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Abstract

It is shown that a mesh-connected nxn multiproces-
sor system can compute the inverse of a nxn matrix in
linear time to n. The algorithm is based on a theorem
known to Sylvester in 1851. 1t computes the cofactor
matrix in n steps, each of which involves 4 unit dis-
tance message routing and 4 arithmetic operations for
every processor. A coding and memory requirement for
each processor is the same and is independent of n.

It is also shown that the same algorithm solves
systems of n linear equations in linear time of n with
n x (n+l) processors.

1. Introduction

Below we will give a matrix inversion algorithm
(K-algorithm) suitable for execution by a mesh-connec-
ted multiprocessor system. The computation time is
linear to the size of the matrix. This is an improve-
ment over the result of VanScoy5 whose computation time
is 0(n¢), where n is the size of the matrix. For other
parallel algorithms of matrix computation, see Pease
and Csanky7.

Our algorithm is an answer to the following distri-
butive computation problem:

Given nxn processors mesh-connected into a toroi-
dal shape, initially each processor carrying one number
to form a nxn matrix, the problem is to find an algor-
ithm for each processor such that the inverse of the
matrix can be computed and stored by the toroid under
the following constraints:

(1) The interprocessor communication is asynchro-
nous and is independent of n. No central
communication facility, ex. clock signal or
any broadcasting, is available.

The algorithm is to be same for all the pro-
cessors with the possible exception of a
fixed number, and is independent of n.

The local memory space required in each pro-
cessor is fixed and independent of n.

The number of types of control messages used
is fixed and independent of n. The number of
messages used can be a function of n.

The computation time is to be of the order of
n.

(2)

(3)
(&)

(5)

The reason for the constraint (5) is that with the
result of Strassen3, a single Ergcessor system can_com-
pute the inverse matrix by 0(n¢- I) sgeps. With n2 pro-
cessors why can not we do it by 0(n0- 1) steps?

The key question here is the problem of communica-
tion complexity. |If there is a very complex communica-
tion device by which every processor can communicate
with any other processor or with the shared memory at
any time, then to write a program for n% processors to
achieve 0(n0-81) computation might not be a difficult
problem after Strassen. In this case, however, the com-
plexity of such a device is proportional to n%. On the
other hand, the complexity of communication devices in a
mesh-connected multiprocessor system is a constant and
is independent of n. Decomposition of such a complex

communication requirement as the one in a matrix inver-
sion algorithm into a simple one such as the four
neighborhood communication facility is not trivial.

No known parallel algorithm satisfies all of the
above constraints. For example, consider the follow-
ing Gauss-Jordan elimination algorithm executed in
parallell(for brevity, the algorithm is modified to
compute the determinant rather than the inverse of a
given matrix):

FOR k=n STEP -1 WUNTIL 2 DO

ajj = apy X Ak T A X Ay {15(i,j)sk in
parallell

det :=

21

With 2n2 processors sharing a random access memory
of an arbitrary size, this algorithm requires 2n-1
steps. However, this is a misleading number if one con-
siders the complexity of communication {or message
switching) between the processors and the shared memory.
To illustrate the point, consider the datum ayy in the
k-th step. It will be demanded by {(k-1)2 processors
causing a memory contention problem. |f the memory
response time is proportional to the degree of conten-
tion, then the actual computation time will be of the

n
order of } 2(k-1), i.e. 0(n?). Furthermore, the algor-
k=2

ithm has a problem in its terminating condition. With-
out a centralized communication facility or without the
knowledge of n, each processor cannot tell when to stop.
The detection of n and its distribution to all proces-

sors will require 0(3n) extra steps. _For a recent ana-

8

lysis of data movement, see Gentleman®.

Our algorithm requires n+l steps. By the first n
steps the cofactor matrix and the determinant will be
computed simultaneously. By the last step the trans-
position and division operations will be done to get
the inverse. During the first n steps, every processor
in the toroid demands one datum each from its south,
east and south-east (diagonal) neighbors. The commun-
ication time will be 4 times the unit of message trans-
mission time between two immediate neighbors. Four
arithmetic operations will be performed by every pro-
cessor in each step. Therefore the computation time of
each step is independent of n.

