
1

SCC0602 - Algoritmos e
Estruturas de Dados I

Recurrence

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor: Joao Pedro Rodrigues Mattos

© André de Carvalho - ICMC/USP 1

Today

 Defining bounds

 The Divide-and-conquer technique for
algorithm design

 Example problems:

 Tromino puzzle

 Searching (binary search)

 Sorting (merge sort)

© André de Carvalho - ICMC/USP 2

Defining bounds

© André de Carvalho - ICMC/USP 3

(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) =
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which value of �� makes
the inequality true?

Choose �
�� ≥ 1
�� > 0
�� > 0

Defining bounds

© André de Carvalho - ICMC/USP 4

(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) =
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which value of �� makes
the inequality true? 1?

Choose �
�� ≥ 1
�� > 0
�� > 0

Defining bounds

© André de Carvalho - ICMC/USP 5

(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) =
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which value of �� makes
the inequality true? 2?

Choose �
�� ≥ 1
�� > 0
�� > 0

Defining bounds

© André de Carvalho - ICMC/USP 6

(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) =
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which value of �� makes
the inequality true? 6?

Choose �
�� ≥ 1
�� > 0
�� > 0

2

Defining bounds

© André de Carvalho - ICMC/USP 7

(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) =
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which value of �� makes
the inequality true? 7?

Choose �
�� ≥ 1
�� > 0
�� > 0

Defining bounds

© André de Carvalho - ICMC/USP 8

(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) =
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which values of �� and ��

make the inequality true?

Choose �
�� = 7
�� > 0
�� > 0

Defining bounds

© André de Carvalho - ICMC/USP 9

(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) =
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which values of �� and ��

make the inequality true?

Choose �

�� = 7

��=
�

��

�� > 0

Defining bounds

© André de Carvalho - ICMC/USP 10

(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) =
�

�
�� − 3� = (n2)

Find n0, c1 and c2 such that

���� ≤
�

�
�� − 3� ≤ ����

�� ≤
�

�
−

�

�
≤ ��

Which values of �� and ��

make the inequality true?

Choose �

�� = 7

��=
�

��

��= 1

Exercise

© André de Carvalho - ICMC/USP 11

(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) = 3�� − 4� + 5 = (n3)
Find n0, c1 and c2 such that
���� ≤ 3�� − 4� + 5 ≤ ����

Which value of ��, �� and ��

Make the inequality true?

Choose �
�� ≥ 1
�� > 0
�� > 0

Exercise

© André de Carvalho - ICMC/USP 12

(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) = 3�� − 4� + 5 = (n3)
Find n0, c1 and c2 t
���� ≤ 3�� − 4� + 5 ≤ ����

�� ≤ 3 −
�

�� +
�

�� ≤ ��

Choose �
�� ≥ 1
�� > 0
�� > 0

Which value of ��, �� and ��

Make the inequality true?

3

Exercise

© André de Carvalho - ICMC/USP 13

(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) = an2 + bn + c = (n2)

Exercise

© André de Carvalho - ICMC/USP 14

(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Show that the runtime f(n) = an2 + bn + c = (n2)

If any of a, b, and c are less than 0 replace the constant
with its absolute value

an2 + bn + c  (a+b+c)n2 + (a+b+c)n + (a+b+c)
 3(a + b + c)n2 for n  1

Let c’ = 3(a + b + c) and let n0 = 1

Exercise

 Show that insertion sort is O(n2)

 Is insertion sort O(n3) ?

Tromino puzzle

 Tromino: group of 3 squares with an L shape

 Board: mxm array of squares, where m = 2n

 There is one forbidden tile (hole) in the board

 Goal: tiling (filling) of the board

 All squares are covered

 Apart from the forbidden tile

 Trominoes do not overlap

 All trominoes are completely inside the board

© André de Carvalho - ICMC/USP 16

Tromino tile

2nx2n board with a hole

Tromino puzzle

 How to play the 8-by-8 Tromino Puzzle

 Place the square tile on one of the 64
square grid cells

 Repeat

 Place the L-shaped trominoes into a position
one at a time

 Until there is no empty cell

© André de Carvalho - ICMC/USP 17

Tiling

Tromino tile:

2nx2n board
with a hole:

A tiling of the board
with trominoes:

© André de Carvalho - ICMC/USP 18

4

Tiling: Trivial Case (n = 1)

 Trivial case (n = 1): tiling a 2x2 board
with a hole:

 Suggestion:

 Try to reduce the size of the original
problem until get to 2x2 boards

 which are easy to solve…

© André de Carvalho - ICMC/USP 19

Tiling: Dividing the Problem

 To get smaller square boards, the original
board can be divided into four boards

 One of the problems
has size 2n-1x2n-1

 But the other three are
different from the
original problem

 They do not have holes

 What should we do?

