
DECENTRALIZED PARALLEL ALGORITHMS FOR MATRIX COMPUTATION

Rajani M. Kant and Takayuki Kimura
Department of Statistics and Computer Science

University of Delaware
Newark, Delaware 19711

Abstract

It is shown that a mesh-connected nxn multiproces-
sor system can compute the inverse of a nxn matrix in
linear time to n. The algorithm is based on a theorem
known to Sylvester in 1851. It computes the cofactor
matrix in n steps, each of which involves 4 unit dis-
tance message routing and 4 arithmetic operations for
every processor. A coding and memory requirement for
each processor is the same and is independent of n.

It is also shown that the same algorithm solves
systems of n linear equations in linear time of n with
n × (n+l) processors.

I. Introduction

Below we will give a matrix inversion algorithm
(KK-algorithm) suitable for execution by a mesh-connec-
ted multiprocessor system. The computation time is
linear to the size of the matrix. This is an improve-
ment over the result of VanScoy5 whose computation time
is O(n2), where n is the size of the matrix. For other
parallel algorithms of matrix computation, see Pease 6
and Csanky 7.

Our algorithm is an answer to the following distri-
butive computation problem:

Given nxn processors mesh-connected into a toroi-
dal shape, initially each processor carrying one number
to form a nxn matrix, the problem is to find an algor-
ithm for each processor such that the inverse of the
matrix can be computed and stored by the toroid under
the following constraints:

(I) The interprocessor communication is asynchro-
nous and is independent of n. No central
communication facility, ex. clock signal or
any broadcasting, is available.

(2) The algorithm is to be same for all the pro-
cessors with the possible exception of a
fixed number, and is independent of n.

(3) The local memory space required in each pro-
cessor is fixed and independent of n.

(4) The number of types of control messages used
is fixed and independent of n. The number of
messages used can be a function of n.

(5) The computation time is to be of the order of
n.

The reason for the constraint (5) is that with the
result of Strassen3, a single ~r~essor system can com-
pute the inverse matrix by O(n •) steps. With n 2 pro-

0 ~I cessors why can not we do it by O(n •) steps?

The key question here is the problem of communica-
tion complexity. If there is a very complex communica-
tion device by which every processor can communicate
with any other processor or with the shared memory at
any time, then to write a program for n 2 processors to
achieve O(n 0.81) computation might not be a difficult
problem after Strassen. In this case, however, the com-
plexity of such a device is proportional to n 4. On the
other hand, the complexity of communication devices in a
mesh-connected multiprocessor system is a constant and
is independent of n. Decomposition of such a complex

communication requirement as the one in a matrix inver-
sion algorithm into a simple one such as the four
neighborhood communication facility is not trivial.

No known parallel algorithm satisfies all of the
above constraints. For example, consider the follow-
ing Gauss-Jordan elimination algorithm executed in
parallell(for brevity, the algorithm is modified to
compute the determinant rather than the inverse of a
given matrix):

FOR k = n STEP -l UNTIL 2 DO

aij := aij x akk - akj x aik {l$(i,j)Sk in
parallel}

det := all

With 2n 2 processors sharing a random access memory
of an arbitrary size, this algorithm requires 2n-l
steps, l However, this is a misleading number if one con-
siders the complexity of communication (or message
switching) between the processors and the shared memory.
To illustrate the point, consider the datum akk in the
k-th step. It will be demanded by (k-l) 2 processors
causing a memory contention problem. If the memory
response time is proportional to the degree of conten-
tion, then the actual computation time will be of the

n
order of ~ 2(k-l), i.e. O(n2). Furthermore, the algor-

k=2
ithm has a problem in its terminating condition. With-
out a centralized communication facility or without the
knowledge of n, each processor cannot tell when to stop.
The detection of n and its distribution to all proces-
sors will require O(3n) extra steps. For a recent ana-
lysis of data movement, see Gentleman 8.

