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Abstract 

It is shown that a mesh-connected nxn multiproces- 
sor system can compute the inverse of a nxn matrix in 
linear time to n. The algorithm is based on a theorem 
known to Sylvester in 1851. It computes the cofactor 
matrix in n steps, each of which involves 4 unit dis- 
tance message routing and 4 arithmetic operations for 
every processor. A coding and memory requirement for 
each processor is the same and is independent of n. 

It is also shown that the same algorithm solves 
systems of n linear equations in linear time of n with 
n × (n+l) processors. 

I. Introduction 

Below we will give a matrix inversion algorithm 
(KK-algorithm) suitable for execution by a mesh-connec- 
ted multiprocessor system. The computation time is 
linear to the size of the matrix. This is an improve- 
ment over the result of VanScoy5 whose computation time 
is O(n2), where n is the size of the matrix. For other 
parallel algorithms of matrix computation, see Pease 6 
and Csanky 7. 

Our algorithm is an answer to the following distri- 
butive computation problem: 

Given nxn processors mesh-connected into a toroi- 
dal shape, initially each processor carrying one number 
to form a nxn matrix, the problem is to find an algor- 
ithm for each processor such that the inverse of the 
matrix can be computed and stored by the toroid under 
the following constraints: 

(I) The interprocessor communication is asynchro- 
nous and is independent of n. No central 
communication facility, ex. clock signal or 
any broadcasting, is available. 

(2) The algorithm is to be same for all the pro- 
cessors with the possible exception of a 
fixed number, and is independent of n. 

(3) The local memory space required in each pro- 
cessor is fixed and independent of n. 

(4) The number of types of control messages used 
is fixed and independent of n. The number of 
messages used can be a function of n. 

(5) The computation time is to be of the order of 
n. 

The reason for the constraint (5) is that with the 
result of Strassen3, a single ~r~essor system can com- 
pute the inverse matrix by O(n • ) steps. With n 2 pro- 

0 ~I cessors why can not we do it by O(n • ) steps? 

The key question here is the problem of communica- 
tion complexity. If there is a very complex communica- 
tion device by which every processor can communicate 
with any other processor or with the shared memory at 
any time, then to write a program for n 2 processors to 
achieve O(n 0.81) computation might not be a difficult 
problem after Strassen. In this case, however, the com- 
plexity of such a device is proportional to n 4. On the 
other hand, the complexity of communication devices in a 
mesh-connected multiprocessor system is a constant and 
is independent of n. Decomposition of such a complex 

communication requirement as the one in a matrix inver- 
sion algorithm into a simple one such as the four 
neighborhood communication facility is not trivial. 

No known parallel algorithm satisfies all of the 
above constraints. For example, consider the follow- 
ing Gauss-Jordan elimination algorithm executed in 
parallell(for brevity, the algorithm is modified to 
compute the determinant rather than the inverse of a 
given matrix): 

FOR k = n STEP -l UNTIL 2 DO 

aij := aij x akk - akj x aik {l$(i,j)Sk in 
parallel} 

det := all 

With 2n 2 processors sharing a random access memory 
of an arbitrary size, this algorithm requires 2n-l 
steps, l However, this is a misleading number if one con- 
siders the complexity of communication (or message 
switching) between the processors and the shared memory. 
To illustrate the point, consider the datum akk in the 
k-th step. It will be demanded by (k-l) 2 processors 
causing a memory contention problem. If the memory 
response time is proportional to the degree of conten- 
tion, then the actual computation time will be of the 

n 
order of ~ 2(k-l), i.e. O(n2). Furthermore, the algor- 

k=2 
ithm has a problem in its terminating condition. With- 
out a centralized communication facility or without the 
knowledge of n, each processor cannot tell when to stop. 
The detection of n and its distribution to all proces- 
sors will require O(3n) extra steps. For a recent ana- 
lysis of data movement, see Gentleman 8. 

