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Games in Strategic Form and Nash Equilibrium

We begin with a simple, informal example of a game. Rousseau, in his
Discourse on the Origin and Basis of Equality among Men, comments:

1f a group of hunters set out 1o take a stag, they are fully aware that they would all
have to remain faithfully at their posts in order to succeed; but il a hare happens
Lo pass near one of them, there can be no doubt that he pursued it without qualm,
and that once he had caught his prey, he cared very little whether or not he had
made his companions miss theirs.'

To make this into a game, we need to fill in a few details. Suppose that there
are only two hunters, and that they must decide simultaneously whether
to hunt for stag or for hare. If both hunt for stag, they will catch one stag
and share it equally. Il both hunt for hare, they each will catch one hare.
1f one hunts for hare while the other tries to take 2 stag, the former will
catch a hare and the latter will catch nothing. Each hunter prefers half a
stag to one hare.

This is a simple example of a game. The hunters are the players. Each
player has Lhe choice between two strategies: hunt stag and hunt hare. The
payof¥ to their choice is the prey. If, [or instance, a stag is worth 4 “utils”
and a hare is worth 1, then .when both players hunt stag each has a
payofl of 2 utils, A player who hunts hare has payoff 1, and a player who
hunts stag by himsell has payoff 0.

What prediction should one make about the outcome of Rousseau’s
game? Cooperation— both hunting stag—is an equilibrium, or more pre-
cisely a “Nash equilibrium,” in that neither player has a unilateral incentive
to change his strategy. Therefore, stag hunting seems like a possible out-
come of the game. However, Rousseau (and later Waltz (1959)) also warns
us that cooperation is by no means a foregone conclusion. If each player
belicves the other will hunt hare, each is better off hunting hare himself.
Thus, the noncooperative outcome—both hunting hare—is also a Nash
equilibrium, and without more information about the context of the game
and the hunters’ expectations it is difficult to know which outcome to
predict.

This chapter will give precise definitions of a “game” and a “Nash
equilibrium,” among other concepts, and explore their properties. There
are two nearly equivalent ways ol describing games: the strategic (or
normal) form and the extensive form.? Section 1.1 develops the idea of the
strategic form and of dominated strategies. Section 1.2 defines the solution
concept of Nash equilibrium, which is the starting point of most applica-
tions of game theory. Section 1.3 offers a first look at the question of when
Nash equilibria exist; it is the one place in this chapter where powerful
mathematics is used.

1. Quoted by Ordeshook (1986).

2. Historically, the term “normal form” has been standard, but many game theorists now
prefer to use “strategic [orm,” as this formulalion treats the players® strategies as primilives
of the model.
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Similarly, u,(0y,0,) = %

1.1.2 Dominated Strategies

Is there an obvious prediction of how the game described in figure 1.1
should be played? Note that, no matter how player 1 plays, R gives player
2 a strictly higher payoff than M does, In formal language, strategy M is
strictly dominated. Thus, a “rational” player 2 should not play M. Further-
more, if player 1 knows that player 2 will not play M, then U is a better
choice than M or D. Finally, if player 2 knows that player 1 knows that
player 2 will not play M, then player 2 knows that player 1 will play U,
and so player 2 should play L.

The process of elimination described above is called iterated dominance,
or, more precisely, iterated strict dominance.® In section 2.1 we give a formal
definition of iterated strict dominance, as well as an application to an
economic example. The reader may worry at this stage that the set of
strategies that survive iterated strict dominance depends on the order in
which strategies are eliminated, but this is not the case. (The key is that, if
strategy s; is strictly worse than strategy s; against all opponents’ strategies
in some set D, then strategy s, is strictly worse than strategy s; against all
opponents’ strategies in any subset of D. Exercise 2.1 asks for a formal
proof)

Next, consider the game illustrated in figure 1.2. Here player 1's strategy
M is not dominated by U, because M is better than U if player 2 moves R;
and M is not dominated by D, because M is better than D when 2 moves
L. However, if player 1 plays U with probability 1 and D with probability
1 he is guaranteed an expected payofl of § regardless of how player 2 plays,
which exceeds the payoff of 0 he reccives from M. Hence, a pure strategy

Figure 1.2

3. tierated elimination of weakly dominated ies has been sludied by Luce and Raifla
(1957), Fahrquarson {1969, and Moulin (1979},
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may be strictly dominated by a mixed strategy even if it is not strictly
dominated by any pure strategy. )

We will frequently wish to discuss varying the strategy of a single player
i while holding the strategies of his opponents fixed. To do so, we let

s €S

denote a strategy selection for all players but i, and write

(st,5-1)

for the profile
(S15-0» si-lasl,vsHlv"'!sl)'

Similarly, [or mixed strategies we let
(0/,0-1) = (01,-+» Oi15 015 Otets e - 0p).

Definition 1.1 Pure strategy s; is strictly dominated for player i if there
exists o] € Z; such that

o], 5-0) > ui(s;, s—;) forall s, € S_;. (1.1)
is weakly dominated if there exists a o} such that inequality

The strategy s :
and the inequality is strict for at least one

1.1 holds with weak inequality,
Soi

Note that, for a given s,, strategy o, satisfies inequality 1.1 for all pure

strategies s_; of the opponents if and only if it satisfies ineq}lal.ily 1‘1.1‘0r all
mixed strategies o_; as well, because player i's payoff when his opponents
play mixed stralegies is a bination of his payoffs when his
opp ts play pure g y )

So far we have considered dominated pure strategics. 1t is casy to see
that a mixed strategy that assigns positive probability to s dominated pure
strategy is dominated. However, a mixed strategy may be strictly don:u-
nated even though it assigns positive probability only to pure strategies
that are not even weakly dominated. Figure 1.3 gives an example. Playing
U with probability 3 and M with probability } gives expected payoff

L R

u 13 | -2,0

M | -2,0 1,3

D 0,1 0,1

Figure 13
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—3 regardless of player 2’s play and so is strictly dominated by playing D,
even though neither U nor M is dominated.

When a game is solvable by iterated strict dominance in the sense that
each player is left with a single strategy, as in figure 1.1, the unique
strategy profile obtained is an obvious candidate for the prediction of how
the game will be played. Although this candidate is often a good prediction,
this need not be the case, especialty when the payoffs can take on extreme
values. When our students have been asked how they would play the
game illustrated in figure 1.4, about half have chosen D even though
iterated dominance yields (U, L) as the unique solution. The point is that
although U is better than D when player 2 is certain not to use the
dominated strategy R, D is better than U when there is a 1-percent chance
that player 2 plays R. (The same casual empiricism shows that our students
in fact do always play L.) If the loss to (U, R) is less extreme, say only —1,
then almost all players 1 choose U, as small fears about R matter less. This
exampleillustrates the role of the assumptions that payoffs and the strategy
spaces are common knowledge (as they were in this experiment) and that
“rationality,” in the sense of not playing a strictly dominated strategy, is
common knowledge (as apparently was not the case in this experiment).
The point is that the analysis of some games, such as the one illustrated in
figure 1.4, is very sensitive to small uncertainties about the behavioral
assumptions players make about each other. This kind of “robustness”
test—testing how the theory’s predictions change with small changes in
the model—is an idea that will return in chapters 3, 8, and 11.

At this point we can illustrate a major difference between the analysis
of games and the analysis of single-player decisions: In a decision, there is
asingle decision maker, whose only uncertainty is about the possible moves
of “nature,” and the decision maker is assumed to have fixed, exogenous
beliefs about the probabilities of nature’s moves. In a game, there are
several decision makers, and the expectations players have about their
opponents’ play are not exogenous. One implication is that many familiar
comparative-statics conclusions from decision theory do not extend once
we take into account the way a change in the game may change the actions
of all players.

Consider for example the game illustrated in figure 1.5. Here player 1’s
dominant strategy is U, and iterated strict dominance predicts that the
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solution is (U, L), Could it help player 1 Lo change the game and reduce his
payofls if U occurs by 2 utils, which would result in the game shown in
figure 1.6? Decision theory teaches Lhat such a change would not help, and
indeed it would not if we held player 2's action fixed at L. Thus, player |
would not benefit from this reduction in payoll if it were done withoul
player 2's knowledge. However, if player 1 could arrange for this reduction
{0 oceur, and to become known to player 2 before player 2 chose his action,
player 1 would indecd benefit, for then player 2 would realize that D is
player 1’s dominant choice, and player 2 wouid play R, giving player 1 a
payolTl of 3 instead of 1. )

As we will see, similar obscrvations apply to changes such as decreasing
a player's choice sct or reducing the quality of his information: Such
changes cannol help a player in a fixed decision problem, but in o game they
may have beneficial offects on the play of opponents, Thisis true both when
one is making predictions using iterated dominunce and when one i
studying Lhe equilibria of a game.