Our algorithm requires n+l steps. By the first n
steps the cofactor matrix and the determinant will be
computed simultaneously. By the last step the trans-
position and division operations will be done to get
the inverse. During the first n steps, every processor
in the toroid demands one datum each from its south,
east and south-east (diagonal) neighbors. The commun-
ication time will be 4 times the unit of message trans-
mission time between two immediate neighbors. Four
arithmetic operations will be performed by every pro-
cessor in each step. Therefore the computation time of
each step is independent of n.

The last step consists of three phases: (1) to
identify the diagonal processors with 2n delay, (2) to
spread the ready signal from the diagonal processors to
the processors in the same column with n delay, and (3)
to migrate a datum southbound first to the diagonal
processor then west-bound by the same distance requir-
ing 2n delay at worst . The t o ta l computation t ime,
the re fo re , w i l l be p ropor t iona l to (4+5+a)n, where a is
a constant fo r the a r i t hme t i c operat ion delay t ime.

In order to apply the a lgor i thm, the i n i t i a l ma-
t r i x is required to s a t i s f y a s t ronger cond i t i on than
that of n o n - s i n g u l a r i t y . We ca l l such a mat r i x
s t rong ly non-s ingu lar . The not ion w i l l be def ined in
the next sect ion. The foundat ion of our a lgor i thm was
known to Sylvester in 18514. In the section 3 we will
present it as the key lemma, and the algorithm itself

96

as the main theorem.

In the sect ion 4, we w i l l modify the a lgor i thm
for so lv ing a system of l i nea r equations in l i nea r
time.

Example: Let X k ~ (x~ j) .

Let us apply the a lgor i thm to the Vandermonde
matrix given in the section 2.

x0 = x0> =[!, ,
2. Notations and Definitions I

Let A = (a l i) , l S (i , j) < n be a nxn matr ix on 1
real numbers. W-e w i l l use the fo l l ow ing standard nota-]

t i ° ns2 " (P l 'P2 Pr) xl = (xl j) = I l I
A ~ql,q2 ' "',qr , l-<(r,Pl,-'',Pr,ql qr)<n 1 2 4

1 3 9
: the rxr submatrix of A, consisting of Pl,P2, l 4 16

..., Pr-th rows and ql,q2,'",qr '-th columns of I l I
A.

X 2 2
deC(A) : the determinant of A. = (xij) = l 2 4

1 6 36
adj(A) : the ad jo in t mat r ix of A. I 12 144
Aij : the cofactor of aij, l~;(i,j)-<n, -} -12 -48

i.e. adj(A) = (Aji ~" l 2 4

A-l~(aij) : the inverse matrix of A. X 3 = (x3j). 2 12 22
2 48 52

In the remainder of this paper, all matrix indices 6 72 If4
are to be interpreted as modulo n unless so stated 6 48 84
otherwise. 2 12 22

De f i n i t i ons :
(I) B k / i + l , i + 2

/

i + k \
i j X A L j + I , j . 2 j + k) l S (i , j , k) ~ n

: the i j - t h block of order k.

(2) A is s t rong ly non-s ingu lar i f every block of
A is non-s ingu la r , i . e . fo r a l l l S (i , j , k) S n ,
det(B~.)~O. i j

1 2 4 8 is s t rong ly non-s ingu lar .
3 9 27
4 16 64

Note that any non-singular Vandermonde matrix is
strongly non-singular.

3. The Al~orithm

In this section we will give the algorithm first
in the form of a theorem, then illustrate the algorithm
by a simple computation example. Then we will prove
the theorem after presenting the key lemma with a proof.

