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3 Extensive-Form Games

e

3.1 Tntroduction’

In the examples we examined in part 1, such as the stag hunt, the prisoner‘s
dilemmat, and the battle of the Sex¢s, the players choose their actions
simultancously. Much of the recent interest in the economic applications
of game theory bas been in situations with an important dynamic structure,
such as entry and entry deterrence N industrial organization and the
“fime-gonsistency” problem in mucroeconomics, Game theorists use the
contepl of o game in extensive form 1o model such dynamic situations:
The extensive form makes explicit the order in which pliyers move, and
what each player knows when making each of his decisions. In this setting,
sttntogics correspond Lo contingent plans instead of uncontingent actions.
As we will see, the extensive form can be viewed as & multi-playet genoral-
jration of & deeision tree. Mot surprisingly, wmany results and intuitions

from decision theory have game-theoretic analogs. We will also see how 10

build up the strategic-form representation of & game from its extensive
form. Thus, we will be able to apply the concepts and results of part 110
dynamic games.

As 1 simple eximple of an extensive-form game, consider the idea of a
" in a duopely. As in the Cournot model, the

sgtacketberp equilibrium

actions of the firms are choices of output levels, 4 for player | and dz

for player 2. The difference is thatl we now suppose that player 1. the I
hooses her output level @ first, and that player 2

“Srackelberg leader” ¢
abserves g, before choosing his own outpul lovel. To make things conerele,
we suppose that production is costless, and that demand 15 linear, with

plag) = 12— 4,59 that player I's payoll is uildy42) = (12 = (g + sl 14
How should we extend the iden of Mash equilibrivm 1o {liis setting? And
how should we expect the players to play?
Since player 2 observes player 1's choice of putput iy befors choosing
fay 0 principle player 2 could condition his choice of g, on the obseryed
level of i, . And since pluyer | moves first, she cannot condition her output
onplayer 2's, Thus, itis natural that playes s strategies in this game should
e maps of the form 55: Q, - Qs (where 0, is the space of feasible ¢, and
Qs the space of feasible q3'sh while player 1's strategics are simply choices
of ;. Givena (pure} stralegy profileof this form, the outcome is the ontput
yeetor (g, 53l ). with payolls wlqy. 52k )

Now that we have identified strategy spisees and the payoff functions, we
can define a Nash cquilibrium of this game in the obvious way: 1 a strategy
profilesuch that neither player can gain by switching loa diferent strategy.
Let's consider two particular Nash equilibrin of this game.

The first cquilibrium gives rise to the Stackelberg output levels no rmudly

ated with thiz game. In this equilibrium, player s stralegy 5; 1510
1he level of q; (hat solves maXy, 1y(gy 1) 50 that is

nssocl
choose, for each 4y,
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identically equal to the Cournot reaction function ry defined in chapter L.
With the payoffs we ave specified, raf) = 6 — 4u/2 ]
Nash equilibrium requires l?g_&l player I's strategy maximize her payo
i ! t level ¢# is the solution 10

