DECENTRALIZED PARALLEL ALGORITHMS FOR MATRIX COMPUTATION

Rajani M. Kant and Takayuki Kimura
Department of Statistics and Computer Science
University of Delaware
Newark, Delaware 19711

Abstract

It is shown that a mesh-connected nxn multiproces-
sor system can compute the inverse of a nxn matrix in
linear time to n. The algorithm is based on a theorem
known to Sylvester in 1851. 1t computes the cofactor
matrix in n steps, each of which involves 4 unit dis-
tance message routing and 4 arithmetic operations for
every processor. A coding and memory requirement for
each processor is the same and is independent of n.

It is also shown that the same algorithm solves
systems of n linear equations in linear time of n with
n x (n+l) processors.

1. Introduction

Below we will give a matrix inversion algorithm
(K-algorithm) suitable for execution by a mesh-connec-
ted multiprocessor system. The computation time is
linear to the size of the matrix. This is an improve-
ment over the result of VanScoy5 whose computation time
is 0(n¢), where n is the size of the matrix. For other
parallel algorithms of matrix computation, see Pease
and Csanky7.

Our algorithm is an answer to the following distri-
butive computation problem:

Given nxn processors mesh-connected into a toroi-
dal shape, initially each processor carrying one number
to form a nxn matrix, the problem is to find an algor-
ithm for each processor such that the inverse of the
matrix can be computed and stored by the toroid under
the following constraints:

(1) The interprocessor communication is asynchro-
nous and is independent of n. No central
communication facility, ex. clock signal or
any broadcasting, is available.

The algorithm is to be same for all the pro-
cessors with the possible exception of a
fixed number, and is independent of n.

The local memory space required in each pro-
cessor is fixed and independent of n.

The number of types of control messages used
is fixed and independent of n. The number of
messages used can be a function of n.

The computation time is to be of the order of
n.

(2)

(3)
(&)

(5)

The reason for the constraint (5) is that with the
result of Strassen3, a single Ergcessor system can_com-
pute the inverse matrix by 0(n¢- I) sgeps. With n2 pro-
cessors why can not we do it by 0(n0- 1) steps?

The key question here is the problem of communica-
tion complexity. |If there is a very complex communica-
tion device by which every processor can communicate
with any other processor or with the shared memory at
any time, then to write a program for n% processors to
achieve 0(n0-81) computation might not be a difficult
problem after Strassen. In this case, however, the com-
plexity of such a device is proportional to n%. On the
other hand, the complexity of communication devices in a
mesh-connected multiprocessor system is a constant and
is independent of n. Decomposition of such a complex

communication requirement as the one in a matrix inver-
sion algorithm into a simple one such as the four
neighborhood communication facility is not trivial.

No known parallel algorithm satisfies all of the
above constraints. For example, consider the follow-
ing Gauss-Jordan elimination algorithm executed in
parallell(for brevity, the algorithm is modified to
compute the determinant rather than the inverse of a
given matrix):

FOR k=n STEP -1 WUNTIL 2 DO

ajj = apy X Ak T A X Ay {15(i,j)sk in
parallell

det :=

21

With 2n2 processors sharing a random access memory
of an arbitrary size, this algorithm requires 2n-1
steps. However, this is a misleading number if one con-
siders the complexity of communication {or message
switching) between the processors and the shared memory.
To illustrate the point, consider the datum ayy in the
k-th step. It will be demanded by {(k-1)2 processors
causing a memory contention problem. |f the memory
response time is proportional to the degree of conten-
tion, then the actual computation time will be of the

n
order of } 2(k-1), i.e. 0(n?). Furthermore, the algor-
k=2

ithm has a problem in its terminating condition. With-
out a centralized communication facility or without the
knowledge of n, each processor cannot tell when to stop.
The detection of n and its distribution to all proces-

sors will require 0(3n) extra steps. _For a recent ana-

8

lysis of data movement, see Gentleman®.

Our algorithm requires n+l steps. By the first n
steps the cofactor matrix and the determinant will be
computed simultaneously. By the last step the trans-
position and division operations will be done to get
the inverse. During the first n steps, every processor
in the toroid demands one datum each from its south,
east and south-east (diagonal) neighbors. The commun-
ication time will be 4 times the unit of message trans-
mission time between two immediate neighbors. Four
arithmetic operations will be performed by every pro-
cessor in each step. Therefore the computation time of
each step is independent of n.