Main Theorem:
Let A be a nxn strongly non-singular matrix.
Define x~j for 0~k~n+l, Is(i,j)~n, by:

- x k x k
i+ l , j i , j+ l) I

x~j ~ 1,

x 1 = a
ij A i j,
k+l = k

xij ~ (x~j • xi+ l,j+l

/xk-I
i+l,j+l"

Then, for any l~(i,j)~n,

(1) x n+l ij = O.

x~. = (-l)(n-l)(i+J)det(A)
lJ

xn-I = (-l)n.Ai_l ij ,j-l'

i . e . aij = (-l)n(i+J)x~:!,j+,- i+I Ixnij"

(2)

(3)

I I
I l
I I

l l
8 1

27 1
64 I
I l

-7 I
-19 I
-37 I
63 -3
-7 I

12 2
18 2
48 6
42 6
12 2

X 4 = (x~j). = 12 -12 I2 -12
-12 12 -]2 1.2
12 -12 12 -12

-12 12 -12 12

(X I) - I = r 48112 72/-12 48/12 12/ -127
1521-12 $14112 841-12 22112] | 18112 481-12 42112 121-12
L 21-12 6/12 61-12 2112

Key Lemma: (Sylvester)

Let A be an a r b i t r a r y nxn matr ix .

(l l ,2 n-,~ Let Al ~ A, ,2, ,n-l)

.[2,3
A3 ~ ALI,2,.. ',n-l)

.12,3. n-l~
A 5 X /~2,3 n- l]

A(I , 2 , . . . , n - l ~
A2 ~ 1\2,3 n /

./2,3
A4 L~ A~2,3,. , i n /

A l l I I A2

A I! I A4
Then,

det (A5)xdet (A)=det (A i)×det (A4) -det (A3)xdet (A2) .

Proof:
We will prove the lemma in two steps by showing:

(I) The lemma holds if A is almost diagonal (defined
below).

(2) Any matrix k can be transformed into an almost
diagonal one k' such that det (A)=det(A'), and
det(kr)=det(k~) for l~r~5.

Call a matrix (ai|) almost diagonal if alj = 0 for
1~(i,j)~n, except~when i=j or i=1,j=n or i=n, j=l.

Step I. Assume that k is an almost diagonal
matrix.

97

A =

I

a l l ' O l a l n
4- 4- - -
Ia22 ,-'t

I I " . L)
I " " I

I O
I
t I

I a n - 1 , n - 1 I
L t

anl I O I ann
I i

Then by row and column expansion, we get:

det(Al) = all • det(A5) ,

det(A2) = (-l)n-2 . det(A5) • aln

det(A) = all • det(A 4) + (-l) n-l • aln • det(A 3)

= all • det(A4) - (_l)n-2 . aln • det(A3).

If det(As) = O, then det(A) and det(Ar) , IEr~5, are
zero, and the lemma holds• If det(A 5) ~ O, then by
multiplying det(A 5) on the both sides of the last
equation above, we obtain the lemma.

Step 2. By not using the l-st and n-th rows for
any row operation and the l-st and n-th columns for
any column operation, we can diagonalize Agmwithout
altering the values of det(A r) for l~r~5, ~into the
form:

tl I tI2 tln

t21 t22 0 t2n

0
tn l tn2 tnn

By (n-2) row man ipu la t i ons , we can e l i m i n a t e t 1 2 , t 1 3 ,
. . . , t l , n _ 1. S i m i l a r l y , we can e l i m i n a t e t n 2 , t n 3 , . . . ,
tn ,n_ 1. Then by (n-2) calumn ope ra t i ons , we can e l im-
ina te t 2 1 , t 3 1 , . . . , t n _ 1 , 1 , and s i m i l a r l y , t 2 n , t 3 n , . . . ,
t n - l , 1 .

A11 row and column opera t ions invo lved in the
step 2 are from the i ns i de o f A 5 to the ou t s i de o f A 5.
There fo re they preserve the va lues o f det (A r) f o r
l~r~5. Q.E.D.

Proof of Theorem:

Assume that A is strongly non-singular, i.e. for
any l~(i,j,k)~n, det(B~)#0, where B~j is the ij-th
block of order k of A. IJ

First, by induction we will show that for any
Isksn,

x~j = det(B~_ l,j_l), where l~(i,j)~n.