113 Applications of the Elimination of Dominated Strategies

In this subsection we present two classic games in which a single round of
climination of dominated strategies reduces the strategy set of each playcr
10 a single pure strategy. The first example uses the climination of strictly
dominaied strategics, and the second uses the climination of weakly domi-
nated strategics

Example 1.1: Prisoner’s Dilemma

One round ol Lhe elimination of strictly Jominated strategies gives a unique
answoer in the famous “prisoner’s dilemma” game, depicted in figure 1.7.
The story behind the game is that two people are arrested for a crime. The
police lack sufficient evidence Lo convict either suspect and consequently
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need them to give testimony against each other. The police put each suspect

in a different cell to prevent the two suspects from icating with

each other. The police tell each suspect that il he testifies ugainst (doesn't

cooperate with) the other, he will be released and will receive a reward for
testifying, provided the other suspect docs not testify against him, 1T neither
suspect testifics, both wiil be released on account of insufficient evidence,
and no rewards will be paid, 1f one testifies, the other will go to prison; if
both testify, both will go to prison, but they will still eollect rewards for
testifying. In this game, both players simultancously choose between two
actions. If both players cooperate (C) (do not testify), they get | each. Ifthey
both play noncooperatively (D, for defect), they obtain 0. If one cooperntes
and the other does not, the latter is rewarded (gets 2) and the former is
punished (gets — 1). Although cooperating would give each player a payofl
of 1, self-interest leads to an ineflicient outcome with payoffs 0. (To readers
who feel this outcome is not reasonable, out response is thut their intuition
probably concerns u different game —perhaps one where players “feel
guilty” if they defect, or where they fear that defecting will have bad
consequences in the future. If the game is played rep Ily, other

can be equilibria; this is discussed in chapiers 4, 5,and 9.)

Many versions of the prisoner’s dilemma have appeared in the socinl
sciences: One example is moral hazard in teams. Suppose that there are lwo
workers, | = 1,2, and that each can "work™ (5, = 1) or Hshirk™ (s, = 0). The
total output of the team is 4(s, -+ 53) and is shured equally between the two
workers. Fach worker incurs private cost 3 when working and 0 when
shirking, With “work" identified with € and “shirk” with D, the payell
(wintrix for this moral-hazard-in-teams game is that of figure 1.7, and "wo k™
is a strictly dominated strategy for each worker.

Exetcise 1.7 gives unother example where strict dominance leads to 8
unigue solution: that of a mechunism for deciding how to pay lora public
good,

Exnmple 1.2: Second-Price Auction

A seller has one indivigible unit of an objeet for sale. There are | potential
buyers, or bidders, with valuations 0y, s sy for the object, and
these valuations are common knowledge. The bidders simultancously
submit bids s [0, +36), The highest bidder wins the object and pay®
the second bid (i, if he wins (s, > mox,s), bidder { has utility =
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by — max;,, ;) and the other bidders pay nothing (and therefore have
utility 0). 1 several bidders bidd the highest price, the good is allocated
randomly among them. (The cxiet probability determining the allocation
is irrelevant because the winner and the losers have the same surplus, ie, 0
For cuch player i the strategy of bidding his valuation (s, = v;) weakly
dominates all other ies. Lot r, = max; 8, Suppose first that 5, > v
1f r, = 5, bidder i obtains utility U, which he would get by bidding v, 1T
r, < v;, bidder { obtains utility v, — ry, which wgain is what he would get by
bidding v, ey < 1 <8, then bidder i has utility ¢, = r; < 0; il he were 1O
bid v;; his wtility would be 0. The reasonini 12 similar for 5 < o When
r < 8 00 20, the bidder's utility is unchanged when he bids p, instead
of 5. However, if 5 <7 <t the bidder forgoes a pusitive utility by
underbidding.
Thus, it is reasonable to predict that bidders bid their valution in the
d-price auction. Tt fore, bidder [ wins and has utility ¥y — 95—y
Note also that because bidding one’s valuation is a dominant strategy, il
does not matter whether the bidders have information about one anpther’s
valuations. Henee, if bidders know their own valuation but do not know
the other bidders’ valuations (see chapter 6), it is still 4 dominant strategy
for each bidder to bid his valuation.

12 Nash Equilibrium®

Unfortunately, many if not most games of economic interest are not solv-
able by iterated strict dominance. In contrast, the concept of a Nash-
equilibrium solution has the adventage of existingina broad class ol games.

121 Definition of Nash Equilibrium

A Nash equilibrium is a profile of strategies such that each player’s strategy
is an optimal response to the other players’ strategies.

Definition 1.2 A mixed-strategy profile o* is a Nash equilibrium i, for al
players i,

ula*, o) = ufs, o) forall s; € S, (1.2)
A pure-stratogy Nash equilibrium is a pure-siralcgy profile that satisfies the
same conditions. Since expected utilitics are “lincar in the probabilities,”
if a player uses a nondegenerate mixed strutegy ina Nash equilibrium (one
that puts positive weight on more than one pure strategy) he must be
indilferent between all pure strategies (o which he assigns positive prob-
ability. (This linearity is why, in equation 1.2, it suffices to check that no
player has n profitable pure-strategy deviation.)

A Mash equilibriom is strict (Harsanyi 1973b) if each player has a
unique best response 1o his rivals’ strategies. That is, s* is a strict equi-
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librium if and only if it is a2 Nash equilibrium and, for all i and all 5 # sFs
ui(s¥*,5%) > uy(s;, s%).

By definition, a strict equili bri'l;;{n is necessarily a pure-strategy equilibrium.
Strict equilibria remain strict when the payolf [unctions are slightly per-
turbed, as the strict inequalities remain satisfied.*3
Strict equilibria may seem more compelling than equilibria where play-
ers are indifferent between their equilibrium strategy and a nonequilibrium
response, as in the latter case we may wonder why players choose 1o
conform to the equilibrium. Also, strict equilibria are robust to various
small changes in the nature of the game, as is discussed in chapters 11
and 14. However, strict equilibria need not exist, as is shown by the
“matching pennies” game of example 1.6 below: The unique equilibrium of
that game is in (nondegenerate) mixed strategies, and no (nondegenerate)
mixed-strategy equilibrium can be strict.® (Even pure-strategy equilibria
need not be strict; an example is the profile (D, R) in figure 1.18 when 4 = 0.)
To put the idea of Nash equilibrium in perspective, observe that it was
implicit in two of the first games to have been studied, namely the Cournot
(1838) and Bertrand (1883) models of oligopoly. In the Cournot model,
firms simultaneously choose (he quantities they will produce, which they
then sell at the market-clearing price. (The model does not specify how this
price is determined, but it is helpful to think of it being chosen by a
Walrasian auctioneer so as to equate total outpul and demand.) In the
Bertrand model, firms simultaneously choose prices and then must produce
enough output to meet demand after the price choices become known. In
each model, equilibrium is determined by the condition that all firms
choose (he action that is a best response to the anticipated play of their
opponents. It is common practice to speak of the equilibria of these two
models as “Cournot equilibrium” and “Bertrand equilibrium,” respectively,
but it is more helpful to think of them as the Nash equilibria of the two
different games. We show below that the concepts of “Stackelberg equi-

4. Harsanyi called this “strong” equilibrium; we use the term “stricl” to avoid confusion with
“strong equilibrium” of Aumann 1959—see note 11

5. An cquilibrium is quasi-strict if each pure-strategy besl response to one’s rivals’ strategies
belongs Lo the support of he equilibrium strategy: {g*} ;. , is a quasi-strict equilibrium if it is
a Nash equilibrium and if, for all i and s;,

ulsi, 02) = wfof*, a2)=> o*(s) > 0.

The equilibrium in matching pennies is quasi-stricl, but some games have equilibria that are
not quasi-strict. The game in figure 1.18b for A = 0 has two Nash equilibria, (U, L) and (D, R).
The equilibrium (U, L) is strict, but the equilibrium (D, R) is not even quasi-stricl. Harsanyi
(1973b) has shown that, for “almos! all games,” all equilibria are quasi-strict (that is, the set of
all games that possess an equilibrium that is not quasi-strict is a closed set of measure 0 in
the Euclidean space of strategic-form payofl vectors).

6. Remember that in a mixed-strategy equilibrium a player must recejve (he same expected
payoll [rom every purc siralegy he assigns positive probability.

librium” and “open-loop equilibrium” are also best thought of as shorthand
ways of referring to the equilibria of different games. )

Nash equilibria arc “consistent” predictions of how the glamc will be
played, in the sense that if all players predict that a purtluu!ur Mash
cquilibrium will oceur then no player has an incentive to play differently,
Thus, & Mash cquilibrium, and only a Nash equilibrivm, can have t!n:
property that the players can predict it, predict that their opponents prelea
it, and so on, In contrast, a prediction that any fixed non-Mash prol'ii.c wa!]
occur implies that at least one player will make a “mistake,” c‘i|hl:r.lll‘h15
prediction of his opponents’ play or (given that prediction] in his optinmiza-
tion of his payofl.

We do not maintain that such mistakes never occur. In fact, they may be
likely in some special situalions. But predicting them requires that tbe. game
theorist know more about the outcome of the game than the participants
know. This is why most economic applications of game theory restrict
attention to Nash equilibria. o

The fact that Nash equilibria pass the test of being consistent predictions
does not make them good predictions, and in situations it seems rash to
think that a precise prediction is available. By “situations” we mean to draw
attention to the fact thal the likely outcome of a game depends on more
information than is provided by the strategic form. For example, one
would like to know how much experience the players have with games of
this sort, whether they come [rom a common culture and thus might share
certain expectations about how the game will be played, and so on.