Our algorithm requires n+l steps. By the first n 
steps the cofactor matrix and the determinant will be 
computed simultaneously. By the last step the trans- 
position and division operations will be done to get 
the inverse. During the first n steps, every processor 
in the toroid demands one datum each from its south, 
east and south-east (diagonal) neighbors. The commun- 
ication time will be 4 times the unit of message trans- 
mission time between two immediate neighbors. Four 
arithmetic operations will be performed by every pro- 
cessor in each step. Therefore the computation time of 
each step is independent of n. 

The last step consists of three phases: (1) to 
identify the diagonal processors with 2n delay, (2) to 
spread the ready signal from the diagonal processors to 
the processors in the same column with n delay, and (3) 
to migrate a datum southbound first to the diagonal 
processor then west-bound by the same distance requir- 
ing 2n delay at worst .  The t o ta l  computation t ime, 
the re fo re ,  w i l l  be p ropor t iona l  to (4+5+a)n, where a is 
a constant fo r  the a r i t hme t i c  operat ion delay t ime. 

In order to apply the a lgor i thm,  the i n i t i a l  ma- 
t r i x  is required to s a t i s f y  a s t ronger  cond i t i on  than 
that  of  n o n - s i n g u l a r i t y .  We ca l l  such a mat r i x  
s t rong ly  non-s ingu lar .  The not ion w i l l  be def ined in 
the next sect ion.  The foundat ion of our a lgor i thm was 
known to Sylvester in 18514. In the section 3 we will 
present it as the key lemma, and the algorithm itself 
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as the main theorem. 

In the sect ion 4, we w i l l  modify the a lgor i thm 
for  so lv ing a system of  l i nea r  equations in l i nea r  
time. 

Example: Let X k ~ (x~ j ) .  

Let us apply the a lgor i thm to the Vandermonde 
matrix given in the section 2. 

x0 =  x0> =[!, , 
2. Notations and Definitions I 

Let A = ( a l i )  , l S ( i , j ) < n  be a nxn matr ix  on 1 
real numbers. W-e w i l l  use the fo l l ow ing  standard nota- ] 

t i ° ns2 " (P l 'P2  . . . . .  Pr ) xl = (xl j)  = I l I 
A ~ql,q2 ' "',qr , l-<(r,Pl,-'',Pr,ql ..... qr )<n 1 2 4 

1 3 9 
: the rxr submatrix of A, consisting of Pl,P2, l 4 16 

..., Pr-th rows and ql,q2,'",qr '-th columns of I l I 
A. 

X 2 2 
deC(A) : the determinant of A. = (xij) = l 2 4 

1 6 36 
adj(A) : the ad jo in t  mat r ix  of  A. I 12 144 
Aij : the cofactor of aij, l~;(i,j)-<n, -} -12 -48 

i.e. adj(A) = (Aji ~" l 2 4 

A-l~(aij) : the inverse matrix of A. X 3 = (x3j). 2 12 22 
2 48 52 

In the remainder of this paper, all matrix indices 6 72 If4 
are to be interpreted as modulo n unless so stated 6 48 84 
otherwise. 2 12 22 

De f i n i t i ons :  
( I )  B k / i + l , i + 2  

/ 

i + k \  
i j  X A L j + I , j . 2  . . . .  j + k ) l S ( i , j , k ) ~ n  

: the i j - t h  block of  order k. 

(2) A is s t rong ly  non-s ingu lar  i f  every block of  
A is non-s ingu la r ,  i . e .  fo r  a l l  l S ( i , j , k ) S n ,  
det(B~.)~O. i j  

1 2 4 8 is s t rong ly  non-s ingu lar .  
3 9 27 
4 16 64 

Note that any non-singular Vandermonde matrix is 
strongly non-singular. 

3. The Al~orithm 

In this section we will give the algorithm first 
in the form of a theorem, then illustrate the algorithm 
by a simple computation example. Then we will prove 
the theorem after presenting the key lemma with a proof. 

