2[cn/2 lg (n/2)] + n

≤ cn lg (n/2) + n
≤ cn lg n – cnlg 2 + n
≤ cn lg n – cn + n
≤ cn lg n (holds if c > 1)

Choose positive value of c
that holds for T(2) and T(3)
If c = 1

T(3) ≤ 1x3lg3
5 ≤ 3x1,6 → does not hold

If c = 2
T(3) ≤ 2x3lg3
5 ≤ 6x1,6 → holds

12

Substitution method

 Necessary to shows that the solution
holds for the boundary conditions

 Show that they are suitable as base cases

 For the previous example, show that we can
choose a positive c such that T(n) ≤ cn lg n
(for n ≥ n0) works for the boundary conditions

 Be n0 = 2

 It can be easily shown that any choice of c ≥ 2, the
solution holds

© André de Carvalho - ICMC/USP 67

Observations

 Important to distinguish between

 The base case of of the recurrence

 When n =1

 The base case of the inductive proof

 When n =2 and n = 3

 For most recurrences, boundary conditions
can be extended

 In order to make inductive assumption to
work for small values of n

© André de Carvalho - ICMC/USP 68

Substitution method

 Why the name substitution?

 Because it substitutes the function

 By the guessed solution

 And access if the guessed solution works
for small values

© André de Carvalho - ICMC/USP 69

T(n) = 2T(n/2) + n

� � =Q(����)

Example: Finding Min and Max

 Given an unsorted array, find a
minimum and a maximum element in
the arrayINPUT: A[l..r] – an unsorted array of integers, l r.

OUTPUT: (min, max) such that "j (ljr): A[j] min and A[j] max

MinMax(A, l, r):
if l = r then return (A[l], A[r])
q(l+r)/2
(minl, maxl) MinMax(A, l, q)
(minr, maxr) MinMax(A, q+1, r)
if minl < minr then min = minl else min = minr
if maxl > maxr then max = maxl else max = maxr
return (min, max)

INPUT: A[l..r] – an unsorted array of integers, l r.
OUTPUT: (min, max) such that "j (ljr): A[j] min and A[j] max

MinMax(A, l, r):
if l = r then return (A[l], A[r])
q(l+r)/2
(minl, maxl) MinMax(A, l, q)
(minr, maxr) MinMax(A, q+1, r)
if minl < minr then min = minl else min = minr
if maxl > maxr then max = maxl else max = maxr
return (min, max)

© André de Carvalho - ICMC/USP 70

Example: Finding Min and Max

 Given an unsorted array, find a
minimum and a maximum element in
the arrayINPUT: A[l..r] – an unsorted array of integers, l r.

OUTPUT: (min, max) such that "j (ljr): A[j] min and A[j] max

MinMax(A, l, r):
if l = r then return (A[l], A[r]) Trivial case
q(l+r)/2Divide
(minl, maxl) MinMax(A, l, q)
(minr, maxr) MinMax(A, q+1, r)
if minl < minr then min = minl else min = minr
if maxl > maxr then max = maxl else max = maxr
return (min, max)

INPUT: A[l..r] – an unsorted array of integers, l r.
OUTPUT: (min, max) such that "j (ljr): A[j] min and A[j] max

MinMax(A, l, r):
if l = r then return (A[l], A[r]) Trivial case
q(l+r)/2Divide
(minl, maxl) MinMax(A, l, q)
(minr, maxr) MinMax(A, q+1, r)
if minl < minr then min = minl else min = minr
if maxl > maxr then max = maxl else max = maxr
return (min, max)

Conquer

Combine

© André de Carvalho - ICMC/USP 71

Next Week

 Continue analysis of the running time of
recursive algorithms

 Like divide-and-conquer

 Master algorithm

© André de Carvalho - ICMC/USP 72

13

Acknowledgement

 A large part of this material was adapted
from

 Simonas Šaltenis, Algorithms and Data Structures,
Aalborg University, Denmark

 Mary Wootters, Design and Analysis of Algorithms,
Stanford University, USA

 George Bebis, Analysis of Algorithms
CS 477/677, University of Nevada, Reno

 David A. Plaisted, Information Comp 550-001,
University of North Carolina at Chapel Hill

© André de Carvalho - ICMC/USP 73

Questions

© André de Carvalho - ICMC/USP 74