The last step consists of three phases: (1) to
identify the diagonal processors with 2n delay, (2) to
spread the ready signal from the diagonal processors to
the processors in the same column with n delay, and (3)
to migrate a datum southbound first to the diagonal
processor then west-bound by the same distance requir-
ing 2n delay at worst. The total computation time,
therefore, will be proportional to (4+5+a)n, where a is
a constant for the arithmetic operation delay time.

In order to apply the algorithm, the initial ma-
trix is required to satisfy a stronger condition than
that of non-singularity. We call such a matrix
strongly non-singular. The notion will be defined in
the next section, The foundation of our algorithm was
known to Sylvester in 1851%. In the section 3 we will
present it as the key lemma, and the algorithm itself
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as the main theorem.
In the section 4, we will modify the algorithm

for solving a system of linear equations in linear
time.

2. Notations and Definitions

Let A = (a;;), 1=(i,j)sn be a nxn matrix on
real numbers. e will use the following standard nota-

tionsZ. P oPgr 1Py
ql’qz"“’qr ’ ‘S(rvply"'»pryq]’---rqr)sn

: the rxr submatrix of A, consisting of py,py,
-» Py-th rows and q3,93,...,9,~th columns of

det(A) : the determinant of A.

adj(A) : the adjoint matrix of A.

Mj: the cofactor of ajj, 1s(i,j)sn,
i.e. adj(pA) = (Ajif

A_IE(Sij) : the inverse matrix of A.

in the remainder of this paper, all matrix indices
are to be interpreted as modulo n unless so stated
otherwise.

Definitions:
i+1,i+2,...,i+k

k = 1<(i,j,k)
() 875 % A<j+l,j+2,...,j+k> (i,j,k)<n

: the ij-th block of order k.

(2) A is strongly non-singular if every block of
A is non-singular, i.e. for all 1s(i,j,k)<n,

det (Bk )#0.
)
Example: 1 1 ) 1
1 2 4 8 . 1 s )
1 3 9 27 is strongly non-singular.
1 4 16 64

Note that any non-singular Vandermonde matrix is
strongly non-singular.

3. The Algorithm
In this section we will give the algorithm first
in the form of a theorem, then illustrate the algorithm
by a simple computation example. Then we will prove
the theorem after presenting the key lemma with a proof.

Main Theorem:
Let A be a nxn strongly non-singular matrix.

Define x7; for 05ksn+1, 1s(i,j)sn, by:
x?j 1,
x!. T a;.
ij b c%ije
k+i = ok ko _ Kk S
Xi; oA (xij XL, T X xi,J+|)
k-1
/xi+1,j+l'
Then, for any 15(i,j)sn,
n+l
(1) xij 0.
@ ;= (00D ger(a),
(3) x0T = DAL e

' (i+]))
. =~ = (-1)n(i+j) _n-1 n
i.e. ajj (-1 xj+l,i+l/xij'
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Let X

Example: 3 6.

Let us apply the algorithm to the Vandermonde
matrix given in the section 2.

0=06%)=[1 1 1
HJ 1 1 1 1
| I T B
O T B
xt= () = 1 1 1 1 ]
J 1 2 & 8 |
1 3 9 27 1
1 4 16 64 1
T 1 1 1 11
X2=(5)=1 2 & -7 |1
1 6 36 -19 1
1 12 144 -37 1
-3 -12 -48 63 | -3
1 2 & -7 |1
B=(3)=2 12 22 12 {2
J 2 48 52 18 | 2
6 72 1h 48 | 6
6 48 84 L2 6
772 22 12 | 2
X*= ¥y =12 -2 12 -2
o2 o1z -1z 12
12 -12 12 -12
12 12 -2 12
oM™V =T u8z12 72/-12 48712 12/-12
52/-12  Wk/i2 84/-12 22/12
18/12  48/-12  42/12  12/-12
2/-12 6/12  6/-12 2/12
Key Lemma: (Sylvester)

Let A be an arbitrary nxn matrix.

Let 1,2,...,n-1 1,2,...,n-1
A A(I,Z,...,n-l A2 2,3,...,n

12
sl )
asa(3:don) M &
As
Then, A3 A“

det(A5)xdet(A)=det(A|)Xdet(Ah)-det(A3)Xdet(A2).