The last step consists of three phases: (1) to
identify the diagonal processors with 2n delay, (2) to
spread the ready signal from the diagonal processors to
the processors in the same column with n delay, and (3)
to migrate a datum southbound first to the diagonal
processor then west-bound by the same distance requir-
ing 2n delay at worst. The total computation time,
therefore, will be proportional to (4+5+a)n, where a is
a constant for the arithmetic operation delay time.

In order to apply the algorithm, the initial ma-
trix is required to satisfy a stronger condition than
that of non-singularity. We call such a matrix
strongly non-singular. The notion will be defined in
the next section, The foundation of our algorithm was
known to Sylvester in 1851%. In the section 3 we will
present it as the key lemma, and the algorithm itself

96

as the main theorem.
In the section 4, we will modify the algorithm

for solving a system of linear equations in linear
time.

2. Notations and Definitions

Let A = (a;;), 1=(i,j)sn be a nxn matrix on
real numbers. e will use the following standard nota-

tionsZ. P oPgr 1Py
ql’qz"“’qr ’ ‘S(rvply"'»pryq]’---rqr)sn

: the rxr submatrix of A, consisting of py,py,
-» Py-th rows and q3,93,...,9,~th columns of

det(A) : the determinant of A.

adj(A) : the adjoint matrix of A.

Mj: the cofactor of ajj, 1s(i,j)sn,
i.e. adj(pA) = (Ajif

A_IE(Sij) : the inverse matrix of A.

in the remainder of this paper, all matrix indices
are to be interpreted as modulo n unless so stated
otherwise.

Definitions:
i+1,i+2,...,i+k

k = 1<(i,j,k)
() 875 % A<j+l,j+2,...,j+k> (i,j,k)<n

: the ij-th block of order k.

(2) A is strongly non-singular if every block of
A is non-singular, i.e. for all 1s(i,j,k)<n,

det (Bk)#0.
)
Example: 1 1) 1
1 2 4 8 . 1 s)
1 3 9 27 is strongly non-singular.
1 4 16 64

Note that any non-singular Vandermonde matrix is
strongly non-singular.

3. The Algorithm
In this section we will give the algorithm first
in the form of a theorem, then illustrate the algorithm
by a simple computation example. Then we will prove
the theorem after presenting the key lemma with a proof.

Main Theorem:
Let A be a nxn strongly non-singular matrix.

Define x7; for 05ksn+1, 1s(i,j)sn, by:
x?j 1,
x!. T a;.
ij b c%ije
k+i = ok ko _ Kk S
Xi; oA (xij XL, T X xi,J+|)
k-1
/xi+1,j+l'
Then, for any 15(i,j)sn,
n+l
(1) xij 0.
@ ;= (00D ger(a),
(3) x0T = DAL e

' (i+]))
. =~ = (-1)n(i+j) _n-1 n
i.e. ajj (-1 xj+l,i+l/xij'

97

k

Let X

Example: 3 6.

Let us apply the algorithm to the Vandermonde
matrix given in the section 2.

0=06%)=[1 1 1
HJ 1 1 1 1
| I T B
O T B
xt= () = 1 1 1 1]
J 1 2 & 8 |
1 3 9 27 1
1 4 16 64 1
T 1 1 1 11
X2=(5)=1 2 & -7 |1
1 6 36 -19 1
1 12 144 -37 1
-3 -12 -48 63 | -3
1 2 & -7 |1
B=(3)=2 12 22 12 {2
J 2 48 52 18 | 2
6 72 1h 48 | 6
6 48 84 L2 6
772 22 12 | 2
X*= ¥y =12 -2 12 -2
o2 o1z -1z 12
12 -12 12 -12
12 12 -2 12
oM™V =T u8z12 72/-12 48712 12/-12
52/-12 Wk/i2 84/-12 22/12
18/12 48/-12 42/12 12/-12
2/-12 6/12 6/-12 2/12
Key Lemma: (Sylvester)

Let A be an arbitrary nxn matrix.

Let 1,2,...,n-1 1,2,...,n-1
A A(I,Z,...,n-l A2 2,3,...,n

12
sl)
asa(3:don) M &
As
Then, A3 A“

det(A5)xdet(A)=det(A|)Xdet(Ah)-det(A3)Xdet(A2).

Proof:
We will prove the lemma in two steps by showing:

(1) The lemma holds if A is almost diagonal (defined
below) .

(2) Any matrix A can be transformed into an almost
diagonal one A' such that det (A)=det(A'), and
det(A.)=det(AL) for Isrs5.

Call a matrix (ai-) almost diagonal if a;:

i7=0 for
12(i,j)sn, except when i=j or i=1,j=n or "i=n, j=I.

Step 1. Assume that A is an almost diagonal
matrix.