When one round of elimination of strictly dominated strategies y1e]d§ a
unique strategy profile s* = (st,...,s7), this strategy proﬁle is. n'ccessarlly
a Nash equilibrium (actually the unique Nash equilibrium). This is l?ecause
any strategy s; # s¥ is necessarily strictly dominated by s}. In particular,

ui(si, 5%) < ulsd, s

Thus, s* is a pure-strategy Nash equilibrium (indeed a stric.t equlilibrium‘).
In particular, not cooperating is the unique Nash equilibrium in the pri-
soner's dilemma of example 1.1.7 ‘
We show in section 2.1 that the same property holds for iterated domi-
nance. That is, if a single strategy profile survives iterated deletion of
strictly dominated strategies, then it is the unique Nash equilibrium of the
game. '
Conversely, any Nash-equilibrium strategy profile must put weight only
on strategies that are not strictly dominated (or, more generally, do not
survive iterated deletion of strictly domini.ted strategies), because a player

7. The same reasoning shows Lhal if there exists a single strategy p_rohla survivin%'tt)m‘c musnod
of deletion of weakly dominated strategies, this stralegy profile is a Nash equ]]]brllum. s
bidding one’s valuation in the second-price auction (example 1.2) is 4 Nast equilibrium.
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could increase his payoff by replacing a dominated strategy with one that
dominates it. However, Nash equilibria may assign positive probability to
weakly dominated strategies.

1.2.2 Examples of Pure-Strategy Equilibri:al

Example 1.3: Cournot Competition

We remind the reader of the Cournot model of a duopoly producing a
homogeneous good. The strategies are quanlities. Firm 1 and firm 2
simultaneously choose their respective output levels, g,, from feasible sets
Q; = [0, ©), say. They sell their output at the market-clearing price p(q),
where g = g, + g,. Firm i’s cost of production is ¢,(g,), and firm #s total
profit is then

ui(qy, 92) = 4:p(q) — ci(g:).

The [easible sets Q; and the payolf functions u, delermine the strategic
form of the game. The “Cournot reaction functions” r: Q, —»Q, and
r2: @, = @, specily each firm’s optimal output for each fixed output level
of its opponent. If the u; are diflerentiable and strictly concave, and the
appropriate boundary conditions are satisfied,® we can solve for these
reaction functions using the first-order coaditions. For example, r,()
satisfies

Py + r2(q)} + P'lgy + r2(g1))ralgs) — c3(r2(g,)) = 0. (1.3)

The intersections (if any exist) of the two reaction [unctions r, and r, are
the Nash equilibria of the Cournot game: Neither firm can gain by a change
in output, given the output level of its opponent.

For instance, for linear demand (p(q) = max(0, t — ¢)) and symmetric,
linear cost (¢;(q;) = cq; where 0 < ¢ < 1), firm 2’s reaction function, given
by equation 1.3, is (over the relevant range}

ralg) =1 —q, —g)2.
By symmetry, [irm 1's reaction function is
1@z} =(1—¢q, —c)/2.

The Nash equilibrium satisfies qf = r,(q7) and g% = r,(g3) or gf = g% =

(1 —c)y3.

Example 1.4: Hotelling Competition
Consider Hotelling’s (1929) model of differentiation on the line. A linear
city of length 1 lies on the abscissa of a line, and consumers are uniformly

& The “apprapriste boundory conditions”™ refer 1o conditions for the optimal
reaction of exch firm 1o be in the interior of the feasible set Q,. For example, il all positive
outpubs ure feasible (@, = [0, o}, it sulfices that plg) — ¢5(0) > 0 for all g (which, in general,
Implics that e3(0) = 0 for ridy,) 1o be strictly positive for all ¢,, and lim,_., p(g) + p'(g)3 —
cifg) < 0 for eyl ) vo be finite for all q,.

Strategic Form and Nash Equilibrium

distributed with density 1 along this interval. There are two s‘lorles.(cljdm;‘a:]
loeated at the two extremes of the city, which sell the same physical pr .|.ch.
Firm | is at x =0, firm 2 at x = 1. The un'u‘cmt ?f cach 'srl:om ::m;
Consumers incur a transportation cost I per unit of t_ll?zla:mg ey ot
unit demands und buy one unit if and only il the minimum mlcmm
price (price plus trangportation cost) for lhcl tw: stores dol: I_nlusr:::‘l o
some large number 5, 1 prices ure "not loohxgh., the demand for ‘r :
equal 1o the ber of ¢o who find it 1o h'fl]' [.wm |-,:rm 1
Letting p; denote the price of firm f, the demand for firm 1 is given by

Dy(py,pa) =%
where

P+ tx=py,+ U1 — x)
or

Dy(perp2) ._-‘_’l__.z%!_"'_l,
and

Dylp1,pa) = 1= Di(pi P2}

Suppose that prices are chosen simultaneously. A Nash equilibrium 1s a

profile (p¥, p%) such that, for each player i,
pt € argmax {(p; — YDUPi P2}
Pt

i is gi in the rclevant range)
For instance, firm 2's reaction curve, t(py), s given (in

by

oD, N
Dyp1;ma(p) + [ra(py) — C]—a;;(l’nrz(l]x)) =0.
In our example, the Nash equilibrium is given by pf = p3 =c + t(and the
above analysis is valid aslong as ¢ + 3t/2 <5).

1.5 ority Voting .
g::::l’;ie th:l::ngl}lny:rs. 1, 2 and 3, and lh_r:x: altem-at.lves., A, B, ﬁnd ((:1
Players vote similtnneously for an alternitive; abstamm.g is r.wt e;] owe [
Thus, the strategy spaces are 8, = {A, B,C}. The alternative with the mos
votes wins; il no alternative receives it majority, then alternative Als
selected, The payolf functions are

u (A) = 1,(B) = u3(C) = 2,
ui(B) = 1,(C) = uy(A) = 1,
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cost of inspection () must equal the expected wage savings (xw). Hence,
= g/wand x = h/w (both x and y belong to (0, 1)).

1.2.4 Multiple Nash Equilibria, Focal Points, and Pareto Optimality

Maay games have several Nash equilibria. When this is the case, the
assumption that a Nash cquilibrium is played relies on there being some
mechanism or process that leads all the players to expect the same
equilibrium,

One well-known example of a game with multiple equilibria is the “battle
of the sexes,” illustrated by fligure 1.10a. The story that goes with the name
“battle of the sexes” is that the two players wish (o go to an event Llogether,
but disagree about whether to go to a footbail game or the ballet, Each
player gets a utility of 2 if both go to his or her preferred event, a utility of
1if both go to the other’s preferred event, and 0 if the two are unable to
agree and stay home or go ont individually. Figure 1.10b displays a closely
relaled game Lhat goes by the names of “chicken™ and “hawk-dove.” (Chap-
ter 4 discusses a related dynamic game that is also called “chicken.”) One
version of the story herc is that the two players meet at a one-lane bridge
and each must choose whether to cross or to wait for the other. If both
play T (for “tough™), they crash in the middle of the bridge and get —1
each; if both play W (for “weak”), they wait and get 0; if one player chooses
T and the other chooses W, then the tough player crosses first, receiving
2, and the weak one receives 1. In the bridge-crossing story, the term
“chicken” is used in the colloquial sense of “coward.” (Evolutionary
biologists call this game “hawk-dove,” because they interpret strategy T
as “hawk-like” and strategy W as “dove-like.”)

Though the different payofl matrices in figures 1.10a and 1.10b describe
different sorts of situations, the two games are very similar. Each of them
has threc equilibria: two in pure strategies, with payoflls (2, 1) and (1,2), and

9. Building o this resull, one can compute the optimal contract, ie., the w that maximizes
Lhe principal’s expected payoll

v{l = x) — wll - xp) — hy = o(1 — hjw) — w.

The optimal wage in (hug w = Jﬁn {nssuming .Jhu > g} Notc that the principal would be
better off if he could “commit™ to an inspection lovel, To see this, consider the different game
in which the principal plays first and chooses o probability y of inspection, and the agent,
afler abserving y, chooves whether to shirk. For n given w (>g), (he principal can choose
¥ = i+ x, where ¢ is positive and arbitrarily small, The iagent then works with probability
1, and the principal has (approximutely) payoll

v —w — hg/w > vl — hjw) — w.