© André de Carvalho - ICMC/USP 20

Tiling: Algorithm

INPUT: n – the board size (2nx2n board), L – location of the hole
OUTPUT: tiling of the board

Tile(n, L)
if n = 1 then

Trivial case
Tile with one tromino
return

Divide the board into four equal-sized boards
Place one tromino at the center to simulate 3 additional holes
Let L1, L2, L3, L4 denote the positions of the 4 holes
Tile(n-1, L1)
Tile(n-1, L2)
Tile(n-1, L3)
Tile(n-1, L4)

INPUT: n – the board size (2nx2n board), L – location of the hole
OUTPUT: tiling of the board

Tile(n, L)
if n = 1 then

Trivial case
Tile with one tromino
return

Divide the board into four equal-sized boards
Place one tromino at the center to simulate 3 additional holes
Let L1, L2, L3, L4 denote the positions of the 4 holes
Tile(n-1, L1)
Tile(n-1, L2)
Tile(n-1, L3)
Tile(n-1, L4)

© André de Carvalho - ICMC/USP 21

Divide and Conquer

 Divide-and-conquer method for algorithm
design:
 If the problem size is small enough to be

directly solved, solve it

 Else:
 Divide: Divide the problem into two or more

disjoint subproblems

 Conquer: Apply divide-and-conquer recursively to
solve the subproblems

 Combine: Combine the solutions to the
subproblems into a solution to the original problem

© André de Carvalho - ICMC/USP 22

Divide and conquer

© André de Carvalho - ICMC/USP 23

Big problem

Smaller
problem

Smaller
problem

Yet smaller
problem

Yet smaller
problem

Yet smaller
problem

Yet smaller
problem

Often recursively

Break problem up
into smaller (easier)
sub-problems

Tiling: Divide-and-Conquer

 Tiling is a divide-and-conquer algorithm:

 If the board is 2x2 , do it trivially

 Else:

 Divide the board into four smaller boards
(introduce holes at the corners of three smaller
boards to make them look like original problems)

 Conquer using the same algorithm recursively

 Combine by placing a single tromino in the center
of the board to cover the three introduced holes

© André de Carvalho - ICMC/USP 24

5

 Find a number in a sorted array:
 If the array is of one element, just do it trivially

 Else
 Divide into two equal halves and solve each half

 Combine the results

Binary Search

INPUT: A[1..n]: a sorted (non-decreasing) array of integers, s: an integer
OUTPUT: an index j such that A[j] = s. . NIL, if "j (1jn): A[j] s
Binary-search(A, l, r, s):

if l = r then
if A[l] = s then return l
else return NIL
q (l+r)/2
ret  Binary-search(A, l, q, s)
if ret = NIL then

return Binary-search(A, q+1, r, s)
else return ret

INPUT: A[1..n]: a sorted (non-decreasing) array of integers, s: an integer
OUTPUT: an index j such that A[j] = s. . NIL, if "j (1jn): A[j] s
Binary-search(A, l, r, s):

if l = r then
if A[l] = s then return l
else return NIL
q (l+r)/2
ret  Binary-search(A, l, q, s)
if ret = NIL then

return Binary-search(A, q+1, r, s)
else return ret

© André de Carvalho - ICMC/USP 25

Recurrences

 divide-and-conquer paradigm three
steps:

 Divide

 Conquer

 Combine

 Naturally solved by recurrence

 A base case

 A recursive case

© André de Carvalho - ICMC/USP 26

Recurrences

 Base case

 Recursive case

© André de Carvalho - ICMC/USP 27

Recurrences

 The three steps of the divide-and-
conquer paradigm makes it recursive

 Large problems are solved with

 A base case

 A recursive case

 Fits very well with the divide-and-
conquer paradigm

 Provides a easy way to define th running
time of divide-and-conquer algorithms© André de Carvalho - ICMC/USP 28

Recurrences

 Recursive calls in algorithms can be described
using recurrences

 It is an equation or inequality that describes a
function in terms of its value on smaller inputs

 Example: Binary search

(1) if 1
()

2 (/ 2) () if 1

n
T n

T n n n

 
 

 

solving_trivial_problem if 1
()

num_pieces (/ subproblem_size_factor) dividing combining if 1

n
T n

T n n


 

  

© André de Carvalho - ICMC/USP 29

Binary Search (improved)

 T(n) = (n) – not better than brute force!