Main Theorem: 
Let A be a nxn strongly non-singular matrix. 
Define x~j for 0~k~n+l, Is(i,j)~n, by: 

- x k x k 
i+ l , j  i , j+ l  ) I 

x~j ~ 1, 

x 1 = a 
ij A i j, 
k+l = k 

xij ~ (x~j • xi+ l,j+l 

/xk-I 
i+l,j+l" 

Then, for any l~(i,j)~n, 

(1) x n+l ij = O. 

x~. = (-l)(n-l)(i+J)det(A) 
lJ 

xn-I = (-l)n.Ai_l ij ,j-l' 

i . e .  aij = (-l)n(i+J)x~:!,j+,- i+I Ixnij" 

(2) 

(3) 

I I 
I l 
I I 

l l 
8 1 

27 1 
64 I 
I l 

-7 I 
-19 I 
-37 I 
63 -3 
-7 I 

12 2 
18 2 
48 6 
42 6 
12 2 

X 4 = (x~j). = 12 -12 I2 -12 
-12 12 -]2 1.2 
12 -12 12 -12 

-12 12 -12 12 

(X I ) - I  = r  48112 72/-12 48/12 12/ -127 
1521-12 $14112 841-12 22112 ] | 18112 481-12 42112 121-12 
L 21-12 6/12 61-12 2112 

Key Lemma: (Sylvester) 

Let A be an a r b i t r a r y  nxn matr ix .  

(l l ,2 ..... n-,~ Let Al ~ A, ,2, ,n-l) 

.[2,3 .... 
A3 ~ ALI,2,.. ',n-l) 

.12,3. ..... n-l~ 
A 5 X /~2,3 . . . . .  n- l ]  

A(I , 2 , . . . , n - l ~  
A2 ~ 1\2,3 . . . . .  n / 

./2,3 .... 
A4 L~ A~2,3,. , i n /  

A l l  I I A2 

A I! I A4 
Then, 

det (A5)xdet (A)=det (A i )×det (A4) -det (A3)xdet (A2) .  

Proof: 
We will prove the lemma in two steps by showing: 

(I) The lemma holds if A is almost diagonal (defined 
below). 

(2) Any matrix k can be transformed into an almost 
diagonal one k' such that det (A)=det(A'), and 
det(kr)=det(k~) for l~r~5. 

Call a matrix (ai|) almost diagonal if alj = 0 for 
1~(i,j)~n, except~when i=j or i=1,j=n or i=n, j=l. 

Step I. Assume that k is an almost diagonal 
matrix. 
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A = 

I 

a l l  ' O l a l n  
4- 4- - - 
Ia22 ,-'t 

I I " .  L )  
I " "  I 

I O 
I 
t I 

I a n - 1  , n - 1  I 
L t 

anl I O I ann 
I i 

Then by row and column expansion, we get: 

det(Al) = all • det(A5) , 

det(A2) = (-l)n-2 . det(A5) • aln 

det(A) = all • det(A 4) + (-l) n-l • aln • det(A 3) 

= all • det(A4) - (_l)n-2 . aln • det(A3). 

If det(As) = O, then det(A) and det(Ar) , IEr~5, are 
zero, and the lemma holds• If det(A 5) ~ O, then by 
multiplying det(A 5) on the both sides of the last 
equation above, we obtain the lemma. 

Step 2. By not using the l-st and n-th rows for 
any row operation and the l-st and n-th columns for 
any column operation, we can diagonalize Agmwithout 
altering the values of det(A r) for l~r~5, ~into the 
form: 

tl I tI2 tln 

t21 t22 0 t2n 

0 
tn l  tn2 tnn 

By (n-2) row man ipu la t i ons ,  we can e l i m i n a t e  t 1 2 , t 1 3 ,  
. . . , t l , n _  1. S i m i l a r l y ,  we can e l i m i n a t e  t n 2 , t n 3 , . . . ,  
tn ,n_ 1. Then by (n-2) calumn ope ra t i ons ,  we can e l im-  
ina te  t 2 1 , t 3 1 , . . . , t n _ 1 , 1 ,  and s i m i l a r l y ,  t 2 n , t 3 n , . . . ,  
t n - l , 1 .  

A11 row and column opera t ions  invo lved  in the 
step 2 are from the i ns i de  o f  A 5 to the ou t s i de  o f  A 5. 
There fo re  they preserve the va lues o f  det (A r) f o r  
l~r~5. Q.E.D. 