Technicnll e

T A i the xw = b, fie, that it is ex post worthwhile
to inspet). (10 §s crucial that the principal is itted 1o inapecting with probability y. If
1he “toas of the coin®™ d ing inspection is pot pubilic, the principal has un ¢x post i

not Lo inspect, as be knows that the agent works) This reasoning will become familiar in
chapter 3. Sce chaptors § und 10 for discussions of how repeated play might make the
commitment credible whereas it would not be if the gaime wis played only once.
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one that is mixed. In the battle of the sexcs, l'he mixed e‘q.l.lililbrllur(n:l 1slzh2:
player 1 plays ¥ with probability 3 {anfi B with p?‘?bahlh‘l[_? jl;:;;npl;‘);qc
2 plays B with probability  (and V" }\:llh probability 1), ob indmcre;“
probabililies, we solve out the conditions that the players be s
between their two pure strategies. So, il x and y (Il:nn.ic the }l)me: " in:
that player | plays F and player 2 plays B, respectively, play [
difference betwecn F and B is equivalent Lo

0 y+2:(1-y=1y+0( =y
or

y=% ' |
Similarly, for player 2 to be indifferent between B and F it must be the case
that

O x+2(l—x)=1x+0(l— x),

or

x=%

[n the chicken game of figure 1.10b, tl}]ml milxed-slralegy equilibrium has
i lay tough with probability 3. .
plai)f,etl:elt:vldpzl;e:s hafe not played the. battle. of the sexe”s befot::ér: Z
hard to see just what the right prediction m.lghl be, b-ccdus[e S
no obvious way for the players to coordinate their expectations. r:d el
we would not be surprised to see the outcome (B., F?, (We wcr>u s e
surprised if (B, F) turned out to be the *-ight” prediction, 1.:.; ; 1La I)ccoims"
almost every time) However, Schelling’s (1960) theory of b:)cto ;:oordi—
suggests that in some “real-life” 'simatio_ns Players may b; able s
nate on a particular cquilibrium by using information t ?lt]hs aStrategies
away by the strategic form. For example, the names of the
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player 3 chooses matrices. (Harsanyi and Selten (1988) give a -loscly
related example where player 3 moves belore players 1 and 2.) This -ame
has two pure-strategy Nash equilibria, (U, L, A) and (D,R,B), and n
equilibrium in mixed strategies. Bernheim, Peleg, and Whinston do not
consider mixed strategies, so we will temporarily restrict our attention to
pure ones. The équilibrium (U, L, A) Pareto-dominates (D, R, B).Is (U, L, A)
then the obvious focal point? Imagine that this was the expected solution,
and hold player 3's choice fixed, This induces a two-player game betwceen
players 1 and 2. In this two-player game, (D, R) is the Pareto-dominant
equilibrium! Thus, if players 1 and 2 expect that player 3 will play A, and
if they can coordinate their play on their Pareto-preferred equilibrium in
matrix A, they should do so, upscting the “good” equilibrium (U, L, A).

In response o this example, Bernheim, Peleg, und Whinston propose (he
idea of a coalition-proof equilibrium, as a way of extending the idea of
coordinating on the Parelo-dominant equilibrium to games with more
than two players, '

Tosummarize our remarks on multiple equilibria: Altho ugh some games
have focal points that are natural predictions, pame theory lacks a general
and convincing argument that a Nash outeome will occur.'® However,
equilibrium analysis has proved useful o econoinists, and we will focus
atlention on equilibrium in this book. (Chapter 2 discusses the “rationaliza-
bility” nolion of Bernheim and Pearce, which investigates the predictions

11 The definivion of 4 coulition-proof equilibeium p ds by induction on eoalition size
First one requires that no ane-player coalition can devinte, e, thit the BiVen atratogies ace o
Mash equilibsium. Then one requires that no two-player coalition cin doviate, given that onee
auch a devistion has “occurred” either of the devinting players (but none of the others) i free
to deviate again That is, the two-player deviations must be Nash equilibria of the twao-plaver
game induced by holding the sirategies of the others fixell. And orie proceeds in this way up
1o the coalition of all players. Clearly (L, L, A) in figure 112 & not conlition-proal; bricl
inspection shews that (D, R.B
Coalition-proof equilibrium is a weakening of Aumana's (1959) “strong cquilibrivm,” which
fequires that no subsat of players, tiking the nctions of others as £hven, can jointly deviate in
wwiy that increases the pryolls of ull bers. Since this i applies 1o the grond
coalition of all players, strong equilibria must be Pareto officient, unlike coalition-prool
equilibria. No strong equilibrium exists in the gume of figurs 1,12,
12 Aummann (1987) argues that the “Harsanyi docirine,” wocording to which all players’ belicf
must be i with Bavesi Jating from a common prior, implics that Bayesian

rational players must predict a “correlated «':'nilihrium"[u gencralization of Nash equitibriom
defined in section 2.2),
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one can make without invoking equilibrium. As we will ‘see, rationaliza-
bility is closcly linked to the notion of iterated strict dominance.)

125 Nash Equilibrium as the Result of Learning or Evolution

To this point we have motivated the solution cor{ocpls of dummam;c.
iterated dominance, and Nash equilibrium h)"suppusmg that playc:s mi ::
their predictions of their opponents” play by introspection ani de :::l:);.;
using their knowledge of the opponents’ payolfs, the knowledge :hm o
opponents are rational, the knowledge thit w’..h plf:yur knows o
others know these things, and so on through the infinite regress imp ¥
e c.

Lin;n:l(l)ll:;:l::luiiproach 1o introspection for cxplaining how players
predict the behavior of their opponents isto st[ppf:sc that plja)'_cts ““':‘1.
polate from their past abservitions of play in “similar games, cl_t'ncr :I 1
their cursent opponents or with “similar”* ones. At fhc E!'l.d ul: l'ruls: sul s.euc
tion we will di how introsp and extray " tion differ int crlml e
of their assumptions about the pliyers” information about one another.

The ide of using learning-type adjustment processes 1o c.ml"::u :q:;-:;

librium goes hick to Cournot, Whe prup‘c-‘m:c! u process Lhat smshlcoumm
players o play the Cournel-Nash cthbrn:m nul?ms, In the e
adjustment process, players tuke turns setiing their ulutpuls. ll.n: ‘h.nw
player’s chosen output is i best response 1o the ml.ulput his nppun;.nh:' us;;_‘
the period before. Thus, if player | mluw:;s first ::.pcnnd.ﬂ. 1'“1(; I: -
4%, then player 2's output in period 115 g3 = r,(:f,;.'\‘uhc‘rt. r2 s 1um o
nol reaction function defined in ple 1.3, C & Lo iter:
process,

qi = ri(gs) = ry(r2{g9))

and so on. This process may seltle down Lo a steady state where the outptll
levels are constant, but it necd not do so. I the process does co'nv'er]EIe‘ q:
(gT,q%), then g¥ = r,(q}) and g1 = r (q%), so the steady state is @ Nas
mlllf“;:: u:r::css converges 1o 4 particular steady state for all initial quanti-
ties surﬁiicnﬂy close to i, we say that the steady xlﬁl: _is us;rmp::«:.:cu!'i,\'
stable. As an example of an asymplotically stable cqulilhnum._mnm er | c
Cournot game whete p(g) =1 = g, ¢(lg) =0, and the I'r;:-sﬂ:llv.:‘2 scn:l :1':
(= [0, 1]. The reaction curves for this ga_ufu: arerig) = (1 —aq .ar‘:hi‘:h
unigue Nash equilibrium is at the interscetion uf the renclim} curves, pin
is the point A4 = (}, 1), Figure 113 displays the path of the Cournot adj

i ion is c. One
13. Of course the dislinction belween inlrospcc}mn and cxlrapolal!on |: 'll'i:;lab:s;u:;lork, he
might suppose that introspection leads to the ld.ﬂl that cxllmpolaluo;l Ilb ‘mal{e R
conversely that past experience has shown that lql(ospecﬂon is likely Lo
prediction
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Figure 1.13

ment or tAtonnement process for the initial condition g% = 4. The process
converges to the Nash equilibrium from every starting point; that is, the
Nash equilibrium is globally stible.

Now suppose that the cost and demand [unctions yicld reaction curves
as in figure 114 (we spare the reader the derivation of such reaction
functions from a specification of cost and demand functions). The reaction
functions in figure 1,14 intersect at three points, B, C, and D, all of which
are Nash equilibria. Now, however, the intermediate Nash equilibrium, C,
is not stable, as the adjustment process converges either to B or to D unless
it starts at exactly C.

Comparing figures 1.13 and 1.14 may suggest that the question of asymp-
totic stability is related to the relative slopes of the reaction functions, and
this is indeed the case. If the payoff [unctions are twice continuously
differentiable, the slope ol firm i’s reaction function is

dn 8%u, /@
dg;  0q:9q) ot

and a sufficient condition for an equilibrium to be asymptotically stable is
that

dry

dr,
— <1
dq,

dq,

or

Pu, 0w, 0%, 0%u,
o <e T a7
9q,0q, 09,09, 997 043

in an open neighborhood of the Nash equilibrium.
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Technical aside  The condition for ns'yrnploli::'smlpilily wh-cn firms r::tlr.:ll
shmultaneously, instead of allcmalively: o lhmr.oppf:mt s. mm: :cbl.:::h
outpuis is the same a8 the one just dcsmhufl._‘l‘o e 1hm_. Fuppusu- I: a o
players simultuncously adjust their quantitics each period by choosing

best tesponse 1o their opponent’s output in the previous period. View this

as a dynamic process
q'=(g1.92) = (s hrlat' N = fa™)
From the study of dynamical systems (Hirsch nnd‘ Srmfl.e 1974), we I;;ml:v
that a fixed point g* of [ is asymptoticaily stable in t?us process li:I: 1 ,c
cigenvalues of 2f(q*) have real parts whose absolute v_ﬁa'nw: is less U ';an_'l r.
The condition on the slopes of the reaction functions is exnetly sul wwgg
1o imply that this cigenvalue condition is satisfied. Classic references on

stbility of the Cournot ddjustment pmosfSS'iign;éturdc F{';f:cc:s:iﬁl;r&:::
0, and Dixit 1986; sec Moulin oradi
e ith more than two players.

recent work and of subtleties that arise W
ot's adjustment prowss_wilh either nltern.at-
ing or simultangous adjustment is that in cgch period the Plaby:rﬁlmi
1 move c:pccts.lhat his opponent’s output 1n the h}uure will be the 5

45 it is now, Since output in fact changes every period, it may seem more

f thei
plausible that players base U alue of their

heir forecasts on the average ¥ _
opponent’s past play, which suggests the alternative dynamic process
=1
qi= r.(z,o qf/t>.