 Clever way to conquer:

 Solve only one half!
INPUT: A[1..n]: a sorted (non-decreasing) array of integers, s: an integer
OUTPUT: an index j such that A[j] = s. NIL, if "j (1jn): A[j] s
Binary-search(A, l, r, s):

if l = r then
if A[l] = s then return l
else return NIL
q (l+r)/2 
if A[q]  s then return Binary-search(A, l, q, s)

else return Binary-search(A, q+1, r, s)

INPUT: A[1..n]: a sorted (non-decreasing) array of integers, s: an integer
OUTPUT: an index j such that A[j] = s. NIL, if "j (1jn): A[j] s
Binary-search(A, l, r, s):

if l = r then
if A[l] = s then return l
else return NIL
q (l+r)/2 
if A[q]  s then return Binary-search(A, l, q, s)

else return Binary-search(A, q+1, r, s)

© André de Carvalho - ICMC/USP 30

6

Running Time of Binary Search

(1) if 1
()

(/ 2) (1) if 1

n
T n

T n n

 
 

 

© André de Carvalho - ICMC/USP 31

 Can be expressed as a recurrence

� � = (lg �)

Merge Sort: Algorithm

 Divide: If S has at least 2 elements (nothing
needs to be done if S has 1 element)

 Remove all the elements from S and put them into
2 sequences, S1 and S2

 Each with half of the elements of S
 S1 contains the first n/2elements and

S2 contains the remaining n/2elements

 Conquer: Sort sequences S1 and S2 using Merge
Sort

 Combine: Put the elements back into S by
merging the sorted sequences S1 and S2 into one
sorted sequence

© André de Carvalho - ICMC/USP 32

Merge Sort Algorithm

Merge-Sort(A, l, r)
if l < r then

q(l+r)/2
Merge-Sort(A, l, q)
Merge-Sort(A, q+1, r)
Merge(A, l, q, r)

Merge-Sort(A, l, r)
if l < r then

q(l+r)/2
Merge-Sort(A, l, q)
Merge-Sort(A, q+1, r)
Merge(A, l, q, r)

Merge(A, l, q, r)
Take the smallest of the two topmost elements of

sequences A[l..q] and A[q+1..r] and put into the
resulting sequence. Repeat this, until both sequences
are empty. Copy the resulting sequence into A[l..r].

Merge(A, l, q, r)
Take the smallest of the two topmost elements of

sequences A[l..q] and A[q+1..r] and put into the
resulting sequence. Repeat this, until both sequences
are empty. Copy the resulting sequence into A[l..r].

© André de Carvalho - ICMC/USP 33

Merge Sort (Example) - 1

© André de Carvalho - ICMC/USP 34

Merge Sort (Example) - 2

© André de Carvalho - ICMC/USP 35

Merge Sort (Example) - 3

© André de Carvalho - ICMC/USP 36

7

Merge Sort (Example) - 4

© André de Carvalho - ICMC/USP 37

Merge Sort (Example) - 5

© André de Carvalho - ICMC/USP 38

Merge Sort (Example) - 6

© André de Carvalho - ICMC/USP 39

Merge Sort (Example) - 7

© André de Carvalho - ICMC/USP 40

Merge Sort (Example) - 8

© André de Carvalho - ICMC/USP 41

Merge Sort (Example) - 9

© André de Carvalho - ICMC/USP 42

8

Merge Sort (Example) - 10

© André de Carvalho - ICMC/USP 43

Merge Sort (Example) - 11

© André de Carvalho - ICMC/USP 44

Merge Sort (Example) - 12

© André de Carvalho - ICMC/USP 45

Merge Sort (Example) - 13

© André de Carvalho - ICMC/USP 46

Merge Sort (Example) - 14

© André de Carvalho - ICMC/USP 47

Merge Sort (Example) - 15

© André de Carvalho - ICMC/USP 48

9

Merge Sort (Example) - 16

© André de Carvalho - ICMC/USP 49

Merge Sort (Example) - 17

© André de Carvalho - ICMC/USP 50

Merge Sort (Example) - 18

© André de Carvalho - ICMC/USP 51

Merge Sort (Example) - 19

© André de Carvalho - ICMC/USP 52

Merge Sort (Example) - 20

© André de Carvalho - ICMC/USP 53

Merge Sort (Example) - 21

© André de Carvalho - ICMC/USP 54

10

Merge Sort (Example) - 22

© André de Carvalho - ICMC/USP 55

Merge Sort summarized

 To sort n numbers
 If n=1 done!