1
[
A = |
0]
|
0 a .
! n-1,n-1 |
e e et P
an ! 0O |ann
]
Then by row and column expansion, we get:
det(AI) =aj] °* det(As),
det(Ay) = (-2 . 4 . det(Ag),
det(A) = aj; - det(Ay) + (-1 - a) - det(A3)
= aj - det(Ay) - (-2 . & . det(Ag).

If det(A5) = 0, then det(A) and det(A), 15r35, are
zero, and the lemma holds. If det(A:) # O, then by
multiplying det(Ag) on the both sides of the last
equation above, we obtain the lemma.

Step 2. By not using the 1-st and n-th rows for
any row operation and the 1-st and n-th columns for
any column operation, we can diagonalize A mwithout
altering the values of det(A,) for 1sr<5, “into the
form:

tll tlZ . . . tin
t21] t22 0 ton
tn] tn2 . . . tnn

By (n-2) row manipulations, we can eliminate t12:t13
<»t1,n-1- Similarly, we can eliminate tpo,tn3,. .-,

th,n-1- Then by (n-2) column operations, we can elim-
inate t215t315-4+5tn-1,1> and similarly, t2n’t3n""’
th-1,1-

A1l row and column operations involved in the
step 2 are from the inside of A; to the outside of As.
Therefore they preserve the valles of det(A.) for
1<rs5, Q.E.D.

Proof of Theorem:

Assume that A is strongly non-singular, i.e. for
any 15(i,j,k)sn, det(8§j)#0, where B$j is the ij-th
block of order k of A.

First, by induction we will show that for any
1sksn,

k _ k
xij = det(Bi-l

. 1), where 15(i,j)3n.
»J=1

fe. g 1 _afi-t 2afi) 2 ...
Basis: Since Bj_y ;. AQ-PH) AC) ajj
- - 1
ST det(Bi-l,j-I)‘
Induction: Assume that for any msk,

= k+ .
x?j = det(BT-l’j_]). Let C & B?-},j-lv then using the
notation introduced in the lemma,

k = gk = gk
B C2 A B . C3 A Bi,j']’

Cy B Biy j-12

= ok = k-1
Cy § By, C5 KBy -

k+1

S~—— k4] -

By the key lemma, det(B?}l)-det(B?f} j-l)

- k . ky - K -1y k
det(Bi-],j-]) det(Bij) det(B},j-1) det(Bi—I,j)‘
Since det(B?}])f 0, by the inductive hypothesis,
k+1 o (xK exK -xk o oxK
det(Bi7)) = OG5 % ja i X3 e
k-1
i+1,j+1
= Xk
]
Proof of (2): Since B?_I i1 is obtainable from
A(=an) by swapping rows (n-1)(i-1) times, (from (1,2,

.,n) to (i,i+l,...,n,1,..

.. .,i=1)), and swapping
columns (n=1)(j-1) times,

det (B"

- l) = (_])(n'l)(i‘|)+(n'])(j‘|)det(
1=1,J-

n

Bnn)'
Therefore, x?j = det(B?_"j_l)

= (1) (DG4 ger(a).

Proof of (1):

<= (N e),

Using the result of (2) above,

Xiat, 501 T (")(n-])(i+j+2)'det(A),
My g = (DO o),
x?;j"‘l = (_]) (n-l) (i+j+l) 'det (A) .

By definition,

n - N . N
1,4 T

det (A) -det (A) - ((-1)2(n=1) (i+])
-(-1)2(n=1) (i+j+1))
=0

xq+l- n-1

= xN ..
|j Xi+],j+] = xij X

. n-1 _ n n+l _
Since Xi+l,j+l = det(Bij) #0, i 0.
Proof of (3): Let €ij be the ij-th minor of A,i.e.
= 1,2,...,i=1,itl,...,n
cij & A(I,Z,...,j-l,jH,...,n)

then Aij = (-I)(i+j)-det(cij), where (Aji) = adj(A).
On the other hand, by the definition of B?j,

(i+l,i+2,...,n,1,2,.“

,i-1
n,1,2,00.,5-1 /.

Since B?}I is a row and column permutation of Cij»

Bn-l -

ij 1,542,

98

=y = -2} (i-1) -2) {j-1)
det (87]1) = (-1 (02 G=1) 4y (n-2) (j

'det(cij)

(-n" Ajj-

n-1 _ n-1 ~ (-1)\N.
Therefore, i det(Bi-l,j-l) = (-1) Ai-1,j-1-

Q.E.D.