,-l,j-1 = ~j-1+I/ ij,

1 = det (gl_l × i j = a i j , j -1)"

I nduc t i on : Assume tha t f o r any m~k,
-k+l x~j_ = d e t (B ? _ l , j _ l) . Let C ~ # i - l , j - 1 , then us ing the

n o t a t i o n in t roduced in the 1emma,

C I ~ B~_l,j_ I 62 ~ B k C 3
k

' i-l,j' ~ Bi,j-l'

k C5 ~ BkT1 C 4 ~ BIj, , j •

C 1 ~ /C2
• •

, I =

C3-'4 ~'C 4

C 5

k+l

By the key lemma, det(B~]l) • -.k+l det(~i_l,j_ I

k+l

)

k k
= d e t (B k _ l , j _ l) • d e t (B ~ j) - d e t (B i , J - 1) . d e t (B i _ 1 , j) .

Since d e t (B k i l) ~ 0, by the i n d u c t i v e hypo thes is ,

det (Bk+l k k _x k •x k)
. - i _ l , j _ l) = (x i j ~ X i + l , j + l i + l , j i , j + l

/ x k- 1
i+1 , j + l

k+l
= X . . . i j

Proof o f (2) : Since B n t - l , j - 1 is ob ta i nab le from

A(=Bnnn) by swapping rows (n-l)(i-l) times, (from (1,2,

.... n) to (i,i+l ,n,l i-l)), and swapping
columns (n-l)(j-l) times,

n "l) = (_l)(n-l)(i-l)+(n-l)(j-l)det(Bnnn). det (Bi-l ,j

Therefore, x?j = det(B?_l,j_ I)

= (- l)(n-1)(i+J)'det(A).

Proof of (I) : Using the result of (2) above,

x. n. = (-I) (n-l) (i+j)-det(A)
IJ

= (-l)(n-l)(i+j+2).det(A), X n
i+l ,j+l

x?+ l,j = (-l)(n-l)(i+j+l).det(A),

n =) (n - l) (i + j + l)
x i , j + l (-1 .det (A)•

By d e f i n i t i o n ,

xn+l xn-1
• . " i + l , j + l I j

X?j n _x n .x n
= "xi+1,j+1 i + l , j i , j + l

= det(A)•det(A).((-1)2(n-1)(i+J)

_ (_ l) 2 (n - 1) (i + j + l))

= 0

n-1 = det(B~j) # 0, x?t I = O. Since X i + l , j + I t j

Proof o f (3) : Let c i j be the i j - t h minor o f A , i . e .

c i j ~ A (1 , 2 i - l , i + 1 n)
1,2 j - l , j + l n

then A I j = (- 1) (i + J) . d e t (c i j) , where (A j i) = ad j (A) .

On the o the r hand by the d e f i n i t i o n o f B k
' i j '

(i + i , i + 2 , . . . , n , 1 , 2 i - 1)
Bi in-1 = A ~ j + I , j + 2 , , n , 1 , 2 , , j - I .

Bn-1 Since i j is a row and column permuta t ion o f c i j ,

98

det(B?; l) = (- l) (n - 2) (i - l) . (- l) (n ' 2) (j - l)

" d e t (c i j)

.= (- I) n A i j .

Therefore, x~j 1 = d e t (B ? - l l , j _ l) = (- l) n . A i _ l , j _] .
Q.E.D.

4. Solution of Systems of Linear Equations

The results of the previous section can be
immediately extended for a non-square matrix A=(ai: ,
l~i~m, l~j~n, by interpreting the first index i toJbe
modulo m, and the second index j to be modulo n. With
the same definition of the ij-th block of order k as
the one for square matrices, A is called strongly
non-singular if det(B~j)#O for any l~i~m, l~j~n, and
l~k~min(m,n).

In this section, we will show that when the algor-
ithm of the main theorem is applied to a strongly non-
singular nx(n+l) matrix, representing a system of n
linear rquations, it computes simultaneously all of the
n+l determinants required by the Cramer's method. The
computation time is of the order of n.