 Else

 Recursively sort 2 lists of numbers
n/2 and n/2 elements

 Merge 2 sorted lists in (n) time

 Strategy
 Break problem into similar

(smaller) subproblems

 Recursively solve subproblems

 Combine solutions to answer

© André de Carvalho - ICMC/USP 56

Running Time of Merge Sort

 Can also be expressed as a recurrence

© André de Carvalho - ICMC/USP 57

(1) if 1
()

2 (/ 2) () if 1

n
T n

T n n n

 
 

 

solving_trivial_problem if 1
()

num_pieces (/ subproblem_size_factor) dividing combining if 1

n
T n

T n n


 

  

� � =Q(� lg �)

Recurrence

 There are three methods to solve
recurrence (obtain O and Q bounds)

 Substitution method

 Based on mathematical induction

 Recursion-tree method

 Bases on trees

 Master method

 Requires memorization of three cases

© André de Carvalho - ICMC/USP 58

Substitution method

 Two steps

 Guess the form of the solution

 Applied to cases when it is easy to guess the answer

 Use mathematical induction to find the constants
and show that the solution works

 Can be used to estimate upper (lower) bound
of a recurrence

 Substitutes the guesses answer by the function
defined using induction

© André de Carvalho - ICMC/USP 59

Substitution method

 Find the running time (upper bound) of merge
sort
 Assume that n=2b, for some b

© André de Carvalho - ICMC/USP 60

T(n) = 2T(n/2) + Q (n)

Guess that � � =Q(�����)
Prove that T(n) ≤ cn lg n for a proper choice of c

(1) if 1
()

2 (/ 2) () if 1

n
T n

T n n n

 
 

 

Assume Q(n)= n

T(n) = 2T(n/2) + n

11

Substitution method

 Find the running time (upper bound) of merge
sort
 Assume that n=2b, for some b

1 if 1
()

2 (/ 2) if 1

n
T n

T n n n


 

 

© André de Carvalho - ICMC/USP 61

T(n) = 2T(n/2) + n

Guess that � � =Q(�����)
Prove that T(n) ≤ cn lg n for a proper choice of c

Substitution method

 Find the running time (upper bound) of merge
sort
 Assume that n=2b, for some b

© André de Carvalho - ICMC/USP 62

1 if 1
()

2 (/ 2) if 1

n
T n

T n n n


 

 

T(n) = 2T(n/2) + n

Guess that � � =Q(�����)
Prove that T(n) ≤ cn lg n for a proper choice of c

n0 = 1 → T(1) = 1
1 ≤ clg 1 → No

Substitution method

 Find the running time (upper bound) of merge
sort
 Assume that n=2b, for some b

1 if 1
()

2 (/ 2) if 1

n
T n

T n n n


 

 

© André de Carvalho - ICMC/USP 63

T(n) = 2T(n/2) + n

Guess that � � =Q(����)
Prove that T(n) ≤ cn lg n for a proper choice of c

n0 = 1 → T(1) = 1
1 ≤ clg 1 → No
Replace T(1) by T(2) and T(3):
T(2) = 4
T(3) = 5
n0 = 2
For n> 3, recurrence
does not depend on T(1)

Substitution method

© André de Carvalho - ICMC/USP 64

T(n) = 2T(n/2) + n
Prove that T(n) ≤ cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤
cn/2 lg (n/2)
T(n) ≤ 2[cn/2 lg (n/2)] + n

≤ cn lg (n/2) + n
≤ cn lg n – cnlg 2 + n
≤ cn lg n – cn + n
≤ cn lg n

Choose positive value of c
that holds for T(2) and T(3)

Substitution method

© André de Carvalho - ICMC/USP 65

T(n) = 2T(n/2) + n
Prove that T(n) ≤ cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤
cn/2 lg (n/2)
T(n) ≤ 2[cn/2 lg (n/2)] + n

≤ cn lg (n/2) + n
≤ cn lg n – cnlg 2 + n
≤ cn lg n – cn + n
≤ cn lg n

Choose positive value of c
that holds for T(2) and T(3)
If c = 1

T(2) ≤ 1x2lg2
4 ≤ 2 → does not hold

If c = 2
T(2) ≤ 2x2lg2
4 ≤ 4 → holds

Substitution method

© André de Carvalho - ICMC/USP 66

T(n) = 2T(n/2) + n
Prove that T(n) ≤ cn lg n

Assuming that the bound holds for n/2, T(n/2) ≤
cn/2 lg (n/2)
T(n) ≤ 2[cn/2 lg (n/2)] + n