This alternative has the adde

One way to interpret Conrn

d value of converging under 2 broader set
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of assumptions, which makes it more useful as a tool for computing
equilibria,'*

However, even when players do respond Lo the past averages of their
opponents’ play, the adjustment process need not converge, especially once
we move away from games with one-dimensional strategy spaces and
concave payoffs. The first example of cycles in this context is due to Shapley
(1964), who considered the game illustrated here in figure 1.15.

Suppose first that, in each period, each player chooses a best response
to the action his opponent played the period before. If play starts at the
point (M, L), it will proceed to trace out the cycle (M, L), (M,R), (U,R),
(U, M), (D,M), (D, L), (M, L). Il instead players take turns reacting to one
another’s previous action, then once again play switches from one point to
the next each period. If players respond to their opponents’ average play,
the play cycles increasingly (in fact, geometrically) slowly but never con-
verges: Once (M, L) is played, (M, R) occurs for the next two periods, then
player 1 switches to U; (U, R) occurs for the next four periods, then player
2swilches to M; after eight periods of (U, M), player 1 switches to D; and so
on.

Thus, even assuming that behavior follows an adjustment procéss does
not imply that play must converge to a Nash equilibrium, And the adjust-
ment processes are not compelling as a description of players’ behavior.
One problem with all the processes we have discussed so [ar is that the
players ignore the way that their current action will influence their oppo-
nent’s action in the next period. That is, the adjustment process itself may
not be an equilibrium of the “repeated game,” where players know they
face one another repeatedly.'® It might seem natural that if the same two
players face each other repeatedly they would come to recognize the
dynamic effect of their choices. (Note that the effect is smaller if players
react (o past averages.)

14. For a detailed study of convergence when Cournot oligopolists respond Lo averages, se¢
Thorlund-Petersen 1990.

15, If firms bave perfect foresight, they choose their oulpuit tnking inte account jts efect on
their rival's future reaction, On this, see exercise 13.2. The Cournot iitonnement process can
be viewed as a special case of the perfect-foresight model where 1he firms have discount factor
0

\ 27
Strategic Form and Nash Equilibrium

A related defense of Nash equilibrium Supposes that there is a large

group of players who are matched at random u.nd asked 1o plﬂ]"{ ;::Ee::::

me. The players are not allowed to communicale or even tol ay
i:;ll:l:ir opponents are- At each fouml. cach player cﬁms;‘scn :. rategy. <
sorves the strategy chosen by his opf ent, and rec i ; 1,: A :\,h‘, e
payoff. If there are a greal many playcr:s then a pair of play .mawn m
mutched today are unlikely to mect again, nnd.piayers have ?tohg'r A
worry aboul how their current choice will ulfeet the play o i

i he strategy

in eac o the players should tend to play t e
el T (We say “tend to play ‘to
ly “experiment” with

nents.
?:::0 maximizes that period's expected payofl. !
allow for the possibility that players may oceasional
other choices.) )

1o next step is to specify how players §djust : bout
lh;rco:;:lmnlz' play in light of their experience. Many cclll_f.}‘;::: ::);::::'::s
tions are possible, and, aswith the CDI{I'DO‘ process, t];ci: j S
need not converge o a sable distribution. However, if p n:ﬂcr. el

onents' stratopies at the end of each round, and pl n;re e
‘rj:::l;ivc a great many observations, then one natutal specification 15 tha
cach player's expectations aboul the plfly of t;: npp(;:f::&m n:::::;l];::
1.6 the probability distribution corrusp.ondmg t'o 11 _snm:l:cm st b
he hias abserved in the past In this case, i t\si.st,y il

a steady state, the steady state must be a Nash equiltbrium.

yers ohserve one another's strategics 3t
like the Cournol compelition
1 shok

their expectations about

Caution The assumption that pla /
the end of each round makes sense in games

L)
where strategies corlespond to u of In the
general extensive-florm games we introduce in Clluplﬁ 3. strategics arc

eal the
contingent plans, and the observed outcome of play need r:]u:l ::: e
action a player would have used in @ contingency that di

(Fudenberg and Kreps 1988).

ide an
The idea of a large population of pliyers can also be used 1o provide i

¥ - Tibrid.
alternative interpretation of mixed stralegies and mued-;sllmtcnﬁin equ ‘::‘I;ml
Instead of supposing that individual players randomize among

i ibi ituation in which
i i n be viewed as deseribing a situa .
strategies,a mixed strategy ca o g g

ifferent fractions of the population play ! 1

?griin a Nash equilibrium in mixed strategies requires that all p:;i:l;:’:t;
gies that receive positive probability are equally good msponz:s;l oot
pure strategy did better than the olhcr‘ we would expect muw“h e
the players to learn this and switch their play to the strategy

payoll.

ilibrium ing include
16. Recent papers on the explanation of Nash equilibrium as the result of learning 1

Gul 1989, Milgrom and Roberts 1989, and Nyarko 1989.
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The large-population model of adjustment to Nash equilibrium has yet
another application: It can be used Lo discuss the adjustment of population
[ractions by evolution as opposed to learning. In theoretical biology, May-
nard Smith and Price (1973) pioﬁ‘éered the idea that animals are genetically
programmed to play different pure strategies, and that the genes whose
strategies are more successful will have higher reproductive fitness, Thus,
the population [ractions of strategies whose payoll against the current
distribution of opponents’ play is relatively high will tend to grow at a
faster rate, and, any stable steady state must be a Nash equilibrium.
(Non-Nash profiles can be unstable steady states, and not all Nash equi-
libria are locally stable.) It is interesting to note that there is an extensive
literature applying game theory to questions of animal behavior and of the
determination of the relative lrequency of male and female offspring.
{Maynard Smith 1982 is the classic reference.)

More recently, some economists and political scientists have argued that
evolution can be taken as a metaphor for learning, and that evolutionary
stability should be used more broadly in economics. Work in this area
includes Axelrod’s (1984) study of evolutionary stability in the repeated
prisoner’s dilemma game we discuss in chapter 4 and Sugden’s (1986) study
of how evolulionary stability can be used to ask which equilibria are more
likely to become focal points in Schelling’s sense.

To conclude this section we compare the informational assumptions of
deductive and extrapolative explanations of Nash equilibrium and iterated
strict dominance. The deductive justification of the iterated deletion of
strictly dominated strategies requires that players are rational and know
the payoll functions of all players, that they know their opponents are
rational and know the payoll functions, that they know the opponents
know, and so on [or as many steps as it takes for the iterative process (o
terminate. In contrast, if players play one another repeatedly, then, even if
players do not know their opponents’ payolfs, they will eventually learn
that the opponents do not play certain strategies, and the dynamics of the
learning systemn will replicate the ilerative deletion process. And for an
extrapolative justification of Nash equilibrium, it suffices that players know
their own payofTs, that play eventually converges to a steady state, and that
il play does converge all players eventually learn their opponents’ steady-
state strategies. Players need not have any information about the payoff
functions or information of their opponents.

Of course, the reduction in the informational requirements is made
possible by the additional hypotheses of the learning story: Players must
have enough experience to learn how their opponents play, and play must
converge to a steady staie. Moreover, we must suppose either that there
is a large population of players who are randomly matched, or that,
even though the same players mect one another repeatedly, they ignore

1.3 Existence and Properties of Nash Equilibria (technical
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i E i ents’ play
any dynamic links between their play today and their oppon p

tomorrow.

)ﬂ

{ the existence of Nash equilibria. Although
ection is technical, it is quite important for
theory literature. However, the
hose who are pressed for time

We now tackle the question of
some of the material in this s
those who wish to read the formal game-
section can be skipped in a first reading by ¢
and have little interest in technical detail.

1.3.1 Existence of a Mixed-Strategy Equilibriam

Theorem 1.1 (Nash 1950b) Every finite strategic-form game has a mixed-

strategy equilibrium. .
y equilibrium is an equilibrium in

ember that a pure-straleg !
. does nol assert the existence ofan

degenerate mixed stralegies. The theorem
equilibrium with nondegenerate mixing.

Proof Since this is the archetypal existence proof in game theory, we will

go through it in detail. The idea of lhf:' proof is (o apply .l.(;l;na:ui;
fixed-point theorem to the players’ “reaction wrmspondcnzs;c i f:i,m
reaction correspondence, i, Maps cach strategy pruﬁlll: glot oo
strategics that maximize player i's payofl when his |I:|p[‘mntl:n [u:cnon:r
(Ahoughdepends anly 1 00 B L e poininhe
the strategios of ull players, because it SEpoRIat e
¢ of strategy profiles) This is the nntural generalizatio

?;::ncl;t rcnclinnﬁncl'rurl we defined above, Define _Ihc C(;l'l'c.‘::c:l;‘lc:ﬂ;
r £ T to be the Cartesian product of the r;. A fixed po Jlrr“d .Uim
such that o € r(o), so that, for each player, @ € rie). Thus, & fixed p

of r is a Nash equilibrium. ,

From Kakutani’s theorem, the followin

r L 3 T to have a lixed point:

g are sufficient condilions for

ite-dimensional)
(1) % is a compact,'” convex,'® nonempty subset of a (finile

Euclidean space.
(2) r(o) is nonempty for all o.
(3) r(a) is convex for all o.