Proof:
We will prove the lemma in two steps by showing:

(1) The lemma holds if A is almost diagonal (defined
below) .

(2) Any matrix A can be transformed into an almost
diagonal one A' such that det (A)=det(A'), and
det(A.)=det(AL) for Isrs5.

Call a matrix (ai-) almost diagonal if a;:

i7=0 for
12(i,j)sn, except when i=j or i=1,j=n or "i=n, j=I.

Step 1. Assume that A is an almost diagonal
matrix.



1
[
A = |
0]
|
0 a .
! n-1,n-1 |
e e et P
an ! 0O |ann
]
Then by row and column expansion, we get:
det(AI) =aj] °* det(As),
det(Ay) = (-2 . 4 . det(Ag),
det(A) = aj; - det(Ay) + (-1 - a) - det(A3)
= aj - det(Ay) - (-2 . & . det(Ag).

If det(A5) = 0, then det(A) and det(A ), 15r35, are
zero, and the lemma holds. If det(A:) # O, then by
multiplying det(Ag) on the both sides of the last
equation above, we obtain the lemma.

Step 2. By not using the 1-st and n-th rows for
any row operation and the 1-st and n-th columns for
any column operation, we can diagonalize A mwithout
altering the values of det(A,) for 1sr<5, “into the
form:

tll tlZ . . . tin
t21] t22 0 ton
tn] tn2 . . . tnn

By (n-2) row manipulations, we can eliminate t12:t13
<»t1,n-1- Similarly, we can eliminate tpo,tn3,. .-,

th,n-1- Then by (n-2) column operations, we can elim-
inate t215t315-4+5tn-1,1> and similarly, t2n’t3n""’
th-1,1-

A1l row and column operations involved in the
step 2 are from the inside of A; to the outside of As.
Therefore they preserve the valles of det(A.) for
1<rs5, Q.E.D.

Proof of Theorem:

Assume that A is strongly non-singular, i.e. for
any 15(i,j,k)sn, det(8§j)#0, where B$j is the ij-th
block of order k of A.

First, by induction we will show that for any
1sksn,

k _ k
xij = det(Bi-l

. 1), where 15(i,j)3n.
»J=1

fe. g 1 _afi-t 2afi) 2 ...
Basis: Since Bj_y ;. AQ-PH) AC) ajj
- - 1
ST det(Bi-l,j-I)‘
Induction: Assume that for any msk,

= k+ .
x?j = det(BT-l’j_]). Let C & B?-},j-lv then using the
notation introduced in the lemma,

k = gk = gk
B C2 A B . C3 A Bi,j']’

Cy B Biy j-12

= ok = k-1
Cy § By, C5 KBy -

k+1

S~—— k4] -

By the key lemma, det(B?}l)-det(B?f} j-l)

- k . ky - K -1y k
det(Bi-],j-]) det(Bij) det(B},j-1) det(Bi—I,j)‘
Since det(B?}])f 0, by the inductive hypothesis,
k+1 o (xK exK -xk o oxK
det(Bi7) ) = OG5 % ja i X3 e
k-1
i+1,j+1
= Xk
]
Proof of (2): Since B?_I i1 is obtainable from
A(=an) by swapping rows (n-1)(i-1) times, (from (1,2,

.,n) to (i,i+l,...,n,1,..

.. .,i=1)), and swapping
columns (n=1)(j-1) times,

det (B"

- l) = (_])(n'l)(i‘|)+(n'])(j‘|)det(
1=1,J-

n

Bnn)'
Therefore, x?j = det(B?_"j_l)

= (1) (DG4 ger(a).

Proof of (1):

<= (N e ),

Using the result of (2) above,

Xiat, 501 T (")(n-])(i+j+2)'det(A),
My g = (DO o),
x?;j"‘l = (_]) (n-l) (i+j+l) 'det (A) .

