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HE first three sections of this chapter illustrate the notion of subgame perfect

equilibrium in games in which the longest history has length two or three.
The last section studies a game with an arbitrary finite horizon. Some games with
infinite horizons are studied in Chapters 14, 15, and 16.

i

6.1 The ultimatum game, the holdup game, and agenda control
6.1.1 Theultimatum game

Bargaining over the division of a pie may naturally be modeled as an extensive
game. Here [ analyze a very simple game that is the basis of a richer model studied
in Chapter 16. The game is so simple, in fact, that you may not initially think of it
as a model of “bargaining”.

Two people use the following procedure to split $c. Person 1 offers person 2
an amount of money up to $c. If 2 accepts this offer, then 1 receives the remainder
of the $c. If 2 rejects the offer, then neither person receives any payoff. Each per-
son cares only about the amount of money she receives, and (naturally!) prefers to
receive as much as possible.

Assume that the amount person 1 offers can be any number, not necessarily
an integral number of cents. The%?e following extensive game, known as the
ultimatum game, models the proce

Players The two people.

Terminal histories The set of sequences (x, Z), where x is a number with 0 <
x < ¢ (the amount of money that person 1 offers to person 2) and Z is either
Y (“yes, Taccept”) or N (“no, I reject”).

Player function P(@) =1and P(x) = 2 for all x.
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use backward induction to find its subgame perfect equilibria, First consider the
subgames of length 1, in which person 2 cither accepts or rejects an offer of per-
son 1. For every possible offer of person 1, there is such a subgame. In the subgame
that follows an offer x of person 1 for which x > 0, person 2's optimal action is to
accept (if she rejects, she gets nothing). In the subgame that follows the offerx =0,
person 2 is indifferent between accepting and rejecting. Thus in a subgame perfect
equilibrium person 2's strategy either accepts all offers (including 0), or accepts all

offers x > 0 and rejects the offer x = 0.
Now consider the whole game. For cach possible subgame perfect equilibrium
strategy of person 2, we need to find the optimal strategy of person 1.
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We conclude that the only subgame perfect equilibrium of the game is the
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that work well in the situations in which we are typically involved; we do not
calculate our rational actions in each situation. Further, we are not typically in-
volved in one-shot situations with the structure of the ultimatum game. Instead,
we usually engage in repeated interactions, where it is advantageous to “punish”
a player who makes a paltry offer, and to build a reputation for not accepting
such offers. Experimental subjects may apply such rules of thumb rather than
carefully thinking through the logic of the game, and thus reject low offers in an
ultimatum game but accept them in an impunity game, where rejection does not
affect the proposer. The experimental evidence so far collected is broadly consis-

tent with both this explanation and the explanation based on the nature of players’
preferences.

@ EXERCISE 185.1 (Bargaining over two indivisible objects) Consider a variant of the
ultimatum game, with indivisible units. Two people use the following procedure
to allocate two desirable identical indivisible objects. One person proposes an al-
location (both objects go to person 1, both go to person 2, one goes to each person),
which the other person then either accepts or rejects. In the event of rejection,
neither person receives either object. Each person cares only about the number
of objects she obtains. Construct an extensive game that models this situation and
find its subgame perfect equilibria. Does the game have any Nash equilibrium that
is not a subgame perfect equilibrium? Is there any outcome that is generated by a
Nash equilibrium but not by any subgame perfect equilibrium?

@ EXERCISE 185.2 (Dividing a cake fairly) Two players use the following procedure
to divide a cake. Player 1 divides the cake into two pieces, and then player 2
chooses one of the pieces; player 1 obtains the remaining piece. The cake is contin-
uously divisible (no lumps!), and each player likes ail parts of it.

4. Suppose that the cake is perfectly homogeneous, so that each player cares
only about the size of the piece of cake she obtains. How is the cake divided
in a subgame pffect equilibrium?

<>

. Suppose that the cake is not homogeneous: the players evaluate different
parts of it differently. Represent the cake by the set C, so that a piece of
the cake is a subset P of C. Assume that if P is a subset of P/ not equal to
P’ (smaller than P’), then each player prefers P’ to P. Assume also that the
players’ preferences are continuous: if player i prefers P to P/, then there is a
subset of P not equal to P that player i also prefers to P'. Let (P}, P;) (where
Py and P, together constitute the whole cake C) be the division chosen by
player 1 in a subgame perfect equilibrium of the divide-and-choose game, P,
being the piece chosen by player 2. Show that player 2 is indifferent between
P; and Py, and player 1 likes P; at least as much as P,. Give an example in
which player 1 prefers P; to P,.
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6.1.2 The holdup game

{ i [

ing i i in which she may accept or reject an offer n’

e ?Iirl:::?:‘t:‘t;z\g;\zeaffects the size ¢ of the pie to be dlrlde?j.l S}:L

person 'l.P'irflt},nefh;n, resulting in a small pie, of size e, OF great t-ffmf 3 rt:;m hg[:'-

e ]‘l p f size cp. She dislikes exerting effort, Specifically, ussu[.:‘m“ i

o o"fsl 91:1.1-2 of the pie s x, where E = L, if she exerts litt e {t: tand
anug 3 IL_ifil:e ;irenb great effort, The extensive game that models this situ:

= H > Lifs

is known as the holdup game. |
i Write
holdup game precisely. (
1d ame) Formulate the : : P
o ];XERCitS\]eE slest6(;1f ;I;;;erlslptli set of terminal histories, the player function, an
own 2
players’ preferences.)

- equilibri the holdup game? Each subgf!me
What is the subgame perfect equilibrium of oh gaml; s

i i Itimat

srson 2's choice of effort is an ultim oo
s munws-l:;ect equilibrium, in which person 1 offers 0 and pe.rsor : n 2a§1e ;;{ b
Subgﬂm;p; consider person 2's choice of effort at the start of the 31“\9. is —L
“::;Ss;es LD then her payoff, given the outcome in the following subgame,

c b i’

00Ses ly she chooses L.
i her payoff is —H. Consequent
N i H:et.,?ll:gameppzr[ect equilibrium, in which person 2exerls

he e hasa uniqu s
?l-:ltllns;ﬁoﬁnd person 1 obtains all of the resulting small pie. T
:’his equilibrium does not depend on the values ofcy, e L

1 ightly larger
L). In particular, even if ¢jy is much larger than ¢p, but H r‘:s‘ :;n‘:g],; SIEher{; a:ﬁ;zd
Fi‘w} L -pempun 2 exerts little effort in the equilibrium, a'ltho:g::l 0 th;i; t); e
e sat effort (which, in >
son 2 were to exert great e ch, 1 ;
be much l:;::l;‘};i:iﬂp:;“:vere {o obtain some of the extra pic. i?iu :;m:l:.t i?;::;:
‘::zogn:e:i-; sustainable in an equilibrium because pelrscn 2, having exel
2 - - som 1.
“held up” for the entire pie by perso il
eﬁo.;;glar;tb; does mft depend sensitively on th‘t:a extren;te f;l:gargen;cwie:n lh:qbar‘
: e
i » of the ultimatum game. A similar res : e 8
“bfiflm ‘fml:“:::t:g person 2's choice of effort generates a mare equa} di;:]::on:;nt .
gaining fo ::.tin great effort, player 2 increases the size of the pl(i. ™ pomg i
8 '?rhexn ugation results in some (not necessarily all) of this ef:; r: E,—,s ?h;m e
th;t : 1 ethfr% for some values of player 2's cost of exe;t:ng girezlt‘: e o:ircumsmnm
b e i fers to exert little effort, In these i
) tra pie, player 2 prefers e : ity
Vahl?l oé’ii::tingpgm; effort generates outcomes in which bott};l-‘::"- rfl:ing el
P:I?{l:;n they are when player 2 exerts little effort, but b'em.:luse he ;srﬁ; .
:ome of theyextra pie in the hands of player 1, player 2's incentive

effort.
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proposed modification, but may not propose an alternative; in the event of rejec-
tion, the existing law is unchanged. That is, the committee controls the “agenda”.
(In Section 10.9 I consider a reason why a legislature might cede such power 1o a
committee.)

Model an outcome as a number y. Assume that the legislature and commit-
tee have favorite outcomes that may differ, and that the preferences of each body
are represented by a single-peaked payoff function symmetric about its favorite
outcome, like the voters” preferences in Hotelling’s model of electoral competition
(see Figure 71.1). Assign numbers to outcomes so that the legislature’s favorite
outcome is 0; denote the committee’s favorite outcome by y. > . Then the fol-
lowing variant of the ultimatum game models the procedure. The players are the
committee and the legislature. The committee proposes an outcome i, which the
legislature either accepls or rejects, In the event of rejection the outcome is yy, the
“status quo”. Note that the main respect in which this game differs from the ulti-
matum game is that the players’ preferences are diametrically opposed only with
regard to outcomes between 0 and y.; if y' < ¥ < O or y. < y" < ¢/, then both
players prefer y"' to y'.

@ EXERCISE 187.1 (Agenda control) Find the subgame perfect equilibrium of this
game as a function of the status quo outcome . Show, in particular, that for a

range of values of yy, an increase in the value of yy leads to a decrease in the value
of the equilibrium outcome,

6.2 Stackelberg’s model of duopoly
6.2.1 General model

In the models of oligopoly in Sections 3.1 and 3.2, each firm chooses its action not
knowing the other firms’ actions. How do the conclusions change when the firms
move sequentially? Is a firm better off moving before or after the other firms?

In this section I consider a market in which there are two firms, both producing
the same good. Firm i’s cost of producing 4; units of the good is C;{g,); the price at
which output is sold when the total output is Q is I%((2). (In Section 3.1 T denote
this function P; here [ add a d subscript to avoid a conflict with the player function
of the cxteus',e game.) Each firm’s strategic variable is output, as in Cournot's
model (Sectifin 3.1), but the firms make their decisions sequentially, rather than
simultaneously: one firm chooses its output, then the other firm does so, knowing
the output chosen by the first firm,

We can model this situation by the following extensive game, known as Stack-

elberg’s duopoly game (after an early analyst of duopoly with asynchronous
actions).

Players The two firms.

Terminal histories The set of all sequences (g1,92) of outputs for the firms
(where each g;, the output of firm i, is a nonnegative number),
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Player function P(z)=1and P(gy) = 2 forall g3
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ut ¢y of
We conclude that if firm 2 has a unique best r'espurfsu b%(qllgqi(:‘;achnc;:im:?lhe
firm 1, and firm 1 has a unique best action qj, gl\‘ren h.rt;"l 2! S],' .m u;]‘?ﬁﬁum e
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6.2.2 Example: constant unit cost and linear inverse demand

Suppose that Cilqi) = cqi fori=1,2,and

a-Q HfQs« (188.2)
P"(Q):{o ifQ > a

ie of Cournot’s duopoly game 1n
e ot s firm 2 has a unique best ré-

Sec-
hrec>0andc<a(as'm .

‘t’:or(: 3.1.3). We found that under these assumption:

sponse to each output g, of firm 1, given by

la—c—q) fq<a—c¢
ba(m) = {(2) ifgqr >a—c
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Thus in a subgame perfect equilibrium of Stackelberg’s game firm 2's strategy is
this function b; and firm 1’s strategy is the output g1 that maximizes

pla—c—(m+ie—c—q)) =laa—c—q)

(refer to (188.1)). This function is a quadratic in g; that is zero when g1 = 0 and
when 41 = & — c. Thus its maximizer is g1 = (a — ¢).

We conclude that the game has a unique subgame perfect equilibrium, in which
firm 1's strategy is the output 1(x — ¢) and firm 2’s strategy is by. The outcome
of the equilibrium is that firm 1 produces the output 4] = }(« —¢) and firm 2
produces the output g5 = by (q]) = lu['!(rr -¢)) = é(a — - '!(« -¢)) =
(& — ). Firm s profit is 4; (Py(q} +93) — ¢) = ke —¢)?, and firm 2's profit
is g3 (Pa(a} +43) — ¢) = (& — )2 By contrast, in the unique Nash equilibrium
of Cournot’s (simultaneous-move) game under the same assumptions, each firm
produces }(a — ¢) units of output and obtains the profit $(a — ¢} Thus under
our assumptions firm 1 produces more output and obtains more profit in the sub-
game perfect equilibrium of the sequential game in which it moves first than it
does in the Nash equilibrium of Cournot’s game, and firm 2 produces less output
and obtains less profit.

EXERCISE 189.1 (Stackelberg’s duopoly game with quadratic costs) Find the sub-
game perfect equilibrium of Stackelberg’s duopoly game when C;(4;) = 4% for
i=1,2,and P4(Q) = a — Q forall Q < & (with P;(Q) = 0 for Q > ). Compare
the equilibrium outct‘e with the Nash equilibrium of Cournot’s game under the
same assumptions (Exelcise 59.1).

6.2.3  Properties of subgame perfect equilibrium

First-movers equilibrium profit  In the example just studied, the first-mover is bet-
ter off in the subgame perfect equilibrium of Stackelberg’s game than it is in the
Nash equilibrium of Cournot’s game. A weak version of this result holds under
very general conditions: for any cost and inverse demand functions for which
firm 2 has a unique best response to each output of firm 1, firm 1 is at least as
well off in any subgame perfect equilibrium of Stackelberg’s game as it is in any
Nash equilibrium of Cournot’s game. This result follows from the general result
in Exercise 177.3a. The argument is simple. One of firm 1’s options in Stackel-
berg’s game is to choose its output in some Nash equilibrium of Cournot’s game.
If it chooses such an output, then firm 2's best action is to choose its output in the
same Nash equilibrium, given the assumption that it has a unique best response
to each output of firm 1. Thus by choosing such an output, firm 1 obtains its profit
at a Nash equilibrium of Cournot’s game; by choosing a different output it may
possibly obtain a higher payoff.

Equilibrium outputs  In the example in the previous section (6.2.2), firm 1 produces
more output in the subgame perfect equilibrium of Stackelberg’s game than it does
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IT{:ee Exercise 59.2). When firm 1’s output is 43, firm

6.2 Stackelberg’s model of duopoly 191

8 Gray curves:
1 \ )
\ .. constant-profit curves
/ e % NN of firm 1
Vi / \
/ A
/ ' \ A
4 v S
P T
0 q1 Lh ' g

Figure 191.1 The subgame perfect equilibrium output 4} of firm 1 in Stackelberg’s sequential game

when firm 2 incurs a fixed cost. Along each gray curve, firm 1’s profit is constant; the lower curve
corresponds to higher profit than does the upper curve.

maximal profit is zero, which it obtains both when it produces no output (and does
not pay the fixed cost) and when it produces the output 4,. When firm 1 produces
less than 43, firm 2's maximal profit is positive, and firm 2 optimally produces a
positive output; when firm 1 produces more than g3, firm 2 optimally produces no
output. Given this form of firm 2’s best response function and the form of firm 1's
constant-profit curves in Figure 190.1, the point on firm 2’s best response function
that yields firm 1 the highest profit is (4, 0).

I claim that this example has a unique subgame perfect equilibrium, in which
firm 1 produces 47 and firm 2's strategy coincides with its best response function
except at 47, where the strategy specifies the output 0. The output firm 2’s equilib-
rium strategy specifies after each history must be a best response to firm 1’s output,
so the only question regarding firm 2’s strategy is whether it specifies an output
of 0 or 4, when firm 1’s output is 4. The argument that there is no subgame per-
fect equilibrium in which firm 2’s strategy specifies the output 4, is similar to the
argument that there is no subgame perfect equilibrium in the ultimatum game in
which person 2 rejects the offer 0. If firm 2 produces the output 4, in response to
firm 1's output 47, then firm 1 has no optimal output: it would like to produce a
little more than 47, inducing firm 2 to produce zero, but is better off the closer its
output is to g7. Because there is no smallest output greater than 43, no output is
optimal for firm 1 in this case. Thus the game has no subgame perfect equilibrium
in which firm 2’s strategy specifies the output §, in response to firm 1s output 4;.