given that 53 = <o that player 1's ontpy qf s -:
max,, (g, 729 1), which with the payoffs we specified gives gf = 6. ;
The output levels (a1 raat)) (here equal 1o (6,3)) are cn]icd th{':.'m-lcku -
harg outcome of the game; this is the ! ¢ ¢col t dnn:
taught to expect. In the usual case, ry 1§ & docﬂ.:n.smg function, and s0
player 1 can decrease player 2's outpul by increasing l_n:r own. Asa rtsu'!:.
player I's Stackelberg outpul Jevel and payolf are lypu:ai!y higher than in
the Cournot equilibrium where both players move simultancously, .arld
- player 2's output and payoll ire typically lower. _[In our case the unigue
Cournot cquilibrium is 4§ = 45 = 4, with payoffs of 16 r.ar.lj: in the Stuckel-
berg equilibrium {he leader's payofl is 18 and the follower's s 9.]‘ o
Though the Stackelberg outcome may scom the natural pmd_tchon n this
game, there are many other Nash equilibria. pne of them is the prol'ﬂ_c
Yy =45 8@ = g for all " These strategies really nre a Nash cqui-
librium: Given that player 2's output will be ¢§ independent of iy .Iplu;cr
1's problem is to maximize 1, (g, q§), and by definition this mc:mmlznuo?
is solved by the Cournol output 5. And given that 4, = @, player s
payollwill beu (g sala$)), which is maximized by an { strategy 5, such that
5alq§) = 45, including the-constant strategy 5;() = 4§. Note, though, that
this strategy is not a best response o other output levels that player 1 might
have chosen but did not; ie., g% is not in general a best response 1o ¢, for
<
q‘si‘iv‘e' have identified two Nash equilibria for the game where player 1
chooses her cutput first: one equilibrium with the “Srackelberg outputs”
and one where the output levels are the same as if the piayers moved
simultaneously. Why is the first c_quilibﬂum more reasonable, and what
is wrong with the second one? Most game Theorists would answer lhal“the
second cquilibrivm is “not credible,” as it relies on an "cm'pty lht‘l:ut by
player 2 to hold his output al S regardless of player l‘:_; choice. Thts ‘h"m.
is empty because if player | were to present player 2 with the fair accompli
of choosing the Stackelberg outpul g}, player2 would do better to choose
different level of g,--in particular, 43 = ralg?). Thus, if player | knows
player 2's payolls, the argument goes, she should not believe that player 2
would play ¢ no matter what pluyer I's output. Rather, player 1 should
predict that player 2 will play an optimal response o whmcv_er qy player
1 ectually chonses, so that pluyer 1 should predict that whitever Icw‘:I
of 4, she chooses, player 2 will choose the optimal response r_,(th). This:
argument picks ont the “Stackelberg equilibrium” 28 the unigue credi-
ble outcome. A more formal way of putting this is that the Stackelbers
equilibrium is consistent with hackward induction, so culled because the
idea is to start by solving for the optimal choice of the last mover for cach
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possible situation he might face, and then work backward to compute the
optimal choice for the player before. The ideas of eredibility and backward
induction are clearly present in the textbook analysis of the Stuckelberg
game; they were informatly applied by Schelling (1960) to the analysis ol
commitment in o number of settings. Selten (1965) formalized the intuition
with his concept of & subgame-perfect equitibrium, which extends the iden
of backward induction to extensive games where players move simultas
neously in several periods, so the buckward-induction algorithm is not
applicable because there are several “lust movers” und each of them must
know the moves of the others to compute his own optimal choice,

This chapter will develop the formalism for mod ling extensive games
and develop the solution concepts of backwird induction and subgame
perfection. Although the extensive form is o fundamental concept in game
thesry, its definition may be a bit detnited for readers who are more
interested in applications of games than in mastering the general theory.
With such readers in mind, section 3.2 presents a first look at dynamic
games by treating it class of games with a patticularly simple structue: the
cluss of “multi-stage games with observed actions” These gumes have
“stages” such that (1) in each stage every player knows all the actions taken
by any player, including “Nnture,” ot any previous stage, and (2) players
move “simultancously” within cach stage.

Though very special, thiscluss of games includes the Stackelberg example
we have just discussed, ns well as miny other examples from the econoniics
literature, We use multisstage games to illustrate the idea that strategies
cin be contingent plans, and to give a first definition of subgame perfection.
As an illustration of the pls, subsection 3.2.3 di how to model
the idea of commitment, and addresses the particulnr example called the
“fime-consistency problem” in macroeconomics, Readers who lagk the
time or interest for the g 1 ive-game model are advised to skip
{rom the end of section 3.2 (o section 3.6, which givesa few cautions about
the potential drawbacks of the ideas of backward induction and subgame
peefection.

Section 3.3 introduces the concepts involved in defining an extensive
form. Section 3.4 discusses strategies in the extensive form, called “behavior
strategies,” and shows how to relate them to the strategic-form strutegies
i d in chapters | and 2. S 3.5 gives the genoral definition of
game petfection. We postpone discu ol more powerlul equilibrium
refinements to chapters 8 and 11 in order to first study several interesting
classes of games which can be fruitfully nnalyzed with the tools we develop
in this chapter.

Readers who already have some informal und ding of dy
games ‘and subgame perfection probably already know the material of
stotion 3.2, and are invited to skip directly to section 3.3, (Teaching note:
When planning to cover all of this chapter, it is probably not worth taking
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the time to teach section 3.2 in class; you may or may not want to ask the

students to read it on their own.)