4. Solution of Systems of Linear Equations

The results of the previous section can be
immediately extended for a non-square matrix A=(ai.,
1gism, 1£j2n, by interpreting the first index i tone
modulo m, and the second index j to be modulo n. With
the same definition of the ij-th block of order k as
the one for square matrices, A is called strongly

non-singular if det(BX.)#0 for any 1%ism, 1%j3n, and
ISkSminim,ns. '

In this section, we will show that when the algor-
ithm of the main theorem is applied to a strongly non-
singular nx(n+1) matrix, representing a system of n
linear rquations, it computes simultaneously all of the
n+l determinants required by the Cramer's method. The
computation time is of the order of n.

Theorem:

Let A be a strongly non-singular nx(n+1) matrix,

811 812 -+ Ap 87 n+)

321 %22 *+r Fn 92 .0+
A= . : ° *

anl an2 Ceee ann an’nﬂ

and let xK by (x?j), 0<k<n, be the results of iterations

of the algorithm given in the main theorem applied to A.

. = (_yynr+l _n n <<
Define y. I (-1) xl,r+l/xll’ 15rsn,
Then,

I PR FAR R 1,n+1

3] @y -eee 3y Yy az;n+|
a cees : y

1 n2 ann Yn an,n+l

Example: A=X'=[2 -3 2 1 1| 2
-3 1 1 -3 5(-3

X“ =111 -2 16 -1l 9
i3 6 -1 23 7
y 2 - 8 7
-9 -9 -5 8 -17

x3=[23 & 51 71 ko
2 -4 5 21 2]
6 19 16 32 1
-39 -77 -73 -115 -53

4
=13 @) @ @ @)
31 -31 -62 -93 31
.31 31 62 93 -31
31 -3 -62 -93 3
T S 2 -3 2 1=
y2= D2 6y (231)=2 1oh =2 7{| 2|=|-4
=0 gz a3 |3 1 1 3| 3|
y4=(-l)“x“+'-(-31)/(-3|)=-| 5 -3 -1 2] |-1d=]-6

Proof:
that

By the Cramer's rule, it is sufficient to show

= det(dr)/det(do), 18r<n, where
q .
1,2,...,n
do A(uz“.”n)’
132, iiiinneeennnnnanss ,N
A (l,2,...,r-l,n+1,r+l,...,n).

By the definition of B?j,

~
-
i

=g

o
-
[=2]]

n - n+l,n+2,...,n+n = A 1,2,...,n =d
Bn,n+l A(n+2,n+3,...,n+n+l) (l,Z,...,n 0’
g" = n+l,n+2,...,n+n

nr r+l,r+2,...,r+n

A T 5,2 L iiieiiiiinnns s, N
r+l, . .,n,ntl, 1,2, ..,r-1 /.
(Note that the second index j is to be modulo n+l.)

. . . n
Since d. is a column permutation of Bnr’

det(dg) = det (B ne1),

det(d,) = det (8]) x (-1) (=r+1) (r=1)+(n=r)

det (B) x (-1)""*1,

By the similar argument to the one given in the section
3,

k k
ko B ,
X3 det(i—l,j-l)
therefore,
+
ve = (DG

= (-1)"*1.dee (87,) /det (8",)

det(dr)/det(do). Q.E.D.

99

References

(1) Borodin, A. & Munro, |.
The Computational Complexity of Algebraic and
Numeric Problems.
American Elsevier Publishing Company, Inc. 1975.

(2) Faddeev, D.K. & Faddeeva, V.N.
Computational Methods of Linear Algebra.
W.H. Freeman and Company, 1963.

(3) Strassen, V.
Gaussian elimination is not optimal.
Numerische Mathematik, 13, 354-356(1969).

(4) Sylvester, J.J.
Philosophical Magazine 4(1851). 295-305.

(5) Vvan Scoy, F.L.
Some parallel cellular matrix algorithms.
1977 ACM Computer Science Conference, Atlanta
Georgia.

(6) Pease, M.C.
Matrix inversion using parallel processing.

JACM 14,4; 757-76L4(1967).

(7) Csanky, L.
Fast parallel matrix inversion algorithms.
SIAM J. Computing, 5,4; 618-623(1976).

(8) Gentleman, W.M.
Some complexity results for matrix computations
on parallel processors.
JACM 25,1; 112-115(1978).

Acknowledgment

The authors express their appreciation to Marcel
Neuts and Hatem Khalil of the University of Delaware
for their comments, suggestions and criticisms which
aided to guide this research in the right direction.
They are also grateful to Ramaswami Vaidyanathan of
the University of Delaware in his contribution to the
proof of the key lemma. The authors appreciate
referees’' comments. They are grateful to Ms. Beverly
Crowl for manuscript typing.

100