Proof of Theorem: 

Assume that A is strongly non-singular, i.e. for 
any l~(i,j,k)~n, det(B~)#0, where B~j is the ij-th 
block of order k of A. IJ 

First, by induction we will show that for any 
Isksn, 

x~j = det(B~_ l,j_l ), where l~(i,j)~n. 

,-l,j-1 = ~j-1+I/ ij, 

1 = det (gl_l × i j  = a i j  , j -1  )" 

I nduc t i on :  Assume tha t  f o r  any m~k, 
-k+l  x~j_ = d e t ( B ? _ l , j _ l ) .  Let C ~ # i - l , j - 1 ,  then us ing the 

n o t a t i o n  in t roduced in the 1emma, 

C I ~ B~_l,j_ I 62 ~ B k C 3 
k 

' i-l,j' ~ Bi,j-l' 

k C5 ~ BkT1 C 4 ~ BIj, , j  • 

C 1 ~ /C2 
• • 

, I  = 

C3-'4 ~'C 4 

C 5 

k+l 

By the key lemma, det(B~]l) • -.k+l det(~i_l,j_ I 

k+l 

) 

k k 
= d e t ( B k _ l , j _ l ) • d e t ( B ~ j )  - d e t ( B i , J - 1 ) . d e t ( B i _  1 , j ) .  

Since d e t ( B k i l ) ~  0, by the i n d u c t i v e  hypo thes is ,  

det (Bk+l k k _x k •x k ) 
. - i _ l , j _ l  ) = ( x i j ~ X i + l , j + l  i + l , j  i , j + l  

/ x  k- 1 
i+1 , j + l  

k+l 
= X . .  . i j  

Proof  o f  (2 ) :  Since B n t - l , j - 1  is ob ta i nab le  from 

A(=Bnnn) by swapping rows (n-l)(i-l) times, (from (1,2, 

.... n) to (i,i+l .... ,n,l ..... i-l)), and swapping 
columns (n-l)(j-l) times, 

n "l ) = (_l)(n-l)(i-l)+(n-l)(j-l)det(Bnnn). det (Bi-l ,j 

Therefore, x?j = det(B?_l,j_ I) 

= (- l)(n-1)(i+J)'det(A). 

Proof of (I) :  Using the result of (2) above, 

x. n. = (-I) (n-l) (i+j)-det(A) 
IJ 

= (-l)(n-l)(i+j+2).det(A), X n 
i+l ,j+l 

x?+ l,j = (-l)(n-l)(i+j+l).det(A), 

n = ) ( n - l )  ( i + j + l )  
x i  , j + l  (-1 .det  (A)• 

By d e f i n i t i o n ,  

xn+l  xn-1 
• . " i + l , j + l  I j  

X?j n _x n .x n 
= "xi+1,j+1 i + l , j  i , j + l  

= det(A)•det(A).((-1)2(n-1)(i+J) 

_ ( _ l ) 2 ( n - 1 )  ( i + j + l ) )  

= 0 

n-1 = det(B~j) # 0, x?t I = O. Since X i + l , j +  I t j  

Proof  o f  (3 ) :  Let c i j  be the i j - t h  minor o f  A , i . e .  

c i j  ~ A ( 1 , 2  . . . . .  i - l , i + 1  . . . . .  n )  
1,2 . . . . .  j - l , j + l  . . . . .  n 

then A I j  = ( - 1 ) ( i + J ) . d e t ( c i j ) ,  where ( A j i )  = ad j (A ) .  

On the o the r  hand by the d e f i n i t i o n  o f  B k 
' i j '  

( i + i , i + 2 , . . . , n , 1 , 2  . . . . .  i - 1 )  
Bi in-1 = A ~ j + I , j + 2 ,  , n , 1 , 2 ,  , j - I  . 

Bn-1 Since i j  is  a row and column permuta t ion  o f  c i j ,  
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det(B?;  l )  = ( - l ) ( n - 2 ) ( i - l ) . ( - l ) ( n ' 2 ) ( j - l )  

" d e t ( c i j )  

.= ( - I )  n A i j .  