%
ames with Observed Actions'

32 Commitment and Perfection in Multi-Stage G

321 Whatlsa Multi-Stage Game?

4 more pregise definition of a “multi-stage game

Our first step i 10 give
meant that (1) all

with observed actions.” Recall that we said that this
players kiew the actions chosen at all previous stages 0,1,2,...,k — 1 when
choosing their actions at slage k, and that (2) all players move “simulta-
neously” in cach stage k. (We adopt the convention that {he first stage is
“stage 0" in order to simplify the notation coneerning discounting when
slages are interpreted as periods.) Pluyers move simultaneously in stage
I if each player chooses his or her action at stage k without knowing the
stage-k action of any other player. Common usage to the contrary, “simul-
taneous moves” does not exclude games where players move in alterna-
tion, as we allow for the posibility that some of the players have the
one-clement ¢hoice set “do nothing." For cxample, the Stackelberg game
has two stages: In the first stage, the leader chooses-an output level {and
the follower “does nothing”). in the second stage, the follower knows the
|eader's output and chooses anoutput level of his own (and the leader “does
nothing”). Cournol and Bertrand games are one-stage games: All playors
choose their actions al once and the game ends. Dixit’s {1979) model of
entry and entry deterrence {based on work by Spence (1977) is & more
complex example: In the first stage of this game, an incumbont invests
in capacity; in the gecond siage, an entrant observes the capucity choiec and
decides whether Lo enter. I there is no entry, the incumbent chooses putput
as a monopolist in the third stuge; if enlry GLCurs, the two firms choose
output simultaneously s in Cournot competition.
Often if is natural to identily the “gtages” of the game with time periods,
but this is not always the case. A coun/ ple is the Rubi in-Stihl
model of bargaining (di 1in chapter 4), where cach “time period” has
two stages. In the first stage of cach period, one player proposes an agres-
ment; in the second stage, the other player cither accepts or rejests the
proposal. The distinction is that time periods refer lo some physical mea-
sure of the passing of time, such g the accumulation of delay costs in the
bargaining model, whereas the stages need not have o direct tempornl
interpretation.
In the first stage of a multi-stage game (stage 0), all playersie F simulia-
neously choose actions from choice sets A,(h%). (Remember that some ol
the chioice sets may be the singleton “do nothing” We let b’ = @ e the
“history” ut the start of play.) At the end of each stage, all players observe
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the stage's action profile. Let a%=(al ..., %) be the stage-0 action profi
AE the beginning of stage 1, players know history h', wst‘:i‘fhmn b‘;:upmr:z
with a* given that K is trivial, In general, the actions player { has available
i:: stage | may depend on what has happened previously, so we let A"y
¢ : the possible sceond-stage ions when the history is h', Continuing
iteratively, we define i***, the history at the end of stage k, to be the
sequence of actions in the previous periods,

K+l
R = (a0,

m_-;d we let A,(hE*) denote player s feasible actions instage k + 1 when the
history is h**'. Welet K -+ | denote the total number of stages in the game,
with ﬁ.u: understanding that in some applications K = +m.mrmponding'
to an infinite umber of stages; in this case the “outcome” when the game
is played will be an infinite history, h”. Since cach h**! by definition
describes an entire sequence of actions from the beginning of the game on
the set HE'" of all “terminal histories™ is the same as the set of pu&ﬁihlt;
ontcomes when the game is played.

In this sctting, a pure strategy for player i is simply 2 contingent plan
ol_‘ !mw_w play in cach stage k for possible history . (We will postpone
discussion of mixed strategics until section 3.3, as they will not be used in
lI!c examples we disouss here.) 1T we let H* denote the set of all stage-k
histories, and let

A(HY) = ,kU,,k AR,

a pure strategy for player i is a sequence of mips {s¥)K. 0, Where cach s}
maps H* to the set of player s feasible actions A,(H") (i.e., satisfies 5 (") €
A(h) for all B, 1t should be clear how to find the sequence of actions
generated by a profile of such strategies: The stage-0 actionsarea® = s°(h").
the stage-1 actions arc o' = s'(a"), the slage-2 actions are o® = s*a" a')
n{ld .w_ on. Thisis called the path of the strategy profile. Since the lcminni
hilsmnes represent an enlire sequence of play, we can represent each player
i's p:fyol'l' as o funetion u: HE*' = R, In most applications the payoff
functions are additively separable over stages (ie., cach player's overall
payoffis some weighted average of single-stage payolls gia') k= 0,....K)
bt _lhis restriction is not necessary. ' I
Since we can #ssign an outcome in H*'! to cach strategy profile, and a
payoll vector to each outcome, We can now compute the payoll to any
strategy profile; in an abuse of notation, we will represent the payolf vector
to profile 5 05 ufs) A (pure-strategy) Nash equilibrium in this context is
simply a strategy profile s such that no player i can do better with a different
stratepy, which is the familiar condition thatw(s, 5. ) = siyfsf, 5 - Toralls),
The Cournot and Bertrand “equilibrin” discussed in chapter | are trivial
oxnmpies of Nash equilibria of multi-stage (actunlly one-stige) games. We
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Nash equilibria when we discussed the Stackel-
inni i We also saw that some of these
berg game at the beginning of this chapter. \ of the
Nafl:.s:quilibfia may rely on “empty threats” of suboptimal play at histories
thit are not expected 10 occur—ithat is, at historics off the path of the

equilibrium.

saw two other examples of

and Subg: Perf

In the Stackelberg game, it was csy 1o see how player 2 “ought” to play,
because onee g, was fixed player 2 ficed o simple decision _pmblem. This
allowed ug to solve for player 2's optimal second-stage choice for each 0
and then work backward to find the optimal choice for player 1. This
algorithm can be extended to other games where only one player ym:esm
each stage. We say that a multi-stage game has perfect irgformfmon if, for
every stage k and history I#*, exactly one player has a nontrivial cholce
set—a choice set with more than one clement—and all the others bave the
one-element choice set “do nothing." A simple example of such a game has
player 1 moving in stages 0, 2, 4, cte. and player 2 moving ln.stagt:.s 1,35
and so on. More generally, some players could move several times in & oW,
and which player gets to move in stage k could depend on the previous
history. The key thing is that only onc player moves it muhslugc k. SIIWF
we have assumed that each player knows the pist choices of all rivals, this
implies that the single player on move at kis “po:rfecily informed” of all
aspects of the game except those which will occur in the future. )
Backward induction can be applied to any finite game of perfect informa-
tion, where finite means that the number of stages is finite sfnd the mlmnhur
of feasible actions at any stage is finite, two.! The algorithm begins by
determining the optimal choices in the linal stage K for each history
hK—that is, the action for the player on move, given history h*, that
maximizes that player’s payoff conditional on k* being reached. (There may
be more than one maximizing choice; {n this case backward induction
allows the player to choose any of the misximizers.) Then we work back to
stage K — 1,and determine the optimal action for the pluyf:r OnMove lhe.re.
given that the player on move at slage K with history h® will play Lhc action
we determined previousty. The algorithm proceeds 10 “roll back, just as
in solving decision problems, until the initial stage is reached. At this pon?t
we have constructed a strategy profile, and it is ensy to verify that this
profile is a Nash equilibrium. Moreover, it _hns the nice property that each
player’s actions are optimal at every possible history. ‘
The argument for the backward-induction solution in the two-stag‘e
Stackelberg game—that player | should be able to forecast player 2's
second-stage play—strikes us as quite compelling. In a three-stage game,

1. Section 4.6 extends backward induction to infinite games of perfect informalion, where
there is no last period from which to work backward.
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the argument is a bit more complex: The player on move at stage 0 must
forecast that the player on move at stage | will correctly forecast the play
of the player on move al stage 2, which clearly is a more demanding
hypothesis. And the arguments for backward induction in longer games
require correspondingly more involved hypotheses. For this reason,
backward-induction arguments may not be compelling in “long” games.
For the moment, though, we will pass over the arguments against backward
induction; section 3.6 discusses its limitations in more delail.