Theorem:

Let A be a s t rong l y non-s ingu la r nx(n+l) ma t r i x ,

f
a l l a12 a ln a l , n+ l
a21 a22 a2n a2,n+l

A =

anl an2 ann an,n+l

and l e t X k ~ (x~ j) , 0~k~n, be the resu l t s o f i t e r a t i o n s
of the a lgor i thm given in the main theorem app l ied to A.

Define Yr ~ (-l)nr+l x n l , r + l / x l l 'n l~r~n.

Then,

a21 a22 a2n a2,n+l
• =

anl an2 ann an,n+l

Example: A = X I =

X2=

X3=

2 -3 2 I l 2
I 4 -2 7 -4 I

-3 I I -3 5 -3
5 -3 -1 2 -6 5
2 -3 2 l l 2

II -2 16 -ll 9 1
13 6 -l 23 7
4 2 -I 8 7

-9 -9 -5 8 -17

21 47 51 71 40
-4 -5 21 21
]9 16 32 l

1-39 -77 -73 -I15 -53

x4°l® ®
31 -31

-31 31
31 -31

4xl+l
yl=(T1) -31/(-31)=1
y2=(-1)4×2+1.62/(-31)=2

y3=(-1)4x3+l.93/(-31)=3

y4=(-1)4x4+l . (-31) / (-31)=-I

o
-62 -93

62 93

-62 -93

P roof :
that

Yr

q
d0z~A

By the Cramer's r u l e , i t is s u f f i c i e n t to show

= det(dr)/det(d0) , 1~r<n, where

. n)
,2, ,n '

'r AI:2 n 1 , 2 , . . . , r - I ,n+l , r+ l , . . . ,n .

By the d e f i n i t i o n of B k i j '

B n = A (n + l , n + 2 n+n) = A (I , 2 :n)=do '
n,n+l n+2,n+3,. . ,n+n+l 1,2,

{ n+} ,n+2 n+n
Bnnr = A ~ , r + l , r + 2 , . . , r+n /

=A(. n)
r+l . . . , n , n + l ,r-1 .

(Note that the second index j is to be modulo n+l.)

Since d r is a column permutat ion of B n n r '

det(d0) = det(Bn,n+l) ,

det (d r) = det(Bnr) x (-1) (n - r + l) (r - 1) + (n - r)

= det(Bnnr) x (_]) n r+] .

By the s i m i l a r argument to the one given in the sect ion
3,

x'k'lj = det (Bk_l , j -1) '

t he re fo re ,

Yr = (_])n r+] x n /x~
• 1 , r +]]

= (-]) nr+l .det (Bnr) /de t (Bnn)

= det (d r) / d e t (do). Q.E.D.

99

(i)

(2)

(3)

(4)

(5)

(6)

(7)

(8)

References

Borodin, A. & Munro, I.
The Computational Complexity of Algebraic and
Numeric Problems.
American Elsevier Publishing Company, Inc. 1975.

Faddeev, D.K. & Faddeeva, V.N.
Computational Methods of Linear Algebra.
W.H. Freeman and Company, 1963.

Strassen, V.
Gaussian e l i m i n a t i o n is not optimal.
Numerische Mathematik, 13, 354-356(1969).

Sylvester, J.J.
Philosophical Magazine 4(1851). 295-305.

Van Scoy, F.L.
Some parallel cellular matrix algorithms.
1977 ACM Computer Science Conference, Atlanta
Georgia.

Pease, M.C.
Matrix inversion using parallel processing.
JACM 14,4; 757-764(]967).

Csanky, L.
Fast parallel matrix inversion algorithms.
SIAM J. Computing, 5,4; 618-623(1976).

Gentleman, W.M.
Some complexity results for matrix computations
on parallel processors.
JACM 25,1; I12-I15(1978).

Acknowledgment

The authors express their appreciation to Marcel
Neuts and Hatem Khalil of the University of Delaware
for their comments, suggestions and criticisms which
aided to guide this research in the right direction.
They are also grateful to Ramaswami Vaidyanathan of
the University of Delaware in his contribution to the
proof of the key lemma. The authors appreciate
referees' comments. They are grateful to Ms. Beverly
Crowl for manuscript typing.

100