≤ cn lg (n/2) + n
≤ cn lg n – cnlg 2 + n
≤ cn lg n – cn + n
≤ cn lg n (holds if c > 1)

Choose positive value of c
that holds for T(2) and T(3)
If c = 1

T(3) ≤ 1x3lg3
5 ≤ 3x1,6 → does not hold

If c = 2
T(3) ≤ 2x3lg3
5 ≤ 6x1,6 → holds

12

Substitution method

 Necessary to shows that the solution
holds for the boundary conditions

 Show that they are suitable as base cases

 For the previous example, show that we can
choose a positive c such that T(n) ≤ cn lg n
(for n ≥ n0) works for the boundary conditions

 Be n0 = 2

 It can be easily shown that any choice of c ≥ 2, the
solution holds

© André de Carvalho - ICMC/USP 67

Observations

 Important to distinguish between

 The base case of of the recurrence

 When n =1

 The base case of the inductive proof

 When n =2 and n = 3

 For most recurrences, boundary conditions
can be extended

 In order to make inductive assumption to
work for small values of n

© André de Carvalho - ICMC/USP 68

Substitution method

 Why the name substitution?

 Because it substitutes the function

 By the guessed solution

 And access if the guessed solution works
for small values

© André de Carvalho - ICMC/USP 69

T(n) = 2T(n/2) + n

� � =Q(����)

Example: Finding Min and Max

 Given an unsorted array, find a
minimum and a maximum element in
the arrayINPUT: A[l..r] – an unsorted array of integers, l r.

OUTPUT: (min, max) such that "j (ljr): A[j]  min and A[j]  max

MinMax(A, l, r):
if l = r then return (A[l], A[r])
q(l+r)/2
(minl, maxl) MinMax(A, l, q)
(minr, maxr) MinMax(A, q+1, r)
if minl < minr then min = minl else min = minr
if maxl > maxr then max = maxl else max = maxr
return (min, max)

INPUT: A[l..r] – an unsorted array of integers, l r.
OUTPUT: (min, max) such that "j (ljr): A[j]  min and A[j]  max

MinMax(A, l, r):
if l = r then return (A[l], A[r])
q(l+r)/2
(minl, maxl) MinMax(A, l, q)
(minr, maxr) MinMax(A, q+1, r)
if minl < minr then min = minl else min = minr
if maxl > maxr then max = maxl else max = maxr
return (min, max)

© André de Carvalho - ICMC/USP 70

Example: Finding Min and Max

 Given an unsorted array, find a
minimum and a maximum element in
the arrayINPUT: A[l..r] – an unsorted array of integers, l r.

OUTPUT: (min, max) such that "j (ljr): A[j]  min and A[j]  max

MinMax(A, l, r):
if l = r then return (A[l], A[r]) Trivial case
q(l+r)/2Divide
(minl, maxl) MinMax(A, l, q)
(minr, maxr) MinMax(A, q+1, r)
if minl < minr then min = minl else min = minr
if maxl > maxr then max = maxl else max = maxr
return (min, max)

INPUT: A[l..r] – an unsorted array of integers, l r.
OUTPUT: (min, max) such that "j (ljr): A[j]  min and A[j]  max

MinMax(A, l, r):
if l = r then return (A[l], A[r]) Trivial case
q(l+r)/2Divide
(minl, maxl) MinMax(A, l, q)
(minr, maxr) MinMax(A, q+1, r)
if minl < minr then min = minl else min = minr
if maxl > maxr then max = maxl else max = maxr
return (min, max)

Conquer

Combine

© André de Carvalho - ICMC/USP 71

Next Week

 Continue analysis of the running time of
recursive algorithms

 Like divide-and-conquer

 Master algorithm

© André de Carvalho - ICMC/USP 72

13

Acknowledgement

 A large part of this material was adapted
from

 Simonas Šaltenis, Algorithms and Data Structures,
Aalborg University, Denmark

 Mary Wootters, Design and Analysis of Algorithms,
Stanford University, USA

 George Bebis, Analysis of Algorithms
CS 477/677, University of Nevada, Reno

 David A. Plaisted, Information Comp 550-001,
University of North Carolina at Chapel Hill

© André de Carvalho - ICMC/USP 73

Questions

© André de Carvalho - ICMC/USP 74