17. A subset X of a Euclich ¥ if any seq in X hasa that
set X of a apace 8 pact |
i 2 tnes: &
converges to & limit peint in X. The definition of compactness for more genera lopological

spaces uscs the notion of “cover,” which is a
551 X. X is compact {f any cover has a finite sub'cover.

18. A set X in a linear vector space is convex if, for any x an
1e[0,1], Ax + (L — A)x’ belongs to X,

d x’ belonging lo X and any
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Figure 1.18

sider two sequences A" —+ 1 and ¢" — ¢ such that ¢" € r(¢"} and o ¢ r(c).
That is, ¢" is a Nash equilibrium of G(1"), but ¢ is not a Nash equilibrium
of G(A). Then there is a player i and a ¢; that does strictly better than g,
against ¢_;. Since payoffs are continuous in 4, for any A" near 1 and
any ¢; near o_;, 6; is a strictly better response to ¢”; than ¢/ is—a
contradiction.

It is important to note that this does not mean that the correspondence
E(*) is continuous. Loosely speaking, a closed graph (plus compactness)
implies that the set of equilibria cannot shrink in passing to the limit. If ¢"
are Nash equilibria of G(A") and A" — 2, then ¢” has a limit point ¢ € E(A).
However, E(J) can contain additional equilibria that are not limits of
equilibria of “nearby” games. Thus, E(*) is not lower hemi-continuous, and
hence is not continuous. We iflustrate this with the two games in figure
1.18. In both of these games, (U, L) is the unique Nash equilibrium if A < 0,
while for A > 0 there are three equilibria (U, L), (D, R), and an equilibrium
in mixed strategies. While the equilibrium correspondence has a closed
graph in both games, the two games have very diflcrent sets of equilibria
al the point 4 = 0,

First consider the game illustrated in figure 1.18a. For 2 > 0, there are
two pure-strategy equilibria and a unique equilibrium with nondegenerate
mixing, as each player can be indilferent between his two choices only if
the other player randomizes. If we let p denote the probability of U and ¢
denote the probability of L, a simple computation shows that the unique
mixed-strategy equilibrium is

2 2
(P.4) = (S’ﬁi)'

As required by a closed graph, the profiles (p, g) = (1, 1), (0,0), and (2,0) are
all Nash equilibria at A = 0. There are also additional equilibria for A = 0
that are not limits of equilibria for any sequence 2" — 0, namely (p,0) for
any p € [0,3]. When 4 = 0, player 1 is willing to randomize cven if player
2 plays R with probability 1, and so long as the probability of U is
not too large player 2 is still willing to play R. This illustrates how the
equilibrium correspondence can fail to be lower hemi-continuous.

In the game of figure 1.18b, the equilibria for 4 > 0 are (1,1), (0,0),
and (/(1 + A),A/(1 + 1)), whereas for A = 0 there are only two equilibria:
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2] (e—

Figure 1.19

Figure 1.20

note that if p is greater than 0 then player 2

(R G S e i (1, 1) is the only equilibrium with

will set g = 1, and so p must equal 1,and
qg>0)
At first sight a
iolate the closed-graph property, .
:)1:{ small, thie mixed-stratepy equilibrinm (A1 + A, A1+ ) u:.J w:rly C]([’}:
to the pure-strategy equilibrium (0,0). Figures 1,19 and 1.20 display

decrease in the number of equilibria might appea'rlto
but this is not the case: For A positive

ilibrinm coreespond of these two games. Mnn: plcciscljy.ffor eoa;:
A ‘wc display the set of p such that (p.q) 1s an _cqulhbnum af N(4) for s
q; this allows us 10 give a two-dimensional dingram.

d
Inspection of the diagrams reveals that each of these games has an od

anmber of Nash equilibria everywhere except A=0 Chupltel li i;p{ﬁ:{s
that this observation is generally true: Il the strategy spi!m nrer el e )
there is an odd number of Nash cquilibria for "lmost all pagnfl' unic N-Iu.[.
Finally, note that in figures {.18aand 1.1 Eb n.lthc::.lhgh {D,R)is nur ;ad-lm
cquitibrium for & < 0, itis an “g-Nash ctht‘mum m.lhf: scvscl;; S
(1980) il ¢ = |A|: Each player’s maxirm.!m gain to df\rmlmn is o qu.;
More generally, an equilibrium of a given game will be an l'.-l ikt
librium for games “nearby”—a point developed {\m‘l ""f’lf“l'cf“ : s:m 2
berg and Levine (1983, 1986), whost results are discussed in chap .
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1.3.3 Existence of Nash Equilibrium in Infinite Games with Continuous Payoffs

Economists often use models of games with an uncountable number of
actions (as in the Cournot gagge of cxample 1.3 and the Hotelling game of
example 1.4). Some might argue that prices or quantities are “really”
infinitely divisible, while others might argue that “reality” is discrete and
the continuum is a mathematical abstraction, but it is often easier to work
with a continuum of actions rather than a large finite grid. Moreover, as
Dasgupta and Maskin (1986) argue, when the continuum game does not
have a Nash equilibrium, the equilibria corresponding to fine, discrete grids
(whose existence was proved in subsection 1.3.1) could be very sensitive to
cxactly which finite grid is specified: If there were equilibria of the finite-grid
version of the game that were fairly insensitive to the choice of the grid,
one could take n sequence of finer and fincr grids “converging” to the
continuum, and the limit of a convergent subsequence of the discrele-
action-space equilibria would be it continuum equilibrium under appropri-
ate continuity assumplions. (To put it another way, one can pick equilibria
of the discrele-grid version of the game that do not fluctuate with the
grid i the continuum game has an cquilibrium.,)

Theorem 1.2 (Debreu 1952; Glicksberg 1952; Fan 1952) Consider a
strategic-form game whose strategy spaces S; are nonempty compact con-
vex subsets of an Euclidean space. I the payolf functions u; are continuous in
s and quasi-concave in $;, there exists a pure-strategy Nash equilibrium, 22

Proof The proofis very similar to that of Nash’s theorem: We verify that
continuous payoffs imply nonempty, closed-graph reaction COrrespon-
dences, and that quasi-concavity in players’ own actions implies that the
reaction correspondences are convex-valued, ]

Note that Nash’s theorem is a special case of this theorem. The set of
mixed strategies over a finite set ol actions, being a simplex, is a compact,
convex subset of un Euclidean space; the payolls are polynomial, and
therefore quusi-concave, in the player’s own mixed strategy.

If the payoff functions are not continuous, the reaction correspondences
can fail to have a closed graph and/or fail to be nonempty, The latter
problem arises because discontinuous functions need not attain a maxi-
mum, as for example the function f(x) = — Ixl, x #0, f(0) = — 1. To see
how the reaction correspondence may [ail to have a closed graph even when
optimal reactions always exist, consider the lollowing two-player game:

Si=8,=00,1],

Uy(sy,s;) = =50~ 5,)%,

22.1tis inlcrs_sling to nole thal Debreu (1952) used a generalizalion of theorem 1.2 to prove
that competitive equilibria exist when consumers have quasi-convex preferences.
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—(5 =5, -3 s 23
uz{s1,82) = ~(—s, + 3% s <4

Here each player’s payolf is strictly concave in his own strategy, a;d aet:;srt
response exists (and is unique) for each strateg.y.of .the opponen;.‘ owctio';
the game does not have a pure-strategy eqfullbnum.: Pl?yer s iea fon
function is r(s,) = s,, while player 2’s reaction funct.lon is rz(.?,) —;1 noi
for s, > 4,r,(5,) = 5; + § for 5, < 4, and these reaction functions do
mtgtsx:‘s::-concavity is hard to satisfy in some context.s. For example,dl‘?. th:
Courmot game the quasi-concavity of payolls requ1.res strong con ;::h
on the second derivatives of the price and cost functlo_ns. Of course, -
equilibria can exist even when the conditions of the existence thec])-;'ems e,-
not satisfied, as these conditions are sufficient bl.lt not necessary. i otwe\\;re:
in the Cournot case Roberts and Sonnen.sche,l'n (1976),,sho¥ t ace:)and
strategy Cournot equilibria can fail to exist with “nice” preferen
S,
le(::‘,t?: ::)gsfnce of a pure-strategy equilibrium in some gfimes’should not :;
surprising, since pure-strategy equilibria need ?101 exist in finite %namzs, :ces
these games can be approximated by games with real-valued action 1p o
but nonconcave payofls. Figure 1.21 depicts the payofls (.)l' playc‘er i v: °
chooses an action s, in the interval [s,,5,]. Pay'olI functlc,),n ty is cox}]m
vous in s but not quasi-concave in s,. This game is “almost” a gamtla w er2e
player 1 has two actions, s| and s7. SuPpose the s'ame holdi for pl ay;:rwe:
Then the game is similar to a game with two actions per player, }ell:ve B
know (from “matching pennies,” for instance) that such games may
pure-strategy equilibrium.

When payolls are continuous (but not necessarily quasi-c~oncave), mnfed
strategies can be used to obtain convex-valued reactions, as in the following
theorem.