By definition,

n - N . N
1,4 T

det (A) -det (A) - ((-1)2(n=1) (i+])
-(-1)2(n=1) (i+j+1))
=0

xq+l- n-1

= xN ..
|j Xi+],j+] = xij X

. n-1 _ n n+l _
Since Xi+l,j+l = det(Bij) #0, i 0.
Proof of (3): Let €ij be the ij-th minor of A,i.e.
= 1,2,...,i=1,itl,...,n
cij & A(I,Z,...,j-l,jH,...,n)

then Aij = (-I)(i+j)-det(cij), where (Aji) = adj(A).
On the other hand, by the definition of B?j,

(i+l,i+2,...,n,1,2,.“

,i-1
n,1,2,00.,5-1 /.

Since B?}I is a row and column permutation of Cij»

Bn-l -

ij 1,542,
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=y = -2} (i-1) -2) {j-1)
det (87]1) = (-1 (02 G=1) 4y (n-2) (j

'det(cij)

(-n" Ajj-

n-1 _ n-1 ~ (-1)\N.
Therefore, i det(Bi-l,j-l) = (-1) Ai-1,j-1-

Q.E.D.

4. Solution of Systems of Linear Equations

The results of the previous section can be
immediately extended for a non-square matrix A=(ai.,
1gism, 1£j2n, by interpreting the first index i tone
modulo m, and the second index j to be modulo n. With
the same definition of the ij-th block of order k as
the one for square matrices, A is called strongly

non-singular if det(BX.)#0 for any 1%ism, 1%j3n, and
ISkSminim,ns. '

In this section, we will show that when the algor-
ithm of the main theorem is applied to a strongly non-
singular nx(n+1) matrix, representing a system of n
linear rquations, it computes simultaneously all of the
n+l determinants required by the Cramer's method. The
computation time is of the order of n.

Theorem:

Let A be a strongly non-singular nx(n+1) matrix,

811 812 -+ Ap 87 n+)

321 %22 *+r Fn 92 .0+
A= . : ° *

anl an2 Ceee ann an’nﬂ

and let xK by (x?j), 0<k<n, be the results of iterations

of the algorithm given in the main theorem applied to A.

. = (_yynr+l _n n <<
Define y. I (-1) xl,r+l/xll’ 15rsn,
Then,

I PR FAR R 1,n+1

3] @y -eee 3y Yy az;n+|
a cees : y

1 n2 ann Yn an,n+l

Example: A=X'=[2 -3 2 1 1| 2
-3 1 1 -3 5(-3

X“ =111 -2 16 -1l 9
i3 6 -1 23 7
y 2 - 8 7
-9 -9 -5 8 -17

x3=[23 & 51 71 ko
2 -4 5 21 2]
6 19 16 32 1
-39 -77 -73 -115 -53

4
=13 @) @ @ @)
31 -31 -62 -93 31
.31 31 62 93 -31
31 -3 -62 -93 3
T S 2 -3 2 1=
y2= D2 6y (231)=2 1oh =2 7{| 2|=|-4
=0 gz a3 |3 1 1 3| 3|
y4=(-l)“x“+'-(-31)/(-3|)=-| 5 -3 -1 2] |-1d=]-6

Proof:
that

By the Cramer's rule, it is sufficient to show

= det(dr)/det(do), 18r<n, where
q .
1,2,...,n
do A(uz“.”n)’
132, iiiinneeennnnnanss ,N
A (l,2,...,r-l,n+1,r+l,...,n ).

By the definition of B?j,

~
-
i

=g

o
-
[=2]]

n - n+l,n+2,...,n+n = A 1,2,...,n =d
Bn,n+l A(n+2,n+3,...,n+n+l) (l,Z,...,n 0’
g" = n+l,n+2,...,n+n

nr r+l,r+2,...,r+n

A T 5,2 L iiieiiiiinnns s, N
r+l, . .,n,ntl, 1,2, ..,r-1 /.
(Note that the second index j is to be modulo n+l.)

. . . n
Since d. is a column permutation of Bnr’

det(dg) = det (B ne1),

det(d,) = det (8] ) x (-1) (=r+1) (r=1)+(n=r)

det (B ) x (-1)""*1,

By the similar argument to the one given in the section
3,

k k
ko B ,
X3 det( i—l,j-l)
therefore,
+
ve = (DG

= (-1)"*1.dee (87,) /det (8", )

det(dr)/det(do). Q.E.D.
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