Therefore,  x~j 1 = d e t ( B ? - l l , j _ l )  = ( - l ) n . A i _ l , j _ ] .  
Q.E.D. 

4. Solution of Systems of Linear Equations 

The results of the previous section can be 
immediately extended for a non-square matrix A=(ai: , 
l~i~m, l~j~n, by interpreting the first index i toJbe 
modulo m, and the second index j to be modulo n. With 
the same definition of the ij-th block of order k as 
the one for square matrices, A is called strongly 
non-singular if det(B~j)#O for any l~i~m, l~j~n, and 
l~k~min(m,n). 

In this section, we will show that when the algor- 
ithm of the main theorem is applied to a strongly non- 
singular nx(n+l) matrix, representing a system of n 
linear rquations, it computes simultaneously all of the 
n+l determinants required by the Cramer's method. The 
computation time is of the order of n. 

Theorem: 

Let A be a s t rong l y  non-s ingu la r  nx(n+l )  ma t r i x ,  

f 
a l l  a12 . . . .  a ln  a l , n+ l  
a21 a22 . . . .  a2n a2,n+l 

A = 

anl an2 .... ann an,n+l 

and l e t  X k ~ ( x~ j ) ,  0~k~n, be the resu l t s  o f  i t e r a t i o n s  
of  the a lgor i thm given in the main theorem app l ied  to A. 

Define Yr ~ (-l)nr+l x n l , r + l / x l l  'n l~r~n. 

Then, 

a21 a22 . . . .  a2n a2,n+l 
• = 

anl an2 . . . .  ann an,n+l 

Example: A = X I = 

X2= 

X3= 

2 -3 2 I l 2 
I 4 -2 7 -4 I 

-3 I I -3 5 -3 
5 -3 -1 2 -6 5 
2 -3 2 l l 2 

II -2 16 -ll 9 1 
13 6 -l 23 7 
4 2 -I 8 7 

-9 -9 -5 8 -17 

21 47 51 71 40 
-4 -5 21 21 
]9 16 32 l 

1-39 -77 -73 -I15 -53 

x4°l® ® 
31 -31 

-31 31 
31 -31 

4xl+l 
yl=(T1) -31/(-31)=1 
y2=(-1)4×2+1.62/(-31)=2 

y3=(-1)4x3+l.93/(-31)=3 

y4=(-1)4x4+l . ( -31) / ( -31)=-I  

o 
-62 -93 

62 93 

-62 -93 

P roof : 
that 

Yr 

q 
d0z~A 

By the Cramer's r u l e ,  i t  is s u f f i c i e n t  to show 

= det(dr)/det(d0) , 1~r<n, where 

. . . . .  n) 
,2, ,n ' 

'r AI:2 ..................... n 1 , 2 , . . .  , r - I  ,n+l , r+ l  , . . .  ,n . 

By the d e f i n i t i o n  of  B k i j '  

B n = A ( n + l , n + 2  . . . . .  n+n ) =  A ( I , 2  . . . .  :n)=do ' 
n,n+l  n+2,n+3,. . ,n+n+l 1,2, 

{ n+} ,n+2 . . . . .  n+n 
Bnnr = A ~ , r + l , r + 2 , . .  , r+n  / 

=A( . . . . . .  . . . .  n) 
r+l . . . , n , n + l  ,r-1 . 

(Note that  the second index j is to be modulo n+l.) 

Since d r is a column permutat ion of  B n n r '  

det(d0) = det(Bn,n+l ) ,  

det (d r )  = det(Bnr)  x (-1) ( n - r + l ) ( r - 1 ) + ( n - r )  

= det(Bnnr) x ( _ ] ) n r+ ] .  

By the s i m i l a r  argument to the one given in the sect ion 
3, 

x'k'lj = det (Bk_l , j -1  ) '  

t he re fo re ,  

Yr = (_ ] )n r+ ]  x n /x~ 
• 1 , r + ]  ] 

= (- ] ) nr+l  .det  (Bnr ) /de t  (Bnn) 

= det ( d r ) / d e t  (do).  Q.E.D. 
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