Note that if firm 2 were entirely absent from the market, firm 1 would pro-

duce 41, less than 47. Thus firm 2’s presence affects the outcome, even though it
produces no output.

@ EXERCISE 191.1 (Stackelberg’s duopoly game with fixed costs) Suppose that the

inverse demand function is given by (188.2) and the cost function of each firm 7 is
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given by . =0

Ci(qi) . {f+fq:' if i > 0,
i ise 59.2. Show thatifc = 0, & =
> 0, and ¢ < &, as In Exercise e
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price that is an integral number 0.[ cents
cost is constant and equal to ¢ (an integra
profit is positive.

i i fe
ify an extensive game with per .
g y of firm 1 and an example of a strategy of firm 2.

ct information that models this situation.

b. Give an example of a strateg

¢. Find the subgame perfect equilibria of the game.
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puoss 3
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at zero, and group Y values the passing of bill Y at $V4 > 0 and the passing of
bill X at zero. (For example, group X is indifferent between an outcome in which
it spends Vi and bill X is passed and one in which it spen\i nothing and bill Y is
passed.) Bach legislator votes for the favored bill of the interest group that offers
her the most money; a legislator to whom botl groups offer the same amount of
money votes for bill Y (an arbitrary assumption that simplifies the analysis without
qualitatively changing the outcome). For example, if k = 3, the amounts offered to
the legislators by group X are x = (100,50,0), and the amounts offered by group Y
are y = (100,0,50), then legislators 1 and 3 vote for ¥ and legislator 2 votes for X,
so that Y passes. (In some actual legislatures the inducements offered to legislators
are more subtle than cash transfers.)
We can model this situation as the following extensive game.

Players The two interest groups, X and Y.

Terminal histories  The set of all sequences (x, ), where x is a list of payments to
legislators made by interest group X and y is a list of payments to legislators

made by interest group Y. (That is, both x and y are lists of k nonnegative
integers.)

Player function P(@) = X and P(x) = Y for all x.

Preferences The preferences of interest group X are represented by the payoff
function

Vx — (x1++-+x) ifbill X passes
—(xr1 4t xy) if bill Y passes,

where bill Y passes after the terminal history (x,y) if and only if the number
of components of y that are at least equal to the corresponding components
of x is at least }(k + 1) (a bare majority of the k legislators). The prefer-
ences of interest group Y are represented by the analogous function (where
Vy replaces Vy, y replaces x, and Y replaces X).

Before studying the subgame perfect equilibria of this game for arbitrary values
of the parameters, consider two examples. First suppose that k = 3 and Vy =
Vy = 300. Under these assumptions, the most group X is willing to pay to get
bill X passed is 300. For any payments it makes lo the three legislators that sum to
atmost 300, two of the payments sum to at most 200, so that if group Y matches
these payments it spends less than Vy (= 300) and gets bill Y passed. Thus in
any subgame perfect equilibrium group X makes no payments, group Y makes no
payments, and (given the tie-breaking rule) bill Y is passed.

‘Now suppose that k' = 3, Vx = 300, and Vy = 100, In this case by paying
each legislator more than 50, group X makes matching payments by group ¥ un-
profitable: only by spending more than Vy (= 100) can group Y cause bill Y to
be passed. However, there is no subgame perfect equilibrium in which group X
pays each legislator more than 50 because it can always pay a little less (as long

e
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as the payments still exceed 50) and still prevent group Y from profitably match-
ing. In the only subgame perfect equilibrium group X pays each legislator ex-
actly 50 and group Y makes no payments. Given group X's action, group Y is
indifferent between matching X's payments (so that Bill Y is passed) and mak-
ing no payments. However, there is no subgame perfect equilibrium in which
group ¥ matches group X's payments pecause if this were group ¥!'s response,
then group X could increase its payments a little, making matching payments by
group ¥ unprofitable.

For arbitrary values of the parameters, he subgame perfect cquilibrium out
come takes one of the forms in these two examples: either 1o payments ar¢ made
and bill Y is passed, or group X makes payments that group Y does not wish to
match, group Y makes no payments, and bill X is passed.

To find the subgame perfect equilibria in general, we may use backward indue-
tion. First consider group Y's hest regponse toan arbitrary strategy x of group X.
Letj = §(k+1),abare majority of k legislators, and denote by iy the sum of the
smallest j components of y—the total payments Y needs to make to buy off a bare

majority of legislators.

o 1f my < Vy, then group ¥ can buy off a bare majority of legislators for less
than Vi, so that its best respanse {0 x is to match group X's payments ko the
# legislators to whom group X's payments are smallest; the outcome is that
bill Y is passed.

o Tfmy > Vy, then the cost to group Y of buying off any majority of legislators
exceeds Vy, so that group Y’s best response to X is to make no payments; the
outcome is that bill X is passed.

o Ifmy = Vy, thenboth the actions in the previous two cases are best responses

by group Y to x.

We conclude that group Y’s strategy in a subgame perfect equilibrium has the

following properties-

o After a history x for which fix < Vy, group Y matches group
to the y legislators to whom X’s payments are smallest.

X's payments

« After a history x for which mx > Vy, group Y makes no payments.

o After a history x for which mx = Vy, group Y either makes no payments oF
matches group X's payments to the y legislators to whom X’s payments are

smallest,
gse proper

Given that group Y's subgame perfect equilibrium strategy has th
hos < Ve

ties, what should group ¥ do? 1f itchooses a list of payments x for whic
then group Y matches its. payments toa bare majority of legislators, and bill ¥
passes. 1f it reduces all its payments, the same bill is passed. Thus the only fist "'_
payments x with ity < Vy that may be optimal is (0, .. _,0). If it chooses & Jist of

payments x with my > Wy, then group Y makes no payments, and bill X passe™
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If it reduces all its payments a little i
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e Vo e t](: d y,rou ; (;t er hand, group X can afford to make payments large
i Vg/ ;:) A rom matching. In this case its best strategy is to f
B et h;/s :t,r c: at its total Ra)f'ment to every bare majority of legislatr; .
et b ategy, group 'Y is indifferent between matching grou Xr’s
A r];ua]onty of legislators and making no payments. I clairr{’ th /
e subgame perfect equilibrium in which group Y .
ilar to the argument th i e e
e et M o g at the ultimatum game has no subga
il mum }zv ICh. person 2 rejects the offer 0. Suppose that gro%l m;
oo tog ) le}; ; hcan increase its payoff by increasing its payments a lir:tl
Cncnint e s than V), th.ereby deterring group Y from matchin an:ie
e menis passes. Thus in any subgame perfect equilibrium gr%lu Y
e Condu)sfi ° 1‘1/1 response to group X's strategy. F
cquinn ino‘r,lvlhli ' X # kV),//y, then the game has a unique subgam
7 group Y's strategy is to ame perfect

¢ match group X’s payments to i
the u legislat i
smallest after a history x for which }:nx E V?/ (;rrsu;o e PR

* make no payments after a history x for which m, > Vy

and group X's strategy depends on the relative sizes of Vx and Vy:
¢ if Vx < kVy/p, then group X makes no payments;
* if Vx > kVy/y, then group X pays each legislator Vy /p.

vy < kVy /i, then the outcome is i

o : is that neither group ma
islatz:rl?/ 5:{;5._&,1{' VJ;: = kkty/ i, then the outcomg is tflat gi(sz; r)lgl:r::}z,sn;e;;/l T: %
e ami o :Jn )ma 2s no payments, and bill X is passed. (If Vx = kVy/ .
Three featyu‘res of t.‘}lu:estigg‘ar:xl::.) fect o

erfect equilibri ignifi i

::glssiat\:?;/the seconc‘l—mover in Ec’he gamtcel (;lrlcl:ll.rg)l r;l)?fnsl;gﬁlgcar:.kﬁ;mt’ e o'ut_
y when k is large, does group X manage to get bill)é( Yc{ Ty
i passed. Second,
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ments! According to its equilibrium strategy it is
prepared to make payments in response to certain strategies of group X, but given
group X's equilibrium strategy, it spends not a cent. Third, if group X makes any
payments (as it does in the equilibrium for Vy > kVy/ ), then it makes a payment
to every legistator. If there were no competing interest group but nonetheless each

legislator would vote for bill X only if she were paid at least some amount, then

group X would make payments to only a bare majority of legislators; if it were to

act in this way in the presence of group Y, it would supply group Y with almost a

majority of legislators who-could be induced to vote for bill Y atno cost.

st groups buying votes) Consider a variant of the
model in which there are three bills, X, Y, and Z, and fhree interest groups, X, Y,
and Z, who choose lists of payments sequentially. Ties are broken in favor of the
group moving later. Assume that if each bill obtains the vote of one legislator, then
bill X passes. Find the bill passed in any subgame perfect equilibrium whenk =3
and (g) Vx = Vy = Vz = 300, () Vx = 300, Vy = Vz = 100, and (c) Vi = 300,
Vy =202, Vz = 100. (You may assuime that in each case a subgame perfect equi-
asked to find the subgame perfect equilibria

group ¥ never makes any pay

@ EXERCISE 196.1 (Three intere:

librium exists; note that you are not
themselves.)

@ EXERCISE 196.2 (Interest groups buying votes under supermajority rule) Consider
another variant of the model in which a supermajority is required to pass a bill.
There are two bills, X and ¥, and a #default outcome”. A bill passes if and only if
it receives at least k* > 3(k+1) votes; if neither bill passes, the default outcome
occuts. There are two interest groups. Both groups attach value 0 to the default
outcome. Find the bill that is passed in any subgame perfect equilibrium when
k=74 =5and @) Vx =Wy = 700 and (b) Vy = 750, Vy = 400. In each case,
would the legislators be better off or worse off if a simple majority of votes were
required to pass a bill?

@ EXERCISE 196.3 (Sequential positioning by two political candidates) Consider the
variant of Hotelling’s model of electoral competition in Section 3.3 in which the 1

candidates choose their positions sequentially, rather than simultaneously. Model
this situation as an extensive game. Find the subgame perfect equilibrium (equi-
libria?) whenn = 2.

@ EXERCISE 1964 (Sequential positioning by three political candidates) Consider a
furlher variant of Hotelling’s model of electoral competition in which the it can-
didates choose their positions sequentially and each candidate has the option of
staying out of the race. Assume that each candidate prefers to stay out than o
enter and lose, prefers to enter and tie with any number of candidates than to stay
out, and prefers to tie with as few other candidates as possible. Model the situ-
ation as an extensive game and find the subgame perfect equilibrium outcomes

— 3 and the voters’ favorite positions are dis-

when n = 2 (easy) and when n =
tributed uniformly from 0 to 1 (i.e. the fraction of the voters’ favorite positions less

than x is x) (hard).
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6.4 Arace
6.4.1 General model

Fi :
c;r;\i f:en:':ztfu ‘:{r :lh each other to develop new technologies; authors compete with
pompdiis : books and film scripts about momentous current evmpt:' scit:n-
b ith each pthur to make discoveries, In each case the wiuner’e j
}m’i o ufa:[' vantage over the losers, and each competitor can, at a cost, inc:léoys
s pam. et ;\:Ity ’H;w tfu the presence of competitors and size of the pl:iZJc aff::

e activ ty How does the identity of the winner of the race d
e cwcompehmr s initial distance from the finish line? ' e dependon
e can model a race as an extensive ith 1
game with i ion i i
the players alternately choose how many “steps” torlzrlf:dlflnfor?anon A ‘f"hld‘
example of such a game, with two players. | Herefstudy a simple
m"l:sla;,er] i1s initially k; > 0 steps from the finish line, for i = 1, 2. On each of h
" p I 4 =1,z C

; m,,; 0fp( (?;e:) ;:.1:” either not take any steps (at a cost of 0), or can take one sl:-p :i
v ,wo”hn steps, at a cost of ¢(2). The first player to reach the finish Iinc

bbbt i e v,l h:; Drtu player i; the losing player’s payoff is 0. To make the

L Lassume that if, on successive turns, nei ;

garrltedmds and neither player obtains the prize R

enote the game in which player i s fi

G1(k1, ko) is defined precisely as fcfl’lm}/,vs. Se S S S

Players The two parties.

Tetmi .
er;urg.' I;fzsmnes T']'I}e set of sequences of the form (hyh a2, xT) or (2
[aﬂ;mfb '1;: i .)] or some integer T, where each ¥' (the number of ste sl
o Lpz ye;w on her fth tumn) and each ' (the number of steps takfn
ok ty 055'1(:? v fth turn) is 0, 1, or 2, there are never two successive 0's
xcept possibly at the end of a sequence, and either x! 4 .- i
y' 4+ +yT <k (player 1 ini S D s
iy k2 (player reaches the finish line first), or x1 + .- + 2T < &
Yy +---+y° =k (player 2 reaches the finish line first). '

Player function P(@) = 1, P(x!
=1, P(x!) = 2 for all x!, P(x1,41) =
P(x',y!,x2) =2 for all (x',y1, x2), and so on S0 = )

Preferency i : . ;

e o?lh:::.:‘:z II1 r:n:uh:ts:o;y :?IWhICh player i loses, her payoff is the neg-
PLRIRES > costs of all her moves; for i ; : -

she wins it is v; minus the sum of the Ist for a terminal history in which

6.4.2  Subgame perfect equilibria of an example

Asi .

gaf::psli example illustrates the features of the subgame perfect equilibria of thi

affect.the Epl:)islgbﬂ*.lat both v1 and v, are between 6 and 7 (their exact values do n;i
quilibria), the cost ¢(1) of a single step is 1, and the cost ¢(2) of two steps

I
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is 4. (Given that c(2) > 2¢(1), each player, in the absence of a competitor, would

like to take one step at a time.)

The game has a finite horizon, so we may use backward induction to find its
subgame perfect equilibria. Each of its subgames is either a game Gi(my,ma) with
i=lori=2and0 < m <k and 0 < ma < ky, or, if the last player to move
before the subgame took no steps, a game that differs from G;{m, ntz) enly in that
it ends if player i initially takes no steps (i.e. the only terminal history starting with
0 consists only of 0).

First consider the very simplest game,
one step from the finish line. 1f player 1 takes
move, then player 2 optimally takes one step (if she does n
wins. We conclude that the game has a unique subgame
which player 1 initially takes one step and wins.

A similar argument applies to the game Gy(1,2). If player 1 does nol move,
then player 2 has the option of taking one or two steps. 1f she takes one step, then
al G1(1,1), in which we have just concluded that

play moves toa subgame identic
player 1 wins. Thus player 2 takes two steps, and wins, if player 1 does not move

at the start of Gy(1,2). We conclude that the game has-a unique subgame perfect
equilibrium, in which player 1 initially takes one step and wins.
Now consider player 1's options in the game Gy(2,1).

Gi(1,1), in which each player is initially
one step, she wins; if she does not
ol, the game ends) and
perfect equilibrium, in

o Player 1 takes two steps: she wins, and obtains a payoff of at least 6 — 4=2

(her valuation is more than 6, and the cost of two steps is 4).

moves to a subgame identical to Gy(1,1); we

o Player 1 takes one step: play
 this subgame player 2 initially takes one step

know that in the equilibrium o
and wins.

play moves to a subgame in which player 2 is the

p from the finish line, and, if player 2 does not
player 2 takes one

o Player 1 does not move:
first-mover and is one ste|
move, the game ends. In an equilibrium of this subgame,
step and wins.

We conclude that the game G1(2,1) has a unique subgame perfect equilibrium, in

which player 1 initially takes two steps and wins. _

[ have spelled out the details of the analysis of these cases to show haw we

use the result for the game Gy (1, 1) to find the equilibria of the games Gy(1,2) and

Gi(2,1). Ingeneral, the equilibria of the games Gilky, ko) for all values of ky and k2

up to k tell us the consequences of player 1's taking one or two steps in the game
Gi{E+1.Kk).

@ ExeRrCISE 198.1 (The race G1(2,2)) Show that the game G1(2,2) has a unique sub-

game perfect equilibrium outcome, in which player 1 initially takes two steps, and

wins.
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mOSSto hf:(: :\tr:p};afxr/z I;(Ech;;?dht?at in any game in which each player is initially at
e finish 1i irst-
oo ine, the first-mover takes enough steps to reach the
" Nn\v: ::;, T;u‘:e th;t player 1his atmost two steps from the finish line, but player 2
three steps away, Suppose that player 1 takes only one st ifshi s init
two steps from the finish line). Then if iy ———.
) e). Th player 2 takes either one or two ste I
::::Q c;s t‘:; a sul:gal:nc in whicl player 1 (the first-mover) wins. Thus plase:rpzai)s'
off not moving (and not incurring any cost), in which case player 1 takes
?}?:::anﬂn hnir next turn, and wins. (Player 1 prefers to move ane slep ata ;irne
move two steps initially because the former costs h :
costs her 4.) We conclude that the outcome e
of a subgame perfect equilibrium i
game G1(2,3) is that player 1 takes one ste e e blager 2 dons
on her first t
not I;nove‘, al:ld then player 1 takes another sItDep, and V\:uis = T B
play:; nl si:::;l::;:%uwmei:t, Inra subgame perfect equilibrium of any game in which
o steps from the finish line and player 2 i
" ‘ yer 21is three or more
;\v:if;‘pl:ayml-li moves one stepat a time, and player 2 does not move; player 1 :: ier?:
n?: ctrically, in a subgame perfect equilibrium of any game in which player 1
[me or mare steps from the finish line and player 2 is at most two s 4 s}rirw .
pl a;gr 1 does m‘)t move, and player 2 moves one step at a time, and wir:P v
s l;: cogclumunﬁ so far are illustrated in Figure 200.1, where player | lmf.wes to
il :c ; :gu“]:;a?vcr 2 rn::ves nd;;ﬂ:_\.'l1§.j The values of (ky,k2) for which the subg&me
rium outcome has been determined so far are labeled
pre s b . The la
:1 1;1:::115 Lhaf, regardless of who moves first, in a subgame perfect equilitl.:ril?;I
gﬁ;. ;rlyn':::ﬁ.: ;n-lle":;t?p on each turn, and player 2 does not move; plafer 1 wins
: , abel “2" means that, regardless of who moves fi '
one step on each turn, and player 1 does not m gl
‘ E s player 2 wins. The label “f*
means that the first player 2 gl x—
e 2 player to move takes enough steps to reach the finish line, and
Gz(!:(;v ;onsidgr the game G (3,3). If player 1 takes one step, we reach the game
gam; P]. mn; Figure 200.1 we see that in the subgame perfect equilibrium of this
ayer 1 wins, and does so by taking one st i e poi
labeled “1%). If player 1 takes two % e ppleme sl addb
plé & sleps, we reach the game G(1,3), i i
player 1 also wins. Player 1 prefers not P
| to take two steps unl h
in the subgame perfect equilibri P ol
( equilibrium of G(3,3) she takes one step at a ti
; N ¥ at a L
g?;, ;}nd Iplaye; 2 ::_q not move, Similarly, in a subgame pﬁrfeg ;qui]lTi:'rr:n;
3], player 2 takes one step at a time, and wins, and .
). P : ) ; and player 1 does not ;
e ? s:rr]ul;r ﬂgmmt applies to each of the games G;(3, 4)?6,(4 3), and ?(E:eni)
=12 argument differs only if the first-mover is fou; 4 g
N T s [
fu?ish line, m.\\f]?ich case she initially takes two steps to reach a gamet?ﬁﬁw;?“t: ;}'ﬂ?
wins. (If she u:utmlly takes only one step, the other player wins.) e
% N{::\' cnn:lder the game (E.-{S,S} for i =1, 2. By taking one step in G,(3,5)
E )::k‘ reaches a game in which she wins by taking one step ata time. The c:)a;t o;
er taking three steps is less than vy, so in a subgame perfect equllibriu:;'l of G(3,5)




Chapter 6. Extensive Games with Perfect Information: lllustrations

igure 3 ubga: erfect outcomes of the race G;(k1,k»). Player 1 moves to

Fi 200.1 The subgame perfec equilibrium Y

the left, and player 2 moves down. The values of (ky,k2) for which the subgame perfect equi ibrium
/ i

outcome has been determined so far are abeled; dots represent cases that have not yet been studied.

The labels are explained in the text.

she takes one step at a time, and wins, and player2 does nf:t mwe.;f ‘:::]i:});e(r. Z(t:;al;?)
either one or two steps in Gz(3,5), she mahritzs a gnr]:l.e l([::e;‘(’]: }(m,t i S;Lga,me
i oes, she loses, :
in which player 1 wins. Thus whatever s : s Sk
ilibrium she does not move and player 1 mov
E\'erf:‘;:wcﬁ:e that in a subgame perfect equilibrium of both G (3,5) and Gz‘(ﬂ, 5),
p]:yer 1 takes one step on each turn and player 2 does nol mluve: Pla)’l'.;l;l ;i;llnsh.ree
imi i i » in which one player is initia
A similar argument applies to any game in which iy
inish li layer is five or more steps from the
teps from the finish line and the olherg.: e more stej
;Lf:ltl:;:PWe have now made arguments to justify the labeling in Flf;:;re 20: r:s
where the labels have the same meaning as in Figure 200.1, excepl :hm m“;;‘ach
that the first player to move takes enough stull:s to rcaclh the finish line or to r
i i is closer,
Josest point labeled with her name, whu:_ ever is ¢ R
e ;ﬁfuf:df the subgame perfect equilibrium of the gambe Gy “{14,4} T“;:L::;
s 5 layer 1 takes two steps, but then play
thy. Suppose that, as planned, play ‘ e o R o
ilibori ate, kes two steps (rather
jates from her equilibrium strategy and ta . :
rn:v,]. According ‘l?c:lour analysis, player 1 should take two steps, to m;l:h rﬂ; f::;i‘:
line. If she does so, her payoff is negative [les&:- than7 —d4—4 = — 1‘ Ravorne
less she should definitely take the two steps: if she does not, her p‘l)’ ke
smaller (—4), because player 2 wins. The point is that the cost of her firs s
is "sunk”; her decision after player 2 deviates must be based on her options fro
tmsfl;.?::::;‘l-;is of the games in which each player is initially either five or six st:sss
from the finish line involves arguments similar to those used in the pri'w'm:;;e isl
with one amendment. A player who is initially six steps from the finis

6.4 Arace 201
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Figure 2011 The subgame perfect equilibrium outcomes of the race Gi(k1,k2). Player 1 moves to
the feft, and player 2 moves down. The values of (k1,k2) for which the subgame perfect equilibrium
outcome has been determined so far are labeled; dots represent cases that have not yet been studied.
The labels are explained in the toxt,

better off not moving at all (and obtaining the payolf 0) than she is moving two
steps on any turn (and obtaining a negative payoff), An implication is that in the
game Gy(6,5), for example, player 1 does not move: if she takes only one step, then
player 2 becomes the first-mover and, by taking a single step, moves the play to a
game that she wins. We conclude that the first-mover wins in the games Gi(5,5)
and Gj(6,6), whereas player 2 wins in G,(6,5) and player 1 wins in G;(5,6), for
i=1,2

A player who is initially more than six steps from the finish line obtains a neg-
ative payoff if she moves, even if she wins, so in any subgame perfect equilibrium
she does not move. Thus our analysis of the game is complete. The subgame
perfect equilibrium outcomes are indicated in Figure 202.1, which shows also the
steps taken in the equilibrium of each game when player 1is the first-mover.

4 EXERCISE 201.1 (A race in which the players’ valuations of the prize differ) Find
the subgame perfect equilibrium outcome of the game in which player 1’s val-

uation of the prize is between 6 and 7, and player 2’s valuation is between 4
and 5.

In both of the following exercises, inductive arguments on the length of the
game, like the one for G;(ky, k»), can be used.

2 EXERCISE 201.2 (Removing stones) Two people take turns removing stones from a
pile of # stones. Each person may, on each of her turns, remove either one or two
stones. The person who takes the last stone is the winner; she gets $1 from her op-
ponent. Find the subgame perfect equilibria of the games that model this situation
forst = 1and n = 2. Find the winner in each subgame perfect equilibrium for

7
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! is
— 3, using the fact that the subgame following player 1's removal ;f o::lt: s&:;t:w-
:Ilr;g;me fgr 1 = 2 in which player 2 is the first-mover, i:nd mﬁ,z; !:;;1‘ s e
i i i for n=1linw
i 1's removal of two stones is the game for . s
}Ijgt[-,:oy::!r SU:;e the same technique to find Ihel winner in ea;:h subgame pel
e:lqr?iﬁibrium for it = 4, and, if you can, for an arbl.lrary value of n.

i f a hierarchical group of hungry
2 EXERCISE 2021 (Hungry lions) The members of a o

i f prey. If lion 1 does not eat the prey, the ¢ ;
]mnsc[:;'ed: 113; :fz:ls lt.l\:);rey it becomes fat and slow, and lion 2 bc:m (:atn 1:; ;fl::::::
o : . +if it eats lion 1, then it may be cate 3
teat lion 1, the game ends; if i o
do:i'sszlnca[iach lion prefers to eat than to be hquw, but prefers?to t;eﬂl:;u;ig e
;m be eate‘n Find the subgame perfect equilibrium (equilibria?) o
g‘;mc that models this situation for any number i of lions,

6.4.3 General lessons . ,
egy involves a “threat” to speed up if l]jc c?hq.r
the game G1(3,3). Player 1's equilibrium
i layer 2s equilibrium strategy
) her to take one step ata time, and p R
5";;:;?: ;?el:ilruc:tc:emova Thus in the equilibrium outcome, ;;layelr ;l sEdLbl climl
fa 3 (the cost of her three single steps) before she reaches the 1;1; i 11:195 i
o Now suppose that after player 1 takes her first step, player 2 dev i
m?[hei layer 1s strategy calls for her to take two steps, rmi:ing '.Z i
;s;?:t no sm:e can her debt exceed 3 (its maximal level if both players

Each player’s equilibrium stral
player deviates. Consider, for example,

3 wreats.
their equilibrium strategies), then her strategy cannot embody such U

Notes o

The general point is that a limit on the debta player can accumulate may affect
the outcome even if it exceeds the player’s debt in the equilibrium outcome in the
absence of any limits. You are asked to study an example in the next exercise.

@ EXERCISE 203.1 (A race with a liquidity constraint) Find the subgame perfect equi-

librium of the variant of the game G, (3,3) in which player 1's debt may never
exceed 3.

In the subgame perfect equilibrium of every game Gi(ky, k3), only one player
moves; her opponent “gives up”, This property of equilibrium holds in more gen-
eral games, What added ingredient might lead to an equilibrium in which both
players are active? A player’s uncertainty about the other’s characteristics would
seem Lo be such an ingredient: if a player does not know the cost of its opponent’s
moves, it may assign a positive probability less than ane to its winning, at least
until it has accumulated some evidence of its opponent’s behavior, and while it is
optimistic it may be active even though its rival is also active: To build such con-
siderations into the model we need to generalize the model of an extensive game
to encompass imperfect information, as we do in Chapter 10,

Another robust feature of the subgame perfect equilibrium of G;(ky, ks ) is that
the presence of a competitor has little effect on the speed of the player who moves.
Alone player would move one stepata time. When there are two players, for most
starting points the one that moves does so at the same leisurely pace. Only for a
small number of starting points, in all of which the players” initial distances from
the starting line are similar, does the presence of a competitor induce the active
player to hasten its progress, and then only in the first period.

Notes

The first experiment on the ultimatum game is reported in Giith, Schmittherger,
and Schwarze (1982). Grout (1984) is an carly analysis of a holdup game. The
madel of agenda control in legislatures is based on Denzau and Mackay (1983);
Romer and Rosenthal (1978) earlier explored a similar idea. The model in Sec-
tion 6.2 derives its name from the analysis in von Stackelberg (1934, Chapter 4).
The vote-buying game in Section 6.3 is taken from Groseclose and Snyder (1996).
The model of a race in Section 6.4 is a simplification suggested by Vijay Krishna of
amodel of Harris and Vickers (1985).

For more discussion of the experimental evidence on the ultimatum game (dis-
cussed in the box on page 183), see Roth (1995). Bolton and Ockenfels (2000) study
the. implications of assuming that players are equity conscious, and relate these
implications to the experimental outcomes in various games, The explanation of
the experimental results in terms of rules of thumb is discussed by Aumann (1997,
7-8). The problem of fair division, an example of which is given in Exercise 185.2,
is studied in detail by Brams and Taylor (1996), who trace the idea of divide-and.
choose back to antiquity (p. 10). I have been unable to find the origin of the idea in
Exercise 202.1; Barton Lipman suggested the formulation in the exercise.

e
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7.1 Allowing for simultaneous moves
7.1.1  Definition

T ‘HE model of an extensive game with perfect information (Definition 155.1) as-

sumes that after every sequence of events, a single decision-maker takes an
action, knowing every decision-maker’s previous actions, | now describe a more
general model thatallows us to study situations in which, after some sequences of
events, the members of a group of decision-makers choose their actions “simulta-
neously”, each member knowing every decision-maker‘s previous actions, but not
the contemporaneous actions of the other members of the group.

In the more general model, a terminal history is a sequence of lists of actions,
cach list specifying the actions of a set of players. (A game in which each set con-
tains a single player is an extensive game with perfect information as defined pre-
viously,) For example, consider a situation in which player 1 chooses either C or
D, then players 2 and 3 simultancously take actions, each choosing either E or F,
In the extensive game that models this situation, (C. (E, E)) is a tetminal history in
‘which first player 1 chooses C, and then players 2 and 3 both choose E. In the gen-
eral model, the player function assigns a sef of players to each nonterminal history.
In the example just described, this set consists of the single player 1 for the empty
history, and consists of players 2 and 3 for the history C.

An extensive game with perfect information (Definition 155.1) does not specify
explicitly the sets of actions available to the players. However, we may derive
the set of actions of the player who moves after any nonterminal history from
the set of terminal histories and the player function (see (156.1)). When we allow
simultancous moves, the players’ sets of actions are conveniently specified in the

205 4
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definition of a game, In the example of the prowouf If:;ta%m?!&, E:); Jl;:‘s!tfor:vcid e
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ci : by giving the eight possible termina ‘ ¢
SPt'tlff}' :“ E:::e 1)‘: (E E}, (E,F), (F,E), and (F, F)), the player ﬁ.mchnr; d'efnl:e::i
OMP‘! :2:] C‘_ 1 ar::la P(C) il P(D) = {2,3}, the sets of actions {C, o} f::; E:E:rzes.c
:’lfe <§art of the game and (E, F} for both player 2 n:\: play.er 3 after the his

' ermi istories. ,

h player’s preferences over terminial i 3 )
andlD, e eiic I:hzysel orf) terminal histories, player function, and sets‘o{,;?lizns
fo 1rl: aﬂ);f-" ers ;nust be consistent: the list of actions that follows a b;j bs | :-Z-
oirane t?:;;:ina] history must be a list of actions of the plnyer:m assulf.n - u‘); -

la e-{ function to that subhistory. In the game |us.t desm'i. .becl, [(2: i)glﬁ_ﬁ L; Py
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Precisely, an extensive game wi
is defined as follows.

th perfect information and simultaneous moves

i i i imultane-
» DEFINITION 206.1 An extensive game with perfect information and sim
ous moves consists of

¢ aset of players .
. : set of‘s)eq};ences (terminal l}\listories) r‘:zieth the property that no sequence 15
er subhistory of any other seque

J z ZZStion (the pla)}:er function) that assigns a fet of players to every sequence
that is a proper subhistory of some terminal history N

o for each proper subhistory h of each .termi.nal history anld e:rc}flulrj\ Cagt:n e
is a member of the set of players assigned fo h by hth; .ptzzr b ¥
A;(R) (the set of actions available to player i after the history

terminal histories
o for each player, preferences over the set of te

i i con-
such that the set of terminal histories, player function, and sets of actions are

: T . the
sistent in the sense that Ji is a terminal history if :m.d oriﬂy |ft th}fl'ere g)atl ;a:re“sj he
o 1 integer k, the player function is not defin ,an
b {: = [! a J[.'Df slnml]\cel:le;ent a1 is a list of actions of the playersl 'assltgrlzzi
E"Q:I{ T\ ;;"l't;nctiur'm to (a',...,a") (the empty history if €e+=l .0), (lJl‘ (u)f Ctaions

4 fe p'{z‘ a?,...) and for every £ = 0,1,.., the elementga is a list c;liat :
g}ih?;:aye;s a':;i;gned by the player function to (al,...,a%) (the empty history
£=0).

i 5 wi i ation as

This definition encompasses both extensive games with tsnesrif‘:‘i 1::‘1::1[1 et

in Definition 155.1 and, in a sense, Stri‘llt?Slc gnmes.. Anex i ang s

fect information is an extensive game with perfect m?t.:-m:lamnsms A o

moves in which the set of players assigned to ee!n:h histor ¥ s M

ember. (The definition of an extensive game with perfect in o A i
E:neous moves includes the players’ actions, whereas the definition of an
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game with perfect information does not. However, actions may be derived from
the terminal histories and player function of the latter.)

For any strategic game there is an extensive game with perfect information
and simultaneous moves in which every terminal history has length 1 that models
the same situation. In this extensive game, the set of terminal histories is the set
of action profiles in the strategic game, the player function assigns the set of all
players to the empty history, and the single set A;(@) of actions of each playeriis
the set of actions of player i in the strategic game.

@ EXAMPLE 207.1 (Variant of BoS) First, person 1 decides whether to stay home and
read a book or to attend a concert. If she reads a book, the game ends. If she
decides to attend a concert, then, as in BoS, she and person 2 independently choose
whether to sample the aural delights of Bach or Stravinsky, not knowing the other
person’s choice. Both people prefer to attend the concert of their favorite composer
in the company of the other person to the outcome in which person 1 stays home
and reads a book, and prefer this outcome to attending the concert of their less
preferred composer in the company of the other person; the worst outcome for
both people is that they attend different concerts.

The following extensive game with perfect information and simultaneous
moves models this situation.

Players The two people (1 and 2).

Terminal histories Book, (Concert, (B, B)), (Concert, (B.S)), (Concert, (S, B)), and
(Concert, (S, 9)).

Player function P(@) = 1 and P(Concert) = {1,2}.

Actions The set of player 1’s actions at the empty history @ is A; (@) = {Concert,
Book} and the set of her actions after the history Concert is Aq(Concert) =

{B, §}; the set of player 2’s actions after the history Concert is Ay(Concert) =
{B,S}.

Preferences Player 1 prefers (Concert, (B, B)) to Book to (Concert, (S,S)) to
(Concert, (B, S)), which she regards as indifferent to (Concert, (S, B)). Player 2
prefers (Concert, (S, S)) to Book to (Concert, (B, B)) to (Concert, (B, S)), which
she regards as indifferent to (Concert, (S, B))

This game is illustrated in Figure 208.1, in which | represent the simultaneous
choices between B and S in the way that I previously represented a strategic game,
(Only a game in which all the simultaneous moves occur at the end of terminal

histories may be represented in a dia gram like this one. For most other games no
convenient diagrammatic representation exists.)

7.1.2  Strategies and Nash equilibrium

As in a game without simultaneous moves, a player’s strategy specifies the action
she chooses for every history after which it is her turn to move, Definition 159.1
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Figure 208.1 The variant of BoS described in Example 207.1.

requires only minor rewording to allow for the possibility that players may move

simultaneously.

DEFINITION 208.1 (Strategy in extensive ganie with perfect information and simtltane-
ans moves) A strategy of player £ in an extensive game with perfect information
and simultancous moves is a function that assigns to each history /i after which
is one of the players whose turn it is o move (i.e. i is a member of P(It), where P is
the player function of the game) an action in Ai(h) (the set of actions available to

player i after h).

The definition of a Nash equilibrium of an extensive game with perfect infor-
mation and simultaneous moves is exactly the same as the definition for a game
with no simultaneous moves (Definition 161.2): a Nash equilibrium is a strategy
profile with the properly that no player can induce a better outcome for herself
by changing her stralegy. given the other players’ strategics. Also as before, the
strategic form of a game is the strategic game in which the players’ actions are their
+ Section 5.3), and a strategy profile is a Nash

strategies in the extensive game (see

equilibrium of the extensive game if and only if it is a Nash equilibrium of the

strategic form of the game.
. EXAMPLE 208.2 (Nash equilibria of a variant of BoS) In the game in Example 207.1,
a strategy of player 1 specifies her actions at the start of the game and after the
history Concert; a strategy of player 2 specifies her action after the history Concert.
Thus player 1 has four strategies, (Concert, B), (Coneert, S), (Book, B}, and (Book, S),
and player 2 has two strategies, B and 5. (Remember that a player’s strategy is
more than a plan of action; it s cifies an action for every history after which the
player moves, even histories that it precludes. For example, player 1's strategy
specifies her action after the history Concert even if it specifies that she choose Book
at the beginning of the game.)

The strategic form of the game is given in Figure 209.1. We see that the game

has three pure Nash equilibria: ((Concert, B), B), ({(Book, B),S), and ((Book, S),S)-

Every extensive game has a unique strategic form. However, some strategic
games are the strategic forms of more than one extensive game. Consider, for
example, the strategic game in Figure 209.2. This game is the strategic form of the
fect information and simultaneous moves in which the
ultaneously; it is also the strategic form of the

extensive game with per
two players choose their actions sim
entry game in Figure 156.1.

7.1 Allowing for simultaneous moves

i s
(Concert, B) 3,1 0,0
(Concert,8) 0,0 1,3
(Book,B) | 2,2 2,2
(Book,S) | 2,2 2,2

Figure 209.1 The strategic form of the game in Example 207.1

L R
T 52012
B 0,0 20

Figure 209.. i i
g 2 A strategic game that is the strategic form of more than one extensi

sive game.
7.1.3 Subgame perfect equilibrium
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ayer s 1?1:1 :lncuqs moves (Definition 166.1) only in that the meaning :fg"‘::ne
2 o move” is that 7 is a member of P(/ N
yert _ (h), rather than P(l) = i,
infm‘;. ;J:]i r:l;ens:t‘?f stllbgame perfect equilibria of an extensive gan(m}wil{\ rect
- ;lmt_l taneous moves that has a {inite horizon, we can, as Si
B nmdn:ﬂ:c::l:::he only wrinkle is that some (perhaps all) ::; the :tf:;
5 ze are not single-person decisi .
i | gle-p ecision problems,
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ash equilibrium of a strategic game. This
argument may use any of the techniques discussed in Chapter 2: it may check
each action profile in turn, it may construct and study the players’ best response
functions, or it may show directly that an action profile we have obtained by a
combination of intuition and trial and error is an equilibrium.

as the one we make when finding a N

“ EXAMPLE 210.1 (Subgame perfect equilibria of a variant of BoS) Consider the game

in Figure 208.1. Backward induction proceeds as follows.
history Concert, there are two Nash equilibria
, as we found in Section 2.7.2.

tis (S, ), then the optimal

o In the subgame that follows the
(in pure strategies), namely (8,8) and (B, B)

o If the outcome in the subgame that follows Concer
choice of player 1 at the start of the game is Book.

o If the outcome in the subgame that follows Concert is (B, B), then
choice of player 1 at the start of the game is Concert.

We conclude that the game has two subgame perfect equilibria:
((Concert, B), B).

Every finite extensive game with per!
fect equilibrium (Proposition 173.1). The
with perfect information and simultaneous move
strategic game (which corresponds to an extensive game with perfect information
and simultaneous moves of length 1) may not possess 4 pure strategy Nash equilib-
rium. (Consider Matcliing Pennies (Example 19.1).) If you have studied Chapter 4,
you know that some strategic games that lack a pure strategy Nash equilibrium
have a “mixed strategy Nash equilibrium”, in which each player randomizes. The
same is true of extensive games with perfect information and simultaneous moves.
However, in this chapter [ restrict attention almost exclusively to pure strategy

equilibria; the only occasion on which mixed strategy Nash equilibrium appears i

| Exercise 212.1.

the optimal

((Book, S),$) and

fect information has a (pure) subgame per-
same isnot true of a finite extensive game
s because, as we know, a finite

@ ExErCisE 210.2 (Extensive game with simultancous moves) Find the subgame
perfect equilibria of the following game. First player 1 chooses either A or B.
After either choice, she and player 2 simultaneously choose actions. 1f player 1
initially chooses A, then she and player 2 subsequently each choose either C
or D; if player 1 chooses B initially, then she and player 2 subsequently each
choose gither E ar F. Among the terminal histories, player 1 prefers (A, (€.CY
to (B,(E.E)) to (A(D, D)) to (B, (F,F)), and prefers all these to (A, (C.D)),
(A(D,C)), (B, (E, F)),and (B, (F, E}), between which she is indifferent, Player 2
prefers (A, (D, D)) to (B,(F,F)) to (A.(C.C)) to (B, (E,E)), and prefersall these
to (A, (C, D). (A(D,C)), (B, (E, F)), and (B,(F.E)), between which she is

indifferent.

ma) Two people simultaneously select

@ EXERCISE 210.3 (Two-period Prisoner’s Dilem
(as in the Prisoner’s Dilemma). Then

actions; each person chooses either Q or F

7.1 Allowing for simultaneous moves
21

they s : . 3
by {acl]!‘“;it;z';?:slfe fzelect actions again, once again each choosing either Q or
to the terminal hi‘]:lnr !'EH‘;?S are represented by the payolf function that assigns
a payoff equal to vth ¥ ((W, X), (Y, Z)) (where each component is either Q or F)
P i of the person’s payoffs to (W, X) and to (Y,Z) in ti
it entnta given in Figure 15.1. Specify this situation as an exte o ie
h per ect information and simultancous moves and fi 5 an extensive game
equilibria, and find its subgame perfect

T EXURCISE . 1 il Ol G ~
( 2 ) u ey
CISE 2111 (Timing ¢l nms on an nvestment) An amount of money accumu

-~

lates; in period ¢ (= 1,2,..., T} its size is $2¢. In i

:ﬁ“l;"f);;::d.e b\rv;ct:ur to claim the money, If oﬁ?;}:):\’:r:e}?sxodﬁil:f :;Eula‘:t‘-;
person does l;;)lbm)l: P‘-’i"rh‘h‘i“ S0, they split the money equally; and ;f nt'iﬁ\.er
o ——— ‘chimft‘lm-p e :we.tlm 0{3P0rtum'ty to do so in the next period. If
son cares onl 1b‘> { }h :L money in period T, each person obtains $7. Each ; re
i i Z;m(e‘:/v . }: ;(:;:;?i r(:fforrnr;}::.y she nbr.ains. Formulate this situaliof:cas
i et ) Sy g T e T8

EXERC

o I:}feﬁji Eﬁ)tma;ket game) A seller owns one indivisible unit of a good
s \’/a ue. Several Potential buyers, each of whom attaches thé
b ¢ A:f to the gnod, simultangously offer prices they are willing to
ot ‘;IE,\ do-;;s t::r receiving the offers, the seller decides v\:hich, if anf to
s mln (JthenT ac;wept any offer, then no transaction takes place, and':lil
g uffm-e;.t - m‘e, the buyer whose offer the seller accepts pays the amount
the buyer \\'hn‘nhh]i.ec‘ii\:s o S‘_‘(’dl T o Cuenallir sy Bk ity
Sy el Situam;nnc e guoc} is v — p, and the payoff of every other buyer is 0
s move; i i;tts anbexlenswe game with perfect information and simull:.me-.
o ks ; Sl; game perfect equilibria. (Use a combination of intuition
o et Il.l 'Illl a sl}'ateg}: profile that appears to be an equilibrium, then
e ui{gu .OI: is. The mct:ntwe.s in the game are closely related to th(;se in
roverseld Shu“[: i”y g,:rr::z lfls';'e-:: t:;ercilw 68.1), wilh the roles of buyers and sellers
P o » that in every subgame perfect equilibrium every

MORE E
XPERIMENTAL EVIDENCE ON SUBGAME PERFECT EQUILIBRIUM

Bt g

2 (f:::::ﬁﬂmndm':ed in 1989 and 1990 among college students (mainly takin,
o c‘,r;ssﬁ) sduw that the subgame perfect equilibria of the game in Exe;g—
Fujiwar; b me-'l 1!1‘9'{9)&;)?[}' to experimental outcomes (Roth, Prasnikar, Okuno
j , amir , in contrast to th ilibriu A
um?atum ot (500 he D om page 189, e subgame perfect equilibrium of the
o ]E:, E;g;zr:ir;:\lf; conducted at four locations (Jerusalem, Ljubljana, Pittsburgh,
; uyers” simultaneously bid f equi ‘ !

: | y bid for the rough equival i

ocal purchasing power) of U.5.$10, held by a “seller”. Eich Zx;\zi::zr(lltni:irrgll . %f

ve

e
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a group of 20 participants, which was divided into two markets, each with one
seller and nine buyers. Each participant was involved in ten rounds of the market;
in each round the sellers and buyers were assigned anew, and in any given round
no participant knew who, among the other participants, were sellers and buyers,
and who was invelved in her market. In every session of the experiment the maxi-
mum proposed price was accepted by the seller, and by the seventh round of every
experiment the highest bid was at least (the equivalent of) U.8.$9.95

Experiments involving the ultimatum game, run in the same locations using a
similar design, yielded results similar to those of previous experiments (see the box
on page 183): proposers kept considerably less than 100% of the pie, and nontrivial
offers were rejected.

The box on page 183 discusses two explanations for the experimental results
in the ultimatum game. Both explanations are consistent with the results in the
market game. One explanation is that people are concerned not only with their
own monetary payoffs, but also with other people’s payoffs. At least some specifi-
cations of such preferences do not affect the subgame perfectequitibria of a market
game with many buyers, which still all yield every buyer the payolf of zero. (When
there are many buyers, even a seller who cares about the other players’ payoffs ac-
cepts the highest price offered, because accepting a lower price has little impact on
the distribution of monetary payoffs, all but two of which remain zero.) Thus such
preferences are consistent with both sets of experimental outcomes. Another ex-
planation is that people incorrectly recognize the ultimatum game as one in which
\he rule of thumb “don’t be a sucker” is advantageously invoked and thus rejecta
poor offer, “punishing” the person who makes such an offer. In the market game,
the players treated poorly in the subgame perfect equilibrium are the buyers, who
move first, and hence have no opportunity to punish any other player. Thus the
rule of thumb is not relevant in this game, so that this explanation is also consistent
with both sets of experimental outcomes.

In the next exercise you are asked to investigate subgame perfect equilibria in
which some players use mixed strategies (discussed in Chapter 4).

# Exerciss 212.1 (Price competition) Extend the model in Exercise 128.1 by having
{he sellers simultaneously choose their prices before the buyers simultaneously
choose which seller to approach. Assume that each seller’s preferences are repre-
sented by the expected value of a Bernoulli payoff function in which the payoff
to not trading is 0 and the payoff to trading at the price p is p. Formulate this
model precisely as an ive game with perfect information and simultaneous
moves. Show that for every p = é the game has a subgame perfect equilibrium
in which each seller announces the price p. (You may use the fact that if seller j's

price is at least 1, seller i's payoffin the mixed strategy equilibrium of the subgame

in which the buyers choose which seller to approach is decreasing in her price pi
when p; > pj.)

7.2 lllustration: entry into a monopolized industry
213

7.2 lllustration: entry into a monopolized industry
7.2.1  General model

Andir;dusrry is«curreutly monopolized by a single firm (the “incumbent”). A sec-
ony : ;’m (the ‘chnllengcr"') is considering entry, which entails a positive cost . f
;r; :) lrl::n m‘ xtf production cost. If the challenger stays out, then its profil is
nm_d,e\lo\.ruf ;ﬁ:ls if ;i e(r;;ecn; the firms simultaneously choose outputs (as in Cuurnot'.s
opoly (Section 3.1)). The cost to firm i of produci i
is Ciq;). If the firms’ total output is Q, th v by
i , then the market price is P, 5 i
Section 6.2, | add a subseri i . (e
o tipl Lo P to avoid a clash with the player function of the
We can model this situation as the followi i
. : ing extensive i i
mation and simultaneous moves, illustrated ingFigure 213%a.me BFESEEaE

Players The two firms: the incumbent (firm 1) and the challenger (firm 2)

Terminal histories  (In, (g1,42)) for an i
{91, y pair (g, of output: i
numbers), and (Out, q1) for any output 4;. (BRDOESENS (ronucediie

Player function  P(@) = {2}, P(In) = {1,2}, and P(Out) = {1}.

Actions  Ax(@) = {In,Out}; A1(I
) ; A1(In), A1(Out), and A,(In
set of possible outputs (nonnegative numbers). o) aveall equal o the

Pretfereria.’sl l?ach firm’s preferences are represented by its profit, which for a
eer(ma history (I, (q1,42)) is 4y Py(gy + q2) — C (1) for the incumbent and
LAEICTRS q2) —Calgz) — f for the challenger, and for a terminal history (Out,
91) 18 41Py(g1) — Ci (1) for the incumbent and 0 for the challenger. '

7.22 Example

:‘;uppose that Ci(q;) = eq; for all g; (“unit cost” is i

gv:me durfwnd ft_mcticn is linear where it is pusitiv::};f\f:::tfa)ﬁ:;?:gt]{’:; a—ngg lfl;:

thc_ql::; as:“ 1: I?:]ctl;zﬂ 313 To Ifind the subgame perfect equilibria, first consider

sam:e : sgi:he % @ : n\:s the hw?ory [, The strategic form of this subgame is the

e ﬁal:'n;]:‘ e o Cournof s duopoly game studied in Section 3.1.3, except
iy payoff o 't e challenger is reduced by f (the fixed cost of entry) regardless

of the challenger’s output. Thus the subgame has a unique Nash equilibrium, in

Challenger

N

B Coufnot’s Incumbent is
uopoly game a monopolist

Figure 213.1 An entry game.
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‘, T | v

hich the output of each firm is La—c) the-incumbent's profit is §(a —¢)% and

w.
(ig 1 2_
llenger’s profitis 3 (x — ¢)* — f. . .
e IC\I}:Necognsideg the su‘ggame that follows the history tlﬂur. Inltlus Sll‘:hg'g't::l::t :,l:lcl-
i ‘s profit when it chooses

i hooses an output. The incumbent’s profit X 0y
|"'C,:_‘mb;:l_€m) -y = qf[’n- — ¢ — ¢1)- This function is a quadratic ;l;nt ln_::r::a;r-eca
irl:'ld l‘l"lien decreases as i increases, and is zero when g; = 0 and v;rhjé\ tq}:at_in an};
«
Thus the function is maximized when g1 = 3w~ ¢). We conclu

= la—c)i bgame
subgame perfect equilibrium the incumbent chooses g1 = 5 (# ¢) in the subga

f“"‘]";":‘uﬁ u::'::;?:‘lz?tﬁ:ihallenger’s action at the start of the game. If l]u.-‘c'hal-
Ieng:: st:)x(;'s out, then its profit is 0, whcreafi "1 it mter;;, then _%;lvini:\i:u::ll:
chosen in the tesulting subgame, its profit is 1;:(« — 1) = 1A : 1!.:;d -;r.;y.;yum b
game perfect equilibrium the challenger enters if $la—c) ;E E f.‘_»c; eql;ﬂihria;
Sa—cP < f. i —c) = ,",{ll";un thcﬁ:ﬂiﬁ;:: subgame per
x and does not in the ;

e Icl'}l\ ::::i::f:l:;s ;?:F:ula:game perfectequilibria clepem?s on the value of r{telrr;
all equilibria the incumbent’s strategy isto pl‘lidL:ct' % (m— c);f \t’h?:e!;nﬁ:ng:: deuCing
and 1(« — c) if it does not, and the challenger’s strategy invol p

1(a —c) if it enters.

i i fect equilibrium, in which the
f f < L{x — c)? there is a unique subgame per .
) f:h'ille:g(er ent)ers. The outcome is that the challenger enters and each firm

produces the output §(x — ¢).

ilibri in which the
i i bgame perfect equilibrium, in w
£ f > L(a —c)? there is a unique subg
’ Ichéller?g(er stai/s out. The outcome is that the challenger stays out and the

incumbent produces Ha—c).

rr . th
o If f = %(rx — ¢)? the game has two subgame perfe]ct equ1112bna. the one for the
case f < }(a—c)? and the one for the case f>a—c)

fect equilibrium in which
,if f is small, does the game have no subgame per
the‘;fzml{ent floods the market if the challenger up!irs,}so ::a:‘tll:: cuh;:ell:::;
i i t higher tha
imally stays out and the incumbent obtains a profit .
;P:;‘?‘:gl?m};r had entered? Because the action this strategy prescribes after

i i ! jon in a Nash
i i i ters is not the incumbent’s action in a :
the history in which the challenger en T eriom, n which

ilibri : the subgame has a unique Nash e
equilibrium of the subgame 4 i . (i
each firm produces (& —c). Put differently, the incumbent’s

market if the challenger enters is not credible.

duopoly game with entry) Find the subgame perf:zct
~ T 3 . a . - T
equilibria of the variant of the game studied in this secqun in Wh‘ldl }tlhe Ezrsrtl elr; 0);
competition is a game in which each firm chooses a price, as in the et p
Bertrand’s duopoly game studied in Section 3.2.2, rather than an output.

7 EXERCISE 214.1 (Bertrand's
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7.3 lllustration: electoral competition with strategic voters

The voters in Hotelling’s model of electoral competition (Section 3.3) are not play-
ers in the game: each citizen is assumed simply to vote for the candidate whose
position she most prefers. How do the conclusions of the model change if we
assume that each citizen chooses the candidate for whom to vote?

Consider the extensive game in which the candidates first simultaneously
choose actions, then the citizens simultaneously choose how to vote. As in the
variant of Hotelling’s game considered on page 74, assume that each candidate
may either choose a position (as in Hotelling’s original model) or choose to stay
out of the race, an option she is assumed to rank between losing and tying for first
place with all the other candidates.

Players The candidates and the citizens.

Terminal histories  All sequences (x,v) where x is a list of the candidates’ ac-
tions, each component of which is either a position (a number) or Out, and
v is a list of voting decisions for the citizens (i.e. a list of candidates, one for
each citizen).

Player function P(@) is the set of all the candidates, and P(x), for any list x of
positions for the candidates, is the set of all citizens.

Actions  The set of actions available to each candidate at the start of the game
consists of Out and the set of possible positions. The set of actions available
to each citizen after a history x is the set of candidates.

Preferences Each candidate’s preferences are represented by a payoff function
that assigns n to every terminal history in which she wins outright, k to every
terminal history in which she ties for first place with # — k other candidates
(for1 < k < n—1), 0 to every terminal history in which she stays out of
the race, and —1 to every terminal history in which she loses, where 7 is the
number of candidates. Each citizen’s preferences are represented by a payoff
function that assigns to each terminal history the average distance from the
citizen's favorite position of the set of winning candidates in that history.

First consider the game in which there are two candidates (and an arbitrary
number of citizens). Every subgame following choices of positions by the candi-
dates has many Nash equilibria (as you know if you solved Exercise 48.1). For
example, any action profile in which all citizens vote for the same candidate is
a Nash equilibrium. (A citizen’s switching her vote to another candidate has no
effect on the outcome.)

This plethora of Nash equilibria allows us to construct, for every pair of posi-
tions, a subgame perfect equilibrium in which the candidates choose those posi-
tions! Consider the strategy profile in which the candidates choose the positions
xpand xa, and
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. N o

o all citizens vote for candidate 1 after a history (%], x) in which xy = x1
. N o .

o all citizens vote for candidate 2 after a history (x}, x4) in which x] # x1

The outcome is that the candidates choose the posiliow‘s x fmd xy and ra?mda‘tc‘c 1
wins. The strategy profile is a subgame pcrfec\ .ethbrmm l;;-st;a}a;e‘ (:1;1;\;1 erig,.r
history (x1,%2) the profile of the citizens” actions is a Nash‘m!u i n;:ip ,’;[ian 5
ther candidate can induce an outcome she prefers by dwmtmgj a dL‘w\? e by
candidate 1 to a position different from x; leads her to lose, and a deviation by
ida o ¢ffect on the outcome. ) '
m]‘?;:\:l:vze: ::ﬁ‘ of the Nash equilibria of the voting subgames m:: F:gﬂe (:I s 5«:‘;
know if you solved Exercise 48.1): a citizen's vmirTg for her 1es:s prefer j?;u; ‘(A
is weakly dominated (Definition 46.1) by her voting for her t.:wonlu Ci!l'l.t ‘&“.her
citizen who switches from voting for her less prcferre;:i candndah{ to fut:-‘g ikl
favorite candidate either does not affect the outcome (if I1:cr favu'nl.e tﬂl\t_l‘ ;I‘ -
three oF more votes behind) or causes her favorite l’.'il.l'll.‘llda‘ll(.' t"lﬂl(l?r‘t_l'l u.T: t:-:, "
place rather than lose, or to win father than tie.) Thusin the onlY Na:;:'n eq:n 1‘ ;“ 2t
of a voting subgame in which no citizen uses a weakly dummate' :1': m"[i,(m
citizen votes for the candidate whose position is clcr-eat to her f{ll\?[l)ﬂlth |.ausl‘di':|.‘1 .
Hotelling’s model (Section 3.3) assumes that cac_h Cltl?aen‘\’(lt(.’b mht e c;.lll.brium
whaose position is closest to her favorite position; in 1’ts unique Nas‘ l:!qulc 1} mbin:
each candidate’s position is the median of the citizens’ favorite |:;(!¢:;t|ul:¢si i
ing this result with the result of the previous paragral‘al_w,\‘\'e cong ul e:‘ a : f‘err_s
we are studying has only one subgame perfect quuxllbrxgn1 inw ncr S\: fl tiZ@ns'
strategy is weakly dominated: each candidate c'hc-om lh‘: l:li!.‘cflill'l :; e \;uu;s
favorite positions, and for every pair of the candidates’ positions, each citie
i idate, i
= :1: !'t;i\';;:::‘:?; three or more candidates, r:mt only do mar?ybuf thule::;zg
subgames have maiy Nash équilibria, with_n variety of uutmmeb.. l.11: ref; f:;: . }é
to voting strategies that are not weakly domu‘t:ﬂed does not dr-'l_miltl:: fy alml- e
set of equilibria: a citizen's only weakly dominated strategy is a vote for as
didate (see Exercise 49.1). ) .
ng(}m‘izs the sm‘nf equilibrium outcomes is dramatically restricted by t(lj\:' fl:b—
sumption that each candidate prefers to stay out o.f the race llnn to cnlte.r an {::;
as the next two exercises show. The resultin tl.1e {Ifsl exercise is tt:a; }t “:1 gmﬂ:m;é
a subgame perfect equilibrium in which no citizen ‘s‘.hslmtegy lfd weak f}rlh::::i?ms’
and every candidate enters and chooses as her position the me: dr.?n o e ’uon
favorite positions. The result in the second exercise Is that under M, o dl[;mns
that makes the citizens averse Lo ties and an assumption {hat there L;l; Swps
with extreme preferences, in coery subgame perim.:l equii]t}num all can l‘::l es o
enter do so at the median of the citizens’ favarite positions. The ad::h mnfaﬂ;t;
sumptions about the citizens’ prefcrence:s are chh stronger than necessary; they
are designed to make the argument relatively casy.

. . =
12 EXERCISE 216.1 (Electoral competition with strategic voters) Assume thactl.tl:\e; y
\ are n > 3 candidates and g citizens, where g = 2n is odd (so that the media
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the voters’ favorite positions is well defined) and divisible by #. Show that the
game has a subgame perfect equilibrium in which no citizen's strategy is weakly
dominated and every candidate enters the race and chooses the median of the
citizens’ favorite positions. (You may use the fact that every voting subgame has a
(pure) Nash equilibrium in which no citizen’s action is weakly dominated.)

EXERCISE 217.1 (Electoral competition with strategic voters) Consider the variant
of the game in this section in which (i) the set of possible positions is the set of
numbers x with 0 < x < 1, (i) the favorite position of at least one citizen is 0
and the favorite position of at least one citizen is 1, and (i) each citizen’s pref-
erences are represented by a payoff function that assigns to each terminal history
the distance from the citizen’s favorite position to the position of the candidate in
the set of winners whose position is furthest from her favorite position. Under the
other assumptions of the previous exercise, show that in every subgame perfect
equilibrium in which no citizen’s action is weakly dominated, the position chosen
by every candidate who enters is the median of the citizens’ favorite positions. To
do so, first show that in any equilibrium each candidate that enters is in the set
of winners. Then show that in any Nash equilibrium of any voting subgame in
which there are more than two candidates and not all candidates’ positions are the
same, some candidate loses. (Argue that if all candidates tie for first place, some
citizen can increase her payoff by changing her vote.) Finally, show that in any
subgame perfect equilibrium in which either only two candidates enter, or all can-
didates who enter choose the same position, every entering candidates chooses the
median of the citizens’ favorite positions.

7.4 lllustration: committee decision-making

How does the procedure used by a committee affect the decision it makes? One ap-
proach to this question models a decision-making procedure as an extensive game
with perfect information and simultaneous moves in which there is a sequence of
ballots, in each of which the committee members vote simultaneously; the result
of each ballot determines the choices on the next ballot, or, eventually, the decision
to be made,

Fix a set of committee members and a set of alternatives over which each mem-
ber has strict preferences (no member is indifferent between any two alternatives).
Assume that the number of committee members is odd, to avoid ties in votes. If
there are two alternatives, the simplest committee procedure is that in which the
members vote simultaneously for one of the alternatives. (We may interpret the
game in Section 2.9.3 as a model of this procedure.) In the procedure illustrated
in Figure 218.1, there are three alternatives, x, ¥, and z. The committee first votes
whether to choose x (option “a”) or to eliminate it from consideration (option “b").
If it votes to eliminate ¥, it subsequently votes between yand z.

In these procedures, each vote is between two options. Such procedures are
called binary agendas. We may define a binary agenda with the aid of an auxiliary
one-player extensive game with perfect information in which the set A(h) of ac-

7
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Vote
a b

Figure 218.1 A voting procedure, or “binary agenda”.

tions following any nonterminal history i has two .members, and the m.n;:ber of
terminal histories is at least the number of altematw.es. We assod. ate wit m;;t-"):
terminal history It of this auxiliary game an allernanv;z w(ir) in such a way thi
¢ ivei i i terminal history.
each alternative is associated with at least one termil _
In the binary agenda associated with the auxllmr)( game G, -'fl.i playe;? \::t]e':
simultaneously whenever the player in G lakes an action. Ihe options on :b‘;m
lot following the nonterminal history in which a nmyz:'nty of mm:mttue:ze mer beh
chovse option a* at the start of the game, then option 1%, and soon, anei m;r)n The
of theset A(al,...,a*) of actions of the playcrinGaf‘ter the l‘llst.()l’)" (a', sl
alternative selected after the terminal history in wh;ch{tl;.e ma:;xiuiy C(l"l{‘ll;:; :’; m,
i i b) associated with (a',...,a%) in G. «
..., 0¥ is the alternative «(a',...,a") associa G. | .
ple, in the auxiliary one-person game that defines the structure of Ithe agenda ds:
Fig,ure 218.1, the single player first chaoses a or b; If she ch{?oses a the game E-mas:
whereas if she chooses b, she then chooses between ¢ a.nd d.The ui;eT'l.al:;; I.: >
sociated with the terminal history , y is associated with (b, ¢}, and z is
ith (b, d). . B . )
" Pr(eciszzly the binary agenda associated with the auxiliary game G is the exten
sive game with perfect information and simultaneous moves defined as follows.
Players The set of committee members.

Terminal histories A sequence . o*) of act‘iun profiles (in wt?rd‘h:adi‘ z:
is a list of the players’ votes) is a terminal history If_and only ; t ) re is
terminal history (a',...,a") of G such that for every j = 0,00 k=1, e'vez
element of o1*1 i a member of A(a', ..., /) (A(2) if j = 0)and a majority
the players’ actions in o/+! are equal to # i

Player function For every nonterminal history I, P(h) is the set of all players.

it i inal history (o', ..., o/), playeri’s
Actions For every player i and every nontermina : { . :

set of actions ig,A(ul,. .., al), where (a',...,0/) is the l\lstf)ry eof G in which,

for all £, 4! is the action chosen by the majority of players in 0.

i i i L ky is
Preferences The rank each player assigns to the term1lna1 hls,t(ory (v .- .c,lv )ith
equal to the rank she assigns to the alternative a(al,...,a") associated W
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the terminal history (a',..., a*) of G in which, for all j, &/ is the action chosen
by a majority of players in /.

Every binary agenda, like every voting subgame of the model in the previous
section, has many subgame perfect equilibria. In fact, in any binary agenda, coery
alternative is the outcome of some subgame perfect equilibrium, because if, in ev-
ery vote, every player votes for the same option, no player can affect the outcome
by changing her strategy. However, if we restrictattention to weakly undominated
strategies, we greatly reduce the set of equilibria. As we saw before (Section 2.9.3),
in a ballot with two options, a player’s action of voting for the option she prefers
weakly dominates the action of voting for the other option. Thus in a subgame per-
fect equilibrium of a binary agenda in which every player's vote on every ballot is
weakly undominated, on each ballot every player votes for the option that leads,
ultimately (given the outcomes of the later ballots), to the alternative she prefers,
The alternative associated with the terminal history generated by such a subgame
perfect equilibrium is said to be the outcome of sophisticated voting.

Which alternatives are the outcomes of sophisticated voting in binary agendas?
Say that alternative x beafs alternative y if a majority of committee members prefer
xto y. Analternative that beats every other alternative is calted a Condorcet winner.
For any preferences, there is either one Condorcet winner or no Condorcet winner
(see Exercise 75.3).

First suppose that the players’ preferences are such that some alternative, say
x*, is @ Condorcet winner, 1 claim that x* is the outcome of sophisticated voling
in every binary agenda. The argument, using backward induction, is simple. First
consider a subgame of length 1 in which one option leads to the alternative x*. In
this subgame a majority of the players vote for the option that leads to x*, because
a majority prefers x” to every other alternative, and each player’s only weakly un-
dominated strategy is to vote for the option that leads to the alternative she prefors.
Thus inat least one subgame of length 2, at least one option leads ultimately to the
decision x* (given the players’ votes in the subgames of length 1). In this subgame,
by the same argument as before, the winning option leads to x*. Continuing back-
ward, we conclude that at least one option on the first ballot leads ultimately to x*
and that consequently the winning option on this ballot leads to x°.

Thus if the players’ preferences are such that a Condorcet winner exists, the
agenda does not matter: the outcome of sophisticated voting is always the Con-
dorcet winner. If the players’ preferences are such that no alternative is a Con-
dorcet winner, the outcome of sophisticated voting depends on the agenda. Con-
sider, for example, a committee with three members facing three alternatives, Sup-
pose that one member prefers x to y 1o z, another prefers y to 2 to x, and the third
prefers z to x to y. For these preferences, no alternative is a Condorcet winner.
The outcome of sophisticated voting in the binary agenda in Figure 218.1 is the
alternative x. (Use backward induction: y beats z, and ¥ beats y.) If the positions
of x and y are interchanged, then the outcome is ¥, and if the positions of x and
z are interchanged, then the outcome is z. Thus in this case, for cvery alternative
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there is a binary agenda for which that alternative is the outcome of sophisticated
Von\?\lgk;ich alternatives are the outcomes of snphisti:laled volin‘ﬁti::ibz?g:iei?;:;
ivei inner? Consider a come ]
e al"emaltlvii;S;“ﬁifiﬁ:{: l(:rz:f;dured in the previous pjnr.\gmph). th.‘s.t
gt (“;J PQF“ e 218.1, For x to be the outcome of mphiﬂw&led w.vung it
e et e i ‘lrgn!' y and z. It may not beat both y and 2 directly, but it must
it }wTT;:mql “indirectly: either x beats y beats 2, or X beals z beats yi
ts,?.nl'll':‘:la;n i';):tr:r‘: is ll‘tL‘ outcome of sophisticated voting, then it must beat both o
imilarly, if i or 21 aciGh
il ;::;EREQE;‘]K;?I:Z:;::Ltr:i::::mHl; peats alternative y if Enrl :amTu k 1 1
there are dliernalivoﬁ iy, ..., tg such that x beats 1y, nixb,e::lsu:i.;; T,;,Lr au;?m-,;m.e
1. and 1y beats v, The set of alternatives x such lhntf nN:- O O tctsative
i her directly or indirectly is called the top cycle set. ( ot e
— \ternative indirectly, it beats at least one alternative direct 2 il
'00-?‘5 P r, then ll.n.- top cycle set consists of this single alternative. If ﬂ:\\'.ri_
5 um((:k::dc:!:;lmweil;n& then the t:ap cycle set contains more than one alternative.
is no Ce ',

(@ EXERCISE 220.1 (Top cycle set) A committee has three member; T
a. Suppose that there are three alternatives, x, Y, and z, a.nd afers e
' prefers x to y to Z, another prefersy tozto ¥, and the third pre
Find the top cycle set. i
b. Suppose that there are four alternatives, W, ¥, ¥, Zmd z: :II'I? l::; ZI,:Z el
refers w o z to x to 1, one member prefers y tow ozt X, < e i
i fers x to y o w to 2. Find the tap cycle set, Show, in particuiar, hat 2 is
fki top cycle set even though all committee members prefer w.

in Figure 7 tive is the
Rephrasing my conclusion for the ngful:r‘lcl:-‘n:h: 5.;,: :;;1:; iiim:;- ;tc‘::; .1“ Ak
sophistics yoting, then itisir : sel. 1
:‘;lcéz:f:ll:;;?ﬂ;l;xfo any Einnry agenda. In every subgﬂmc‘,jl};e_ :)-?:SEL,:[
solSI:isticatcd voting must beat the alternative that \\flu’ be SLIMl:' nl il“ I[hc‘]wh‘)]c
'l‘l:::s‘ by backward induction, the nulcomeh of ;op::.;::-t::d:: .;tlff- e
gam ust beat every other alternative eitl er dire ey
t,.lu::.:c. mslicaletl voling in any binary agenda is in the lop n:ycl.e'::et._ el
° ’NP w consider a converse question: for any given allernative ¥ ||'1‘ » p : iyn :
e :, there a binary agenda for which x is the outcome of ‘suphlshmlm :‘ :1 ri ‘EU
?F;'.L swer is affirmalive. The idea behind the construction of a.n':xp[: 1|E.. g
. :ir; is illustrated by a simple example. Suppose that lhhcn:“are l‘ ;‘; ; o
?BE:: x, i, and z, and X beats y beats 2. Then the agenda in hgfm;l W. s
f:r ‘\:ﬂhi’ch.x is the outcome of sophisticated voting. NL1W1SI:1pF::2n ,:t.;m:,m-ucl g
additional alternatives, u and @, and x beats u b?a!.s w1 hen s e
da in which x is the outcome of sophisticated voting by pla G
e xin i 218.1 with a subgame in which a voteis taken for or agd )
e a v;)te is subsequently taken between # and w: 1f there are

x, and, if x is rejected,
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other chains through which x beats other alternatives, we can similarly add further
subgames.

? EXERCISE 221.1 (Designing agendas) A committee has three members; there are
five alternatives. One member prefers x to i to v to w to z, another prefers z to x to
v to w to y, and the third prefers y to z to w to v to x. Find the top cycle set, and for
each alternative a in the set design a binary agenda for which a is the outcome of
sophisticated voting. Convince yourself that for no binary agenda is the outcome
of sophisticated voting outside the top cycle set.

? EXERCISE 221.2 (An agenda that yields an undesirable outcome) Design a binary
agenda for the committee in Exercise 220.16 for which the outcome of sophisticated
voting is z (which is worse for all committee members than w).

In summary, (i) for any binary agenda, the alternative generated by the sub-
game perfect equilibrium in which no citizen’s action in any ballot is weakly dom-
inated is in the top cycle set, and (ii) for every alternative in the top cycle set, there
is a binary agenda for which that alternative is generated by the subgame perfect
equilibrium in which no citizen’s action in any ballot is weakly dominated. In par-
ticular, the extent to which the procedure used by a committee affects its decision
depends on the nature of the members’ preferences. At one extreme, for prefer-
ences such that some alternative is a Condorcet winner, the agenda is irrelevant.
At another extreme, for preferences for which every alternative is in the top cy-
cle set, the agenda is instrumental in determining the decision. Further, for some
preferences there are agendas for which the subgame perfect equilibrium yields
an alternative that is unambiguously undesirable in the sense that there is another
alternative that all committee members prefer.

7.5 [Hustration: exit from a declining industry

An industry currently consists of two firms, one with a large capacity, and one
with a small capacity. Demand for the firms’ output is declining steadily over
time, When will the firms leave the industry? Which firm will leave first? Do the
firms’ financial resources affect the outcome? The analysis of a model that answers
these questions illustrates a use of backward induction more sophisticated than
that in the previous sections of this chapter.

7.5.1  Amodel

Take time to be a discrete variable, starting in period 1. Denote by P,(Q) the market
price in period ¢ when the firms’ total output is (, and assume that this price is
declining over time: for every value of Q, we have Py 1(Q) < P(Q) forall ¢ > 1.
(See Figure 223.1.) We are interested in the firms’ decisions to exit, rather than
their decisions of how much to produce in the event they stay in the market, so
we assume that firm i's only decision is whether to produce some fixed output,
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denoted k;, or to produce no output. (You may think of k; as firm i's capacity.)
Once a firm has stopped production, it cannot start up again. Assume that ko <k
(firm 2 is smaller than firm 1) and that each firm’s cost of producing ¢ units of
output is ¢g.

The following extensive game with simultaneous moves models this situation.

Players The two firms. i

Terminal histories Al sequences (X 1L, X forsomet 2> 1, where X* = (Stay,
Stay) for1 <s <1 -1 and X' = (Exit, Exit) (both firms exil in period £), or
X* = (Stay, Stay) for all s with 1 <5 < 7= 1 for some r, X" = (Stay, Exit)
or (Exit, Stay), X* = Stay forallswithr+1 < s < t—1, and X! = Exit
(one firm exils in period r and the other exits in period £), and all infinite
sequences (X!, X%,...), where X" = (Stay, Stay) for all  (neither firm ever
exits).

Player function P(h) = {1,2} after any history h in which neither firm has
exited; P(i) = 1 after any history h in which only firm 2 has exited; and
P(h) = 2 after any history h in which only firm 1 has exited.

Actions Whenever a firm moves, its set of actions is {Stay, Exit).

Preferences Each firm’s preferences are represented by a payoff function that
associates with each terminal history the fixm’s total profit, where the profit
of firm i (= 1, 2) in period ¢ is {Py(k;) — ©)k; if the other firm has exited and
(Pe(fy + ko) — c)k; if the other firm has not exited.

752 Subgame perfect equilibrium

In a period in which Pk} < ¢, firm i makes a loss even if it is the only firm
remaining (the market price for its output is less than its unit cost). Denote by #;
the last period in which firm i'is profitable if it is the only firm in the market. That
is, t; is the largest value of 1 for which Py(k;) > c. (Refer to Figure 223.1.) Because
ky > kz, we have by < fa: the time at which the large firm becomes unprofitable as
a loner is no later than the time at which the small firm becomes unprofitable as a
Joner.

The game has an infinite horizon, but after period t; firm i’s profit is negative
even if it is the only firm remaining in the market. Thus if firm i is in the market
in any period after £, it chooses Exit in that period in every subgame perfect equi-
librium. In particular, both firms choose Exit in every period after f2. We can use
backward induction from period t; to find the firms’ subgame perfect equilibrium
actions in earlier periods.

If firm 1 (the larger firm) is in {lie market in any period from 1 on, it should
exit, regardless of whether firm 2 is still operating. As a consequence, if firm 2 is
still operating in any period from £y + 1 to b it should stay: firm 1 will exit in any
such period, and in its absence firm 2's profit is positive.
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Figure 223.1 The inverse demand curves i ini
pre2 ; es in a declining industry. In thi iod i
which firm 1 is profitable if it is the only firm in the magrket) is Zryan[:itzlsise:ample, 1 (the astperiod in

N io far. we ha\./e .Concluded that in every subgame perfect equilibrium, firm 1’s
° rll'; ;gy 1; to exit in every period from £; +1 on if it has not already done so
irm 2's strategy is to exit i i if i :
and i 54 exit in every period from #; + 1 on if it has not already
. sz-N c](:nsider Reriod t1., the last period in which firm 1’s profit is positive if
1r21 1:[ al éent‘ If firm 2 exits, its profit from then on is zero. If it stays and firm 1
le)x1t ;,f.t en it earns a profit from period t; to period f;, after which it leaves. If
oth firms stay, firm 2 sustains a loss in period t; but earns a profit in the subse-
gw:lent.pzr;ods up to tz,. be.cause in every subgame perfect equilibrium firm 1 exits
o I:zerlol 1~+ 1. Thus if firm 2's one-period loss in period # when firm 1 stays in
Dfe;} 53;10(} is lelss than the sum of its profits from period t; + 1 on, then regardless
ether firm 1 stays or exils in period ty, fi i ;
thethe ] 1, firm 2 stays in every subgame perfect
1:?qlutl.lbrllum'. In period t; + 1, when firm 1 is absent from the industry, the ;I:))rice is
e ;1 ively high, s0 th’flt the assumption that firm 2’s one-period loss is less than its
subsequent multiperiod profit is valid for a significant range of parameters. From
now on, [ assume that this condition holds. ‘
rio(;/\ie conc}llude. that in every subgame perfect equilibrium firm 2 stays in pe-
oy 1,80 that .f1rm 1. optimally exits. (It definitely exits in the next period, and
if it stays in period ¢t it makes a loss, because firm 2 stays.) /
o N(?vti continue to work backward. If firm 2 stays in period t; — 1 it earns a profit
ol l:;eerrliz dsttl tII1trough b, Eecause in every subgame perfect equilibrium firm 1 exits
1. It may make a loss in period t; — 1 (if firm 1 i io
but this loss is less than the loss i in Teomraneret
oss it makes in period t; in the com i
: : . ; pany of firm 1,
;\;}}{ch \A1/,e havg as.s,umecjl is outweighed by its subsequent profit. Thus regardless
irm 1's action in period #; — 1, firm 2’s best action is to stay in that period. If

t) < t; — 1, then firm 1 makes a loss i i i
T in period #; — 1 in the company of firm 2, and
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The same logic applies to all periods back to the first period in which the firms
cannot profitably coexist in the industry: in every such period, in every subgame
perfect equilibrium firm 1 exits if it has not already done so. Denote by to the last
period in which both firms can profitably coexist in the industry: that is, tg is the
largest value of t for which Pi(ky +k2) 2 ¢. .

We conclude that if firm 275 loss in period f; when both firms are active is less

than the sum of its profits in periods ¢y + 1 through £ when it alone is active, then
the garme has a unique subgame perfect equilibrium, in which the large firm exits
in period tg + 1, the first period in which both firms cannot profitably coexist in
the industry, and the small firm continues operating until period tp, after which it
alone becomes unprofitable.
@ EXERCISE 224.1 (Exit from a declining industry) Assume that ¢ = 10, k; = 40,
k, = 20,and P(Q) =100 -t — Q for all values of £ and Q for which 100 -t — Q >
0, otherwise P;(Q) = 0. Find the values of £ and t, and check whether firm 2’s
loss in period £ when both firms are active is less than the sum of its profits in
periods f; + 1 through t; when it alone is active.

7.53 Theeffect of a constraint on firm 2 debt

When the firms follow their subgame perfect equilibrium strategies, each firm's
profit is nonnegative in every period. However, the equilibrium depends on firm
2’s ability to go into debt. Firm 2's stralegy calls for it to stay in the market if
firm 1, contrary to its strategy, does not exit in the first period in which the market
cannot profitably sustain both firms. This feature of firm 2’s strategy is essential to
the equilibrium. If such a deviation by firm 1 induces firm 2 to exit, then firm 1's
strategy of exiting may not be optimal, and the equilibrium may consequently fall
apart.

Consider an extreme case, in which firm 2 can never go into debt. We can
incorporate this assumption into the model by making firm 2’s payoff a large neg-
ative number for any terminal history in which its profit in any period is negative.
(The size of firm 2's profit depends on the contemporaneous action of firm 1, so
we cannot easily incorporate the assumption by modifying the choices available
to firm 2.) Consider a history in which firm 1 stays in the market after the last
period in which the market can profitably sustain both firms. After such a history
firm 2’s best action is no longer to stay: if it does so its profit is negative, whereas if
it exits its profit is zero. Thus if firm 1 deviates from its equilibrium strategy in the
absence of a borrowing constraint for firm 2, and stays in the first period in which
it is supposed to exit, then firm 2 optimally exits, and firm 1 reaps positive profits
for several periods, as the lone firm in the market. Consequently in this case firm 2
exits first; firm 1 stays in the market until period h:

How much debt does firm 2 need to be able to bear for the game to havea sub-
game perfect equilibrium in which firm 1 exits in period £y and firm 2 stays until
period 122 Suppose that firm 2 can sustain losses from period fy + 1 through period
to + &, but no longer, when both firms stay in the market. For firm 1 to optimally
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Figure 225.1 Firm 1’s profits starting in period £y + 1 when fir sta; the markel +
p! g I p 0 h 'm 2 stays in market until period 4 + &

:;:(l‘ i: Lcgl:'erim:l. to -+ 1, the consequence of its staying in the market must be that firm 2
= g}sﬁ Suppase that ﬁrn'.l 2's strategy is to stay through period ty + k, but no
o };g:;,od . ;n; 11 ;‘.'(;;::.itsn.‘;\fl}:;h slra:;:gy is best for firm 1 in the subgame starting
: 12 1F it exits, its payoff is zero. If it stays through period k, i
F}:ﬂoﬂ’? neg;ahve (it makes a loss in every period). If ijtmsiays biyniedlpe:;gd-i—r:,;—r:
en firm 2 exits), it should stay until period ¢ i i
. . 1. when its payoff is th
E:ofilt: thﬁ;;m negative from period fg -+ 1 through period -'j: j’ k a:::l l:ef'lu:;:i'f
¢ through period 1. (See Figure 225.1.) If this payoff i itive i :
. 1. 5 pi is posit
tl:m":gh pu:n;od 11; otherwise it should exit immedfakzly -
e conclude that for firm 1 to exit in peri : i

. ! ’ T period 1y + 1, the period until which
;::m IZJL.m snl.:smm. losses, W]‘ll.ch I have denoted g + k, must be large enough lll'ncnt
& :1 s tota ?mﬁt is nonp?mtive from period ty 4 1 through period Iy if it shares
the mal;l'l;(el with flirm 2 until period g -+ k and then has the markel to itself. This
alue of k determines the debt that firm 2 must be able to accumulate: the. reciuisite

debt equals its total loss when it remains i
main: he ih £ .
1 through period f + . s in the market with firm 1 from period ¢, +

@ EXERCISE 225.1 (Effect of borrowing constraint of firms’ exit decisions in declining

;r;dl;sttr};) Under the assumptions of Exercise 224.1, how much debt does firm 2
i e ; c; e able t(? bear for thf: subgame perfect equilibrium outcome in the absence
a debt constraint to remain a subgame perfect equilibrium outcome?

7.6 Allowing for exogenous uncertainty

7.6.1 General model

The g .
tarmcx)nodel of an extensive game with perfect information (with or without simul-
us moves) does not allow random events to occur during the course of play.
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However, we cant easily extend the model to cover such situations. The deﬁ‘ru‘cio;f
exteiti { information and chance moves is a varian

of an extensive game with perfec . . i :

the definition of an extensive game with perfect information (155.1) in which

o the player function assigns “chance”, rather than a set of players, to some
histories "
o the probabilities that chance uses after any such history are specified

i inal
e the players’ preferences are defined over the set of 1otter.1es over termina
histories (rather than simply over the set of terminal histories).

similarly add chance moves to an extensive game w_i'r.h perfect |nrt.nm'?-
(tl‘:: ::Lyﬁnr:‘ultulfmus moves by mtxiifyh{\g [)uﬁnitilnn 31?-;1;.-;"1:?;5 :I;::g;iis:}
imple, hat the random event after any given history is
ET?L:&?;HK: after any other history. (That is, the realization of any random
event is not affected by the realization of any other random event.) s suckioomm.
The definition of a player’s strategy remains l!?c same as bﬂ’nmi.h'sm:je_; -
of a strategy profile is now a probability distribution over termm? )I ies.
definition of subgame perfect equilibrium remains the same as before.

& EXAMPLE 226.1 (Extensive game with chance moves) Consider a :aim:ltio:'ll1 i:wnrl:‘;
. ing two players in which player 1 first chooses A or B. If she Fl]:otm’:a% i[;: }%a[hc
ends, with (Bernoulli) payoffs (1,1). If she ch:ms:r B,l th;en \-\:; gir - :;—,Z ty
5, Wi fs (3,0), and with probability 3 playe s :
game ends, with payof . bility o i
L yi D, which yields payoffs (1,
tween C, which yields payoffs {0,1)and D, (1,0). e
: i ; that models this situation is
ive game with perfect information and chance moves ; )
:;::tfn in Figurz”3 226.1. The label ¢ denotes chance; the number beside each action
ili i i is chosen.
is the probability with which that action is ¢ R
o d\:\r:fny usel;ackward induction to find the subgame_perfeci equilibria of lh:;
game. Inany equilibrium, player 2 chooses C. Now c:nmrlerf;l;e :f::ﬁ::unces B
1’ she obtains the payoff 1. 1f s ooses B,
layer 1s actions. If she chooses A, then she o e 1.0f
It:;1I|:ﬂ)': she obtains 3 with probability § and 0 with probability L yleldn}g an cxpc]clte:
payoff of 3. Thus the game has a unique subgame perfect equilibrium, in whic
player 1 choose B and player 2 chooses C.

i denotes
Figure 226.1 An extensive game with perfect information and chance moves. The label ¢

ili i i ion is chosen.
chance; the number beside each action of chance is the probability with which that action is ¢
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@ Exercise 227.1 (Variant of ultimatum game with equity-conscious players) Con-
sider a variant of the game in Exercise 183.4 in which fiy = 0, and the person 2
whom person 1 faces is drawn randemly from a population in which the fraction
P have iz = 0 and the remaining fraction 1 — p have iy = 1. When making her
offer, person 1 knows only that her opponent’s characteristic is fiz = 0 with prob-
ability p and Bz = 1 with probability 1 — . Model this situition as an extensive
game with perfect information and chance moves in which person 1 makes an of-
fer, then chance determines the type of person 2, and finally person 2 accepts or
rejects person 1's offer. Find the subgame perfect equilibria of this game. (Use the
fact that if fiz = 0, then in any subgame perfect equilibrium of the game in Exer-
cise 183.4, person 2 accepts all offers x > 0 and may accept or reject the offer 0, and
if fa = 1, then she accepts all offers x > §, may accept or reject the offer 4 and
rejects all offers x < 1) Are there any values of p for which an offer is rejected in
equilibrium?

-~

EXERCISE 227.2 (Firm-union bargaining) A firm knows the amount by which its
revenue exceeds its outlays on plant and equipment, but a union with which it
is bargaining does not. This “surplus”, which is to be divided between the firm
and the union, is H with probability p and L < H with probability 1 — p. The
bargaining procedure is that of the ultimatum game: the union makes a demand,
which the firm either accepts or rejects. We may model this situation as an exten-
sive game in which, between the union’s demand and the firm’s response, a move
of chance determines whether the surplus is H or L. If the size of the surplus is
= and the union’s demand is x, then the firm's (Bemoulli) payoff is z — x and the
union’s (Bernoulli) payoff is x if the firm accepls the union’s demand and each
player’s payoff is 0 (there is a strike) if the firm rejects the union’s demand. Find
the subgame perfect equilibria of this game for each possible value of p. Find the
probability of a strike for each equilibrium.

~

EXERCISE 227.3 (Sequential duel) Ina sequential duel, two people alternately have
the apportunity to shoot each other; each has an infinite supply of bullets, On each
of her turns, a person may shoot or refrain from doing so. Each of person i’'s shots
hits (and kills) its intended target with probability p; (independently of whether
any other shots hit their targets). (If you prefer to think about a less violent sit-
uation, interpret the players as political candidates who alternately may launch
attacks, which may not be successful, against each other.) Each person cares only
about her probability of survival (not about the other person’s survival), Model
this situation as an extensive game with perfect information and chance moves,
Show that the strategy pairs in which neither person ever shoots and in which
each person always shoots are both subgame perfect equilibria. (Note that the
game does not have a finite horizon, so backward induction cannot be used.)

EXERCISE 227.4 (Sequential truel) Each of persons A, B, and C has a gun contain-
ing a single bullet. Each person, as long as she is alive, may shoot at any surviving
person. First A can shoot, then B (if still alive), then C (if still alive). (As in the

-
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previous exercise, you may interpret the players as political candidates. In this
exercise, each candidate has a budget sufficient to launch a negative campaign to
discredit exactly one of its rivals.) Denote by pj the probability that player { hits
her intended target; assume that 0 < py < 1. Assume that each player wishes
to maximize her probability of survival; among outcomes in which her survival
probability is the same, she wants the danger posed by any other survivors to be
as small as possible. (The last assumption is intended to capture the idéa that there
is some chance that further rounds of shooting may occur, though the possibility of
such rounds is not incorporated explicitly into the game.) Model this situation as
an extensive game with perfect information and chance moves. (Draw a diagram.
Note that the subgames following histories in which A misses her intended target
are the same.) Find the subgame perfect equilibria of the game. (Consider only
cases in which p 4, ps, and pc are all different.) Explain the logic behind A’s equi-
librium action. Show that “weakness is strength” for C: she is better off if pc < pB
than if pc > ps. )

Now consider the variant in which each player, on her turn, has the additional
option of shooting into the air (in which case she uses a bullet but does not hit
anyone). Find the subgame perfect equilibria of this game when pa < ps- Explain
the logic behind A’s equilibrium action.

@ Exercise 228.1 (Cohesion in legislatures) The following pair of games is designed
to study the implications of different legislative procedures for the cohesion ofa
governing coalition. In both games a legislature consists of three members. Ini-
tially a governing coalition, consisting of two of the legislators, is given. There
are two periods. At the start of each period a member of the governing coalition
is randomly chosen (i.e. each legislator is chosen with probability 1) to propose a
bill, which is a partition of one unit of payoff between the three legislators. Then
the legislators simultaneously cast votes; each legislator votes either for or against
the bill, If two or more legislators vote for the bill, it is accepted. Otherwise the
course of events differs between the two games, In a game that madels the current
U.S. legislatute, rejection of a bill in period ¢ leads to a given partition d' of the
pie, where 0 < df < } fori = 1,2, 3; the governing coalition (the set from which
the proposer of a bill is drawn) remains the same in period 2 following a rejection
in period 1. In a game that models the current UK. legislature, rejection of a bill
brings down the government; a new governing coalition is determined randomly,
and no legislator receives any payoff in that period. Specify each game precisely
and find its subgame perfect equilibrium outcomes. Study the degree to which the
governing coalition is cohesive (i.e. all its members vote in the same way).

7.6.2 Using chance moves to model mistakes

A game with chance moves may be used to model the possibility that players make
mistakes. Suppose, for example, that two people simultaneously choose actions.

7.6 Allowing for exogenous uncertainty
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A B
A 1,100
B 0,000

Figure 229.1 The pl 3 i . .
tion 762 players’ Bernoulli payoffs to the four pairs of actions in the game studied in Sec-

E;lch person may c.hoose either A or B. Absent the possibility of mistakes, suppose
that Lhe Sltua;lOl; is modeled by the strategic game in Figure 229.1, in which the
numbers in the boxes are Bernoulli ff. i N ilibri
(a4} nos (BB i payoffs. This game has two Nash equilibria,
Now 3 i i

Lo adis:}:;p].ahuus;e th;t each person may make 2 mistake. With probability 1 — p; >
z chosen by person'i is the one she intends, and with probability p, < }
it is her other action. We can model this situation as the following extensive : mi
with perfect information, simultaneous moves, and chance moves. #

Players The two people.

Terminal histories  All sequences of the form ((W, X), Y, Z), where W, X, Y, and
Z are all either A or B; in the history ((W,X),Y, Z) player 1 chocl)se; W
player 2 chooses X, and then chance chooses Y for player 1 and Z for player 2,

Playfei }:unc(ion P(2) = {1,2} (both players move simultaneously at the start
:)he pe1 ag;emrse)},1 and PEV(\g, }f() = Pl((W, X),Y) = {c} (chance moves twice after
ave acted, first i d i §

e rst selecting player 1's action and then player 2’s

Actions  The set of actions available to each player at the start of the game, and
to chance at each of its moves, is {4, B}. '

Ch.ance probabilities  After any history (W, X), chance chooses W with probabil-

1(t(yv; ;( )ply z)mdhplayer 1’s other action with probability p;. After any history
,X),Y), chance chooses X with probability 1 — i

action with probability p,. ’ g S

Preferences Eacb player’s preferences are represented by the expected value
of a Bernoulli payoff function that assigns 1 to any history ((W, X), A, A)

(in which chance chooses the acti
i action A for each player), and 0 to any other

The players in this game move simultaneously, so
equilibria of the game are its Nash equilibria. TZ ﬁndﬂ:f\: tI}\IIZsSl:ziitirlliirri’:rfifc t
cor?struct the strategic form of the game. Suppose that each player chooses’ th:
act.n.)n A. Then the outcome is (A, A) with probability (1~ p;)(1 — p2) (the prob-
ability that neither player makes a mistake). Thus each player’s expecied a 13:vff is
(1= p1)(1 — p2). Similarly, if player 1 chooses A and player 2 chooses B,Pt)th the
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¢ form of the extensive game with chance moves that models the situation in

Figure 230.1 The strategi
each player | in the game in Figure 229.1 chooses an action djfferent from the

which with probability p;
one she intends.

outcome is (A, A) with probability (1 — p1)p2 (the probability that player 1 does
not make a mistake, whereas player 2 does). Making similar computations for the
other two cases yields the strategic form in Figure 230.1.

For py = ps = 0, this game is the same as the eriginal game (Figure 229.1); it
has two Nash equilibria, (A, A) and (B, B). If at least one of the probabilities is
positive then only (A, A) is a Nash equilibrium: if p; > 0, then (1 - PP = PP
(given that each probability is less than 1), That is, only the equilibrium (A, A) of
the original game is robust to the possibility that the players make small mistakes.

In the original game, each player’s action B is weakly dominated (Definition
46.1). Introducing the possibility of mistakes captures the fragility of the equilib-
rium (B, B): B is optimal for a player only if she is absolutely certain that the other
player will choose B also. The slightest chance that the other player will choose A
is enotigh to make A unambiguously the best choice.

We may use the idea that an equilibriuny should survive when the players may
make small mistakes to diseriminate among the Nash equilibria of any strategic
ganie. For two-player games in which each player has finitely many actions, the
equilibria that satisfy this requirement are precisely those in which no player’s ac-

tion is weakly dominated. For games with more than two players, no equilibrium
in which any player’s action is weakly dominated satisfies the requirement, but
equilibria in which no player’s action is weakly dominated may fail to satisfy the
requirement, as the following exercise shows.

@ Exercist 230.1 (Nash equilibria when players may make mistakes) Consider the
three-player game in Figure 230.2. Show that (A, A, A) is a Nash equilibrium in
which no player’s action is weakly dominated, Now modify the game by assum-
ing; that the outcome of any player i's choosing an action X is that X occurs with
probability 1 — p; and the player’s other action occurs with probability p; > 0.
Show that (4, A, A) is not a Nash equilibrium of the modified game when pj < 3

fori=1,2,3.

A B A B
A 11100, A 01,0100
B 111 1,01 B 1,10 0,0,0]
A B

Figure 230.2 A three-player strategic game in which each player has two actions. Player 1 chooses a
row, player 2 chooses a column, and player 3 chooses a table.
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.:»urn;: o{ the sinm!io_ns we have studied do not fit well into the idealized setting
Sc; l"IE atead_\.r statul interpretation of a subgame perfect equilibrium discussed in
: ‘thm} 5.4.4, in which each player repeatedly engages in the same game with a va-
::-I:- {k ? randomly selected opponenis, In some cases an alternative interpretation
;!:, rt’v:';t each player deduces her optimal strategy from an analysis of the other
ayers” best actions, given her knowledge of thei cos, iscuss
o e e i ir preferences, Here | discuss a
. (.onsnderolhc: game in Figure 231.1, in which player 1 moves both before and
.1I erjp;a,ycr 2) I‘hts game has a unique subgame perfect equilibrium, in which
P ay; r I‘ s strategy is (B, F) and player 2's strategy is C. Consider player 2's analy-
s;{s :IJ this game. If she deduces that the only rational action for player 1 at the start
o .l e game is B, then what should she conclude if player 1 chooses A? 1t seems
tha; she must ;‘Sndude that something has “gone wmﬁg”' perhaps p]u}rer.l has
made a “mistake”, or she mi 5 s g
maden » or she misunderstands player 1% preferences, or player 1 is not
If she is convinced that play i i
player 1 simply made a mistake, then her analysis of th
;est of the gamie should not be affected. However, if player 1's move ind u)::es hnz:' l:
tlo:lt:l play;.'r 1's motivation, she may need to reconsider her analysis of the rest of
e game. Suppose, for example, that A and E model similar actions; specifically,
?upﬁnsehtha{ lhe‘y bol‘h correspond to player 1's moving left, whereas B and F botl':
invalve her moving right. Then player 1's choice of A at the start of the game may
rfl\‘al-cc plf!}rer 2 wondf:r whether player 1 confuses left and right, and therefore may
-; f m; .Ifl]cr Ilhe ]nst‘:ry (A,C). 1f so, player 2 should choose D rather than C
E er | chooses A, giving player 1 ani v
e g play n incentive to choose A rather than B at
1The .next two examPles. are richer games that more strikingly manifest the diffi-
culty w1tf1 the alternative interpretation of subgame perfect equilibrium. The first
example is an extension of the entry game in Figure 156.1. .

* EXAII(VIPLE 2.31.1 (Chain-store game) A chain store operates in K markets. In each
market a single challenger must decide whether to compete with it. The chal-

0,0 1,2
Figure231.1 An extensive game in which player 1 moves both before and after player 2.

Is




232 Chapter 7. Extenslve Games with Perfect i ions and Di: 1

Challenger k

In Out

chain store

Acquiesce 1,2

2,1 0,0

Flgure 232.1 The structure of the players’ choices in market k in the chain—stere game. The first number
in each pair is chailenger ks profit and the second number is the chain store’s profit.

lengers make their decisions sequentially. If any challenger enters, the chain store
may acquiesce to its presence (A) or fightit (F). Thus in each period k the cutcon?e
is either Out (challenger k does not enter), (In, A) (challenger k enters and lhe.' chain
store acquiesces), or (In, F) (challenger k enters and is fought). When Ilakmg an
action, any challenger knows all the actions previously chosen. The pn_)f:ts of chal-
lenger k and the chain store in market k are shown in Figure 232_. 1 !cf . Figure 156.1);
the chain store’s profit in the whole game is the sum of its profits in the K maf'kels.

We can model this situation as the following extensive game with perfect infor-
mation.

Players The chain store and the K challengers.

Terminal histories The set of all sequences (e1,...,¢ex), where each ¢; is either
Out, (In, A), or (In, F).

Player function The chain store is assigned lo every history that ends with In,
challenger 1 is assigned to the empty history, and challenger k (fork =2,...,
K) is assigned to every history (¢q,.... ¢r.1), where each ¢ is either Out,
(In, A), or (In, F).

Preferences Each player’s preferences are represented by its profits.

This game has a finite horizon, so we may find its subgame Rerfect equilibria
by using backward induction. Every subgame at the start of whl_ch challenger ‘K
moves resembles the game in Figure 2321 for k = K; it differs only in that the chain
store’s profit after each of the three terminal histories is greater by an anwuf\l (!t:]llili
to its profit in the previous K — 1 markets. Thus in a subgame perfect equilibrium
challenger K chooses It and the incumbent chooses A in market K.

Now consider the subgame faced by challenger K — 1. We know that the out-
come in market K is independent of the actions of challenger K — 1 and the chain
store in market K — 1: whatever they do, challenger K enters and the chain store ac-
quiesces to its entry. Thus the chain store should choose its action in mar!-:el K- '1
on the basis of its payoffs in that market alone. We conclude that the cl.mm‘ store’s
optimal action in market K — 1is A, and challenger K —1's ‘TP““.‘M action is In.

We have now concluded that in any subgame perfect equilibrium, the outcome
in each of the last two markets is (In, A), regardless of the history. Continuing to
work backward to the start of the game we see that the game has a unique subgame
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perfect equilibrium, in which every challenger enters and the chain store always
acquiesces to entry.

@ EXERCISE 233.1 (Nash equilibria of chain-store game) Find the set of Nash equilib-
rium outcomes of the game for an arbitrary value of K. (First think about the case
K =1, then generalize your analysis.)

@ EXERCISE 233.2 (Subgame perfect equilibrium of chain-store game) Consider the
following strategy pair in the game for K = 100. For k = 1,...,90, challenger k
stays out after any history in which every previous challenger that entered was
fought (or no challenger entered), and otherwise enters; challengers 91 through
100 enter. The chain store fights every challenger up to challenger 90 that enters
after a history in which it fought every challenger that entered (or no challenger
entered), acquiesces to any of these challengers entering after any other history,
and acquiesces to challengers 91 through 100 regardless of the history. Find the
players’ payoffs in this strategy pair. Show that the strategy pair is not a subgame
perfect equilibrium: find a player who can increase her payoff in some subgame.
By how much can the deviant increase its payoff?

Suppose that K = 100. You are in charge of challenger 21. You observe, con-
trary to the subgame perfect equilibrium, that every previous challenger entered
and that the chain store fought each one. What should you do? According to
the subgame perfect equilibrium, the chain store will acquiesce to your entry. But
should you really regard the chain store’s 19 previous decisions as “mistakes”?
You might instead read some logic into the chain store’s deliberately fighting the
first 20 entrants: if, by doing so, it persuades more than 20 of the remaining chal-
lengers to stay out, then its profit will be higher than it is in the subgame perfect
equilibrium. That is, you may imagine that the chain store’s aggressive behavior
in the earlier markets is an attempt to establish a reputation for being a fighter,
which, if successful, will make it better off. By such reasoning you may conclude
that your best strategy is to stay out.

Thus, a deviation from the subgame perfect equilibrium by the chain store in
which it engages in a long series of fights may not be dismissed by challengers as
a series of mistakes, but rather may cause them to doubt the chain store’s future
behavior. This doubt may lead a challenger who is followed by enough future
challengers to stay out.

¢ EXAMPLE 233.3 (Centipede game) The two-player game in Figure 234.1 is known
as a “centipede game” because of its shape. (The game, like the arthropod, may
have fewer than 100 legs.) The players move alternately; on each move a player
can stop the game (S) or continue (C). On any move, a player is better off stopping
the game than continuing if the other player stops immediately afterward, but is
worse off stopping than continuing if the other player continues, regardless of the
subsequent actions. After k periods, the game ends.
This game has a finite horizon, so we may find its subgame perfect equilibria
by using backward induction. The last player to move prefers to stop the game
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C 1 C 2 € L € 2 C 44

2,0 1,3 4,2 3,5 6,4 57

Figure 234.1 A six-period centipede game.

than to continue. Given this player’s action, the player who moves before her
also prefers to stop the game than to continue. Working backward, we conclude
that the game has a unique subgame perfect equilibrium, in which each player’s
strategy is to stop the game whenever it is her turn to move. The outcome is that
player 1 stops the game immediately.

@ EXERCISE 234.1 (Nash equilibria of the centipede game) Show that the outcome
of every Nash equilibrium of this game is the same as the outcome of the unique
subgame perfect equilibrium (i.e. player 1 stops the game immediately).

The logic that in the only steady state player 1 stops the game immediately is
unassailable. Yet this pattern of behavior is intuitively unappealing, especially if
the number k of periods is large. The optimality of player 1’s choosing to stop
the game depends on her believing that if she continues, then player 2 will stop
the game in period 2. Further, player 2's decision to stop the game in period 2
depends on her believing that if she continues, then player 1 will stop the game
in period 3. Each decision to stop the game is based on similar considerations.
Consider a player who has to choose an action in period 21 of a 100-period game,
after each player has continued in the first 20 periods. Is she likely to consider the
first 20 decisions—half of which were hers—"mistakes”? Or will these decisions
induce her to doubt that the other player will stop the game in the next period?
These questions have no easy answers; some experimental evidence is discussed
in the accompanying box.

EXPERIMENTAL EVIDENCE ON THE CENTIPEDE GAME

In experiments conducted in the United States in 1989, each of 58 student sub-
jects played the game shown below (McKelvey and Palfrey 1992). (The payoff
of player 1 is the top amount in each pair) Each subject played the game 9 or
10 times, facing a different oppenent each time; in each play of the game, each
subject had previously played the same number of games, Each subject knew in
advance how many times she would play the game, and knew that she would not
play against the same opponent more than once. If each subject cared only about
her own monetary payoff, the game induced by the experiment was a six-period
centipede.

7.7 Discussion: subgame perfect equillbrium and backward induction 235

1 C 2 Cc 1 Cc 2 ¢c 1 ¢ 2 ¢ $25.60
$6.40

$0.40 $0.20 $1.60 $0.80 $6.40
. . ! $3.20
$0.10 $0.80 $0.40 $3.20 $1.60 $12.80

The fraction of plays of the game that ended in each period is shown in the
graph below. (A game is counted as ending in period 7 if the last player to move
chose C. The graph is computed from McKelvey and Palfrey 1992, Table IIIA.)
Results are broken down according to the players’ experience (first 5 ;ounds last.5
rounds). The game ended earlier when the participants were experienced, bu’t even

among experienced participants the outcomes are fa
I : r from the Nash equilibri
outcome, in which the game ends in period 1. R

0.4 "
4 First 5 rounds
0.3 | h Ml Last 5 rounds
02‘ i
[ " B 1
0.1 i B ’
| T 0 B B =

Period

Ten plays of the game may not be enough to achieve con

state: But putting aside this limitation of the%:lata, and supposifgr%;;ltc ::r(:vae:t:‘iz
Ziv?fs mf fact aiﬁe\}/led at the end of 10 rounds, how far does the observed behgavior

iffer from a Nash equilibrium (maintaini i
e ek ?n po— P(ayof f)t?ammg the assumption that each player cares

. The theory of Nash equilibrium has two components: each player optimizes
given .her beliefs about the other players, and these beliefs are correct. Some deci:
sions in McKelvey and Palfrey’s experiment were patently subopﬁmall regardless
of t'he subjects’ beliefs: a few subjects in the role of player 2 chose to ,coni’nue in
period 6, obtaining $6.40 with certainty instead of $12.80 with certainty. To assess
the.depart-ure of the other decisions from optimality we need to assign tl:le subjects
beliefs (which were not directly observed). An assumption consistent with] the
steady state interpretation of Nash equilibrium is that a player’s belief is based on
her observations of the other players’ actions. Even in round 10 of the experiment
each player had only nine observations on which to base her belief, and Col:l’lld have
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used these data in various ways. But suppose that, somehow, at the end of round 4,
each player correctly infetred the distribution of her opponents” strategics in the
next 5 rounds. What strategy should she subsequently have used? From McKelvey
and Palfrey (1992, Table I1iB) we may deduce that the optimal strategy of player 1
stops in period 5 and that of player 2 stops in period 6. That is, each player’s
best response to the empirical distribution of the other players’ strategies differs
dramatically from her subgame perfect equilibrium strategy. Other assumptions
about the subjects” beliefs rationalize other strategies; the data seem too limited o
conclude that the subjects were not optimizing, given the beliefs their experience
might reasonably have led them to hold. That is, the experimental data are not
strongly inconsistent with the theory of Nash equilibrium as a steady state.

Are the data inconsistent with the theory that rational players, even those with
no experience playing the game, will use backward induction to deduce their op-
ponents’ rational actions? This theory predicts that the first player immediately
stops the game, so certainly the data are inconsistent with it. How inconsistent?
One way to approach this question is to consider the implications of each player’s
thinking that the others are likely to be rational, but are not certainly so. If, inany pe-
riod, player 1 thinks that the prabability that player 2 will stop the game in the next
period is less than '-:‘.. continuing yields a higher expected payoff than stopping.
Given the limited time the subjects had to analyze the game (and the likelihood
that they had never before thought about any related game), even those who un-
derstood the implications of backward induction may reasonably have entertained
the relatively small doubt about the other players’ cognitive abilitics required to
make stopping the game immediately an unattractive option. Or; alternatively, a
player confident of her opponents’ logical abilities may have doubted her oppo-
nente’ assessment of fier owon analytical skills. If player 1 believes that player 2
thinks that the probability that player 1 will continue in period 3 is greater than i
then she should continue in period 1, because player 2 will continue in period 2.
That is, relatively minor departures from the theory yield outcomes close to those
observed.

Notes

The idea of regarding games with simultaneous moves as games with perfect
information is due to Dubey and Kaneko (1984),

The model in Section 7.3 was first studied by Ledyard (1981, 1984). The ap-
proach ta voling in commitlees in Section 7.4 was initiated by Farquharson (1969)
(see also Niemi 1983). (The publication of Farquharson’s book was delayed; the
book was completed in 1958.) The top cycle set was first defined by Ward (1961)
(who called it the “majority set”). The characterization of the outcomes of sophis-
ticated voting in binary agendas in terms of the top cycle set is due to Miller (1977)
(who calls the top cycle set the “Condorcet set”), McKelvey and Niemi (1978), and
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