As defined above, backward induction applies only to games of perlect
information. It can be extended to a slightly larger class of games. For
instance, in a multi-stage game, if all players have a dominant strategy in
the lust stage, given the history of the game (or, more generally, if the last
stageis solvible by iterated strict dominance), one can replace the last-stage

by the dominant st then consider the penultimate stage
and apply the same reasoning, und so on. However, this doesn't defline
backward induction for games thit cannot be solved by this backward-
induction version of dominance solvability. Yet one would think that the
backward-induction idea of predicting what the players are likely to choose
in the futurc ought to casry over to more general games. Suppose that a
firm—cali it firm 1—has to decide whether or not to invest in a new
cost-reducing technology. Its choice will be observed by its only competi-
tor, lirm 2. Once the choice is made and observed, the two {irms will choose
output levels simultaneously, as in Cournot competition. This is a two-
stage garne, but not one of perlect information. How should firm 1 forecast
the second-period output choice of its opponent? In the spirit of equi-
fibrium analysis, a natural conjecture is that the second-period output
choices will be those of a Cournot equilibrium for the prevailing cost
structure of the industry. That is, each history h' generates a simultaneous-
move game between the two firms, and firm { forecasts that play in this
game will correspond to an equilibrium for the payoffs prevailing under h'.
This is exactly the idea of Selten’s (1965) subgame-perfect equilibrium.

Delining subgame perfection requires a few preliminary steps. First, since
all players know the history h* of moves before stage k, we can view
the game from stage k on with history k* as a game in its own right, which
we will denote G(h*). To define the payofl functions in this game, note that
ifthé actions in stages k through K are a* though a¥, the final history will be
KR = (R¥,a¥, ", ., a¥), and so the payofls will be u(h®*"). Strategies
in G(h*) are delined in the obvious way: as maps from histories to actions,

where the only historics we need consider are those consistent with h*. So
now we can speak of the Nash equilibria of G(h*).

Next, any strategy profile s of the whole game induces a strategy profile
s{k* on any G(h*) in the obvious way: For each player i, 5;|h* is simply the
restriction of s, to the hislories consistent with 18
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l
2 e with observed a decision problem-—such commitments cannot be of value, as any payoff
Definition 3.1 A strategy prlﬂ;‘[; L‘:: i? :::'lt\:;?ﬁ? f:., restriction sih* o that a player could attain while playing uceording to the commitment could
actions s o subgame-perfect equl G oot ! be attained by playing in exactly the same way without being committed
G(*) is & Nash cquilibrium of (- o i to do s0. With more than one player, though, commitments can be of value,
This definition reduces Lo hnckwnrd_im_lnuti_on in ﬁml; %“ir;m‘utrhf;mni since by committing himsell to s given secuence of actions a player may
sforeaation, for 1be only Nash equilibrium in slﬂmﬂ I{ 'M““monm - be able to alter the play of bis opponents. This “paradoxi 1 vitlue of
stage is for the player on move 10 choose (one of) his “":c, S in the meALDF commitment is closely related (o onr observation in chapter 1 that a player
in backward induction, the only Nash-cq!nuhfium & mﬁ{nnduclim‘ and can gain by reducing his action set or deereasing his payoll to some
|nst stage given Nash play at the last slapeisasin backward v v outcomes, provided that his opponents ire aware of the change. Indeed,
<) some forms of commitment can be represenied in exactly this way.
o3 The way to model the possibility of commitments (ind related moves like
Example ) . . ' he following model of “promises”) is to explicitly include them as a tions the players can take.
Tao il.lusll:nlc the \dc_as of this :cc;l::l fou::!“;lmti iany ﬁom havea {Schelling (1960) was anearly proponent of this view.) We have alrgady seen
strategic investment in duopoly: _“ Firm | can install a new | echnology one example of the value of commitment in our study of the Stackelberg
constant average cost of 2 per “m 3 \alling the technology cogts f. Firm game, which deseribes a situation where one firm (the “leades”) can commit
with an uverage cost of 0 per L:-mt. l::uvcsl:i“ the new technology. Once itsell to an output level that the follower is forced to tuke us given when
2 will obierve whether or ““_‘5 :;;:w od. thie two firms will simultancously making its own output decision. Under the typical assumption that cach
firm 1's investment l%a‘:l!’-m:il s in (“c:urnul competition. Thus, thigis a firm's optimal reaction r,{q,) is & d ing function of its opponent’s:
choose output levels gy wnd 4z < output, the Stackelberg leader’s payofl is higher than in the "Cournot
Pwoeslage game. " suppose that the demand is pla) = 14—q equilibrium” outcome where the two firms choose their output levels
To define 1hcr puzm !:‘ ‘:.""_:S o aximize ity net revenue minus Costs. simultancously. _
and