Theorem 1.3 (Glicksberg 1952) Consider a strategic-form game whose

strategy spaces S; are nonempty compact subsets of a metric spac.;. bll'.the
payoll functions u; are continuous then there exists a Nash equilibrium

in mixed strategies.

uylsgis,)

LR
I

i :
n "y 1

Figure 1.21
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Here the mixed strategies are the (Borel) probability measures over the
pure strategies, which we endow with the topology of weak convergence.2?
Once more, the proof applies a fixed-point theorem to the reaction corre-
spondences. As we remarked @bove, the introduction of mixed strategies
again makes the strategy spaces convex, the payofls linear in own strategy
and continuous in all strategies (when payofls are continuous functions of
the pure strategies, they are continuous in the mixed strategies as well?%),
and the reaction correspondences convex-valued. With infinitely many
pure strategies, the space of mixed strategies is infinite-dimensional, so a
more powerful fixed-point theorem than Kakuiani's is required. Alterna-
tively, one can approximate the strategy spaces by a sequence of finite grids.
From Nash’s theorem, each grid has a mixed-strategy equilibrium. One
then argues that, since the space of probability measures is weakly compact,
the sequence of these discrete equilibria has an accumulation point. Since
the payofls are continuous, it is easy to verify that the limit point is an
equilibrium,

We have already seen that pure-strategy equilibria need not exist when
payoffs are discontinuous. There are many examples to show that in this
case mixed-strategy equilibria may (ail to exist as well. (The oldest such
example we know of is given in Sion and Wolfe 1957—see exercise 2.2
below.) Note: The Glicksberg theorem used above fails because when the
pure-strategy payofls are discontinuous the mixed-strategy payoffs are
discontinuous too. Thus, as before, best responses may fail to exist for some
of the opponents’ strategies. Section 12.2 discusses the existence of mixed-
strategy equilibria in discontinuous games and conditions that guarantee
the existence of pure-strategy equilibria.

Exercises

Exercise 1.1*  This exercise asks you to work through the characterization
of all the Nash equilibria of general two-player games in which each player
has two actions (i.e., 2 x 2 matrix games). This process is time consuming
but straightforward and is recommended to the student who is unfamiliar
with the mechanics of determining Nash equilibria.

Let the game be as illustrated in figure 1.22.

The pure-strategy Nash equilibria are easily found by testing each cell
of the matrix; e.g, (U,L) is a Nash equilibrium if and only if a > ¢ and
b=d

23. Fix a compaci metric space 4. A i of mex ntonA ges "wiakiy to a
limit o if [fdp® [ fd for cvery realvalued continuous function f on A, The st of
probability on A endowed with the topology of weak
24. This is an | di of the definition of

BENCT 1% pacl.
we gave in note 23.
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Figure 1.23

To determine the mixed-strategy equilibria requires m.o.re work. Let >1c be
the probability player 1 plays U and let y be the probability player 2 plays
L. We provide an outline, which the student should complete:

(i) Compute cach player’s reaction correspondence as a function of his
opponent’s randomizing probability. ' . .
P(l:i) For which parameters is player iindilferent between his two strategics

i b)
repardless of the play of his opponent? . ) .
%iii) For which parameters does player i have a strictly dominant
strategy? ) )
(iv)gShow that il neither player has a strictly domma::n surategy, and -the
game has a unique equilibrium, the equilibrium must bein mixed strategics.
(v) Consider the particular example illustrated in (igure 1.23.

(a) Derive the best-response correspondences graphically by plotling

player i’s payoff to his two pure strategies as a function of his opponent’s

mixed stralegy. .
{b) Plot the two reaction correspondences in the (x,y) space. What are
the Nash equilibria?

Exercise 1.2* Find all the equilibria of the voting game of example 1.5.

Exercise 1.3 (Nash demand game)* Consider the problem 'of dividing a
pie between two players. Il we Jet x and y denote 'player ’s and playe;
2's payolls, the vector (x,y) is feasible if 'and qnly if ic > X, ydzayo,aan>
glx, ) < L, wheregisa differentiable function with ag./ox > (?an g/ ¥[~he
0 (for instance, g(x, y} = x + y). Assume that the feasible set is corzjvcx.‘ ‘
point (x,, yo) will be called the status quo. }\l.ash (19505.1) ;.)ropose 1axnslmn
which implied that the “right” way to divide the pie is the alloca 130
(x*, y*) that maximizes the product of the di[l'ete:nces from the sta}:ysg p
(x — xo)(y — yo) subject to the feasibility constraint g{x, y) < 1. In his
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papcer, Nash looked for a game that would give this axiomatic bargaining
solution as a Nash equilibrium.

(a) Suppose thal both players simultaneously formulate demands x and
. 10(x, y) is feasible, each playeggets what he demanded. If (x, y) is infeasible,
player | gets x, and player 2 ggﬁ Yo- Show that there exists a continuum of
pure-stra‘egy equilibria, and, more precisely, that any efficient division
(x,) (i.e, leasible and satisfying g(x, y) = 1) is a pure-strategy-equilibrium
outcorme.

(by** Consider Binmore’s (1981) version of the Nash “modified demand
game.” The feasible set is defined by x = x4, y > y,, and g(x, y} < z, where
z has cumulative distribution F on [z,Z] (suppose that Vz, the feasible
sel is nonempty). The players do not know Lhe rcalization of z before
making demands, The allocation is made as previously, after the demands
are made and z is realized. Derive the Nash-equilibrium conditions. Show
that when I converges Lo a mass point at 1, any Nash equilibrium con-
verges Lo the axiomatic bargaining solution,

Exercise 1.4 (Edgeworth duopoly)**  There are two identical firms produc-
ing a homogencous good whose demand curve is g = 100 - p. Firms
simultaneously choose prices. Each firm has a capacity constraint of K. If
the firms choose the same price they share the market equally. If the
prices are unequal, p, < p;, the low-price firm, i, sells min(100 — p;, K) and
the high-price firm, j, sells min{max(0, 100 — p; — K), K]. (There arc many
possible rationing rules, depending on the distribution of consumers’
prefcrences and on how consumers are allocated to firms. If the aggregate
demand represents a group of consumers each of whom buys one unit if
the price p; is less than his reservation price of r, and buys no units
otherwisc, and the consumer’s reservation prices are uniformly distributed
on [0,100], the above rationing rule says that the high-value consumers
are allowed to purchase at price p; before lower-value consumers are.,) The
cost of production is 10 per unit.
(a) Show that firm 1’s payofl function is

(p; — 10)min(100 — p,, K), P1<P2

(p; — 10)min(50 — p, /2,K), N
u (pr,pr)= )
(py ~10)min(100—- K —p,K), p,>p,,p, <100-K

0 otherwise.

(b) Suppose 30 < K < 45. (Note that these inequalities are strict.) Show
that this game does not have a pure-strategy Nash equilibrium by proving
the following sequence of claims: :

() M (py, p,) is a pure-strategy Nash equilibrium, then p, = p,. (Hint: If
Py # p, then the higher-price firm has customers (Why?) and so the

.
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lower-price firm’s capacity constraint i strictly binding. What happens if
this firm charges a slightly higher price ?}- . . o

(ii) If (p, p} s 0 pure-strategy Nash uqmilhs:l'um., then p > 10. ] B

(iii) Lf (p,p) is n pure-stralegy Naush equilibrium, then p satislies p =
100 — 2K. o - e

(iv) If (p,p) is a pure-strategy Nash equll'lhnum, then p —d 13)(:) —2215(
(Hint: If p < 100 — 2K, is a deviation to a price between p an
profitable for either firm?) .

(v) Since K > 30, there exists
carns a firm a higher profit tha
100 — 2K.

Note: The Edgeworth duopoly game does satisly the assumpt.lons of tl:eo-
rem 1.3 (restrict prices to the set [0, 1007) and so has a mixed-strategy
equilibrium.

Fxercise 1.5 (final-ofler arbitration)® Farber (1980) prupn.1.sea l!'u? roII:n:;
ing model of final-offer arbitration. There are lhr‘w pia)tcm A mnn.u::l.“ ,:; o
(i = 1),aunion{i = 2), and an arbitrator (i = 3}, The arbitrstor must 5 u.,c
a scul;mcnl e R from the two offers, 5, € B and s; € R, made by

- A : N dy
i tively, The arbitrator has exogenous
eviimsives bissdplomom 5 he would like to be as close Lo

5> 0 such that a price of 100 — 2K + o
1 100 — 2K when the other firm charges

i snoes By = — (1 — %)% Thatis, ) Sl
ﬁi:?‘li!]":: :fnr::::‘io.nns possible. The management and_th‘: union dn[n I;n:::
{he arbitrator's bliss point; they know on!?r that it is _{_h'ﬂ:'-’rl; ::nm ¢
distril P with conti ,pos‘ili\ft:dtl?ﬂliylﬂ on [,y.::s‘,%:l he:ma age
ment and the union choose their offers n:*»;y y. Their objective

i = —tand u; = -1, respectively. o

r““l;:;‘::: ::d“i:'atcrprel the f:m—ardcr conditions for a Nash a|u:;l:nr::,

Show that the two offers are equally likely 10 be chosen by the arbitrator.

Exercise 1.6°*  Show that the two-player game i!lustr?ted in figure 1.24
I;ﬁs a u.niquc cquilibrium. (Hint: Show that il has a umqui'p:r::i::tei
ibri i i 0l put positiv
uilibrium; then show that player 1, say, cann tiy :
::llh 1) nnd M; then show that player 1, sy, cannot put posiive weight on
both U and D, but not on M, for instance.)

Figure 1.24
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Exercise 1.7 (public good)* Consider an cconomy with I consumers with
“quasi-linear” utility functions,

w, = Vilx0) + 1,

-
where ¢; is consumer i's income, x is a public decision (for instance, the
quantity of a public good), ¥(x, ) is consumer i’s gross surplus for decision
x, and 6, is a utility parameter. The monetary cost of decision x is C(x).
The socially efficient decision is

x*(0,,...,0;) € arg max {i Vi(x,6) — C(x)}.
x =1

Assume (i) that the maximand in this program is strictly concave and (i)
that for all 8_;, ;, and 6;,

0 # B, = x*(0_,, 6)) # x*(0-4,0:).

Condition ii says that the optimal decision is responsive to the utility
parameter of each consumer. (Condition i is satisfied if x belongs to R, V;
is strictly concave in x, and C s strictly convex in x, Furthermore, if 6
belongs to an interval of R, V; and C are twice differentiable, 0V;/0xd6; > 0
or < 0,and x* is an interior solution, then x* is strictly increasing or strictly
decreasing in 6;, so that condition (ii) is satisfied as well.)

Now consider the following “demand-revelation game™: Consumers are
asked to announce their utility parameters simultaneously. A pure strategy
for consumer { is thus an announcement @i ol his parameter (0‘ may differ
from the true parameter 6;). The realized decision is the optimal one for the
announced parameters x"(@,,...,@,), and consumer i receives a transfer
from a “social plannes” equal to

li(é];.-. ,9‘) =K; + Z Vj(x*(@l,...,ﬁ,),()j) — C(X*(f)l,.‘.,f),)),

when K, is a ¢onstant.

Show that telling the truth is dominant, in thal any report (7,- # 0 is
strictly dominated by the truthful report 0, =0,

Because each player has a dominant strategy, it does not matter whether
he knows the other players’ utility parameters. Hence, even il the players do
not know one another’s payofls (see chapter 6), it is still rational for them
to tell the truth. This property of the dominant-strategy demand-revelation
mechanism (called the Groves mechanism) makes it particularly interesting
in 4 situation in which a consumer’s utility parameter is known only to thal
consumer.

Exercise 1.8% Consider the [ollowing model of bank runs, which is due to
Diamond and Dybvig (1983). There are three periods (t = 0, 1,2). There are
many consumers —a continuum of them, for simplicity. All consumers are
ex ante identical. At date 0, they deposit their entire wealth, $1, in a bank.
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The bank invests in projects that yield SR each il the money is invested for

i where R > 1. However, if a project is interrupted after one
::nwc:{:.r:rd y:e'lds Dll.'ll!f $1 (it breaks even), Em‘:h consumer “dies” (or“‘necfds
money immedintely”) al the end of date 1 with pfu'k':mbdhy X, sm.i lnr_gs :)lr
two periods with: probability | — x. He learns “:'l'lll:h ane o‘ma:‘ns a!t t ;
boginning of date 1. A consumer’s utility is ule,) il be dics in period | an
ule, + e4) if he dies in period 2, :I;m: W >0, 1" < 0,and ¢, and ¢ are

tions in periods 1 and 2. )
lh'-‘::un::l;':’[;] insu rarr; contruct ¢, ¢3) mximilms A CONSWMEE's £X hc:nte or
expected utility. ‘I've consumer receives of if he dies atdate 1, and ot rwl:w
consumes nothing at date | and receives ¢f at dale 2' The conlr’acl satis u:s
xep +(1 - x)e /R = 1 (the bunk brcnksw:nllaud w(c})=Ru (c‘,‘]il:qun.-
ity between the margingl rates of subslilutw!ﬂ. Nsm: that | <c} -:r;.
The issue is whether the bank can implement this optimal insurance s u:'::
if it is unable 1o observe who rieeds money at the end of the first pcn‘ “.)
Suppose that the bank offers to pay ry = €7 Eo onnsum‘ers whf: wan
withdraw their money in period 1. 1 f e [0,1] s the [rav:tmn_ol’ wnsumnr;
who withdraw at date 1, each withdrawing consumer gua? niffr, = ‘l[ At :
gets 1 il fry = 1 Similarly, consumers Y;hu do not withdraw at date
receive max {0, R(1 — N0 =N in period 2. B
{a) Show that it is # Nash cquilihnu: for each consumer to withdra
i nly if he “dies” at that date.
dn::]IS:E:d l:ul ::mnlhur Mash equilibrium exhibits a bank run (f = ).
(¢) Compare with the stag hunt,

Exercise 1.9% Suppose plg)=a—bgin the Cournot duopoly game of

example 1.3. L )
(a) I(’:heck that the second-order and boundary conditions for equation

1.3) are satisfied. Compute the Mash cquiﬁbrium: . )
( (t):) Now suppose there are Iidentical firms, which all have w.sl function
¢q,) = cq;. Compute the limit of the Nash equilibria as | =+ o, Comment.
re I farmers, cach of whom has the right
The amount of milk a cow produces
on the green, The revenue

Exercise 1.10*  Suppose there a
10 graze COWS On the villuge common. X

N, grazing 1
depends on the total number of cows, N, ¢ i \
produced by u, cows is mo(N) for N < N, and (V) =0 for N = N, where

4 d cows are perfeetly
0) = 0, o' <0, and o < 0. Bach cow cosis ¢, an .
;{iv]isihla. Suppose v{0) > ¢. Farmers simultancously decide how many
cows to purchase; all purchased cows will graze on the common.
(a) Write this asa game in strategic form.
(b) Find the Nash cquilibrium, and compar

optimum. ) )
(c) Discuss the relationship between this gai

model.

¢ it against the social

me and the Cournot oligopoly




Chapter 1

(This exercise, constructed by R. Gibbons, is based on a discussion in Hume
1739.)

Exercise 1.11**  We mentioned that theorem 1.3, which concerns the
existence of a mixed-strategy NMash equilibrium when strategy spaces are
nonel:npty, compact subsets of a metric space (R", say) and when the payofl
fu'nctlons are continuous, can also be proved by taking a sequence of
discrete approximations of the strategy spaces that “converge” to it. Go
through the steps of the proof as carefully as you can.

Here is a sketch of the proof: Each discrete grid has a mixed-strategy
equilibrium. By compactness, the sequence of discrete-grid equilibria has
an accumulation point. Argue that this limit must be an equilibrium of
the limit game with a continuum of actions. (This relies on the discrete

grids becoming increasingly good approximations and the payoffs being
continuous.)

Exercise 1.12* - Consider a simultaneous-move auction in which (wo play-
ers simultaneously choose bids, which must be in nonnegative integer
multiples of one cent. The higher bidder wins a dollar bill. If the bids are
equal, neither player receives the dollar. Each player must pay his own bid,
whether or not he wins the dollar. (The loser pays too.) Each player’s utility
is simply his net winnings; that is, the players are rick neutral. Construct a
symmetric mixed-strategy equilibrium in which every bid less than 1.00 has
a positive probability.
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and Correlated Equilibrium

e TN
2 Jterated Strict Dominance, Rationalizability,

Most economic applications of game theory use the contept of ﬁash
equilibrium or one of the more restrictive “equilibrivm mﬁncmc‘ms we
introduce in later Shapters, However, a5 we warned in chapter |, in Some
situations the Nash concepl seems 100 demunding. Thus, it is interesting
to know what predictions one can minke without afsnmim;. that & Nulsh
cquilibrium will occur. Section 2.1 pregents the notions of Il!:rutcd strict
1 and rationali Bility, which derive predictions using only the
assumptions that the structure of the game (i.¢., the strateqy Spaces and the
payoffs) and the rationality of the players arc common k?\ow_lcldgt_:, As we
will see, these two notions are closely reluted, ws rationalizability is essen-
tially the contrapositive of fternted strict dominance- .

Section 2.2 introduces theidenofn correlated equilibrium, wlmxgh cxtcpds
{he Nash concept by SUPPOSINgG that players can build & "cot relating device”
that sends each of them a private signul before they choote their strategy.

21 Tterated Strict D i and Rationali bility'*

We introduced iterated strict dominance informally at the beginﬂing of
chapter 1. We will now define it formally, derive some of 1'ts pr?pel'jul'r:s, and
apply it to the Cournot model. We will then defline rauonahz.ablhty ar'\d
relate the two concepts. As throughout, we restrict our attention to finite
games cxcept where we explicitly indicate otherwise.

2.1.1 lterated Strict Dominance: Definition und Properties

Definition 2.1 The process oliterated deletion of strictly dominated stral-
"

cgies proceeds as follows: Set 87 = S; and 20 = E;. Now define 8! recur-
sively by

st ={s€ Srt | there is RO 0} € -4 such that

wilosa) > Uil s} for alls; € s=ty

and define

= {ae %] oi(s;) > 0 only ils; e S'}-
Set

S® =

-l

"
s
0 ]

n

s is the sct of player i's pure strategies that suevive itcru?l:d defetion of
strictly dominated strategies. Set B 10 be ajl mixed SITACRICS & sich that
there is no o With T w oy, 5-¢) for all s, € 8% 'I"hm is the set of
player i’s mixed strategies that suryive iterated striet dominance,

1n words, S! is the set of player i's strategies that are no!.strictly domi-
nated when players j # i are constrained to play strategles n

5y~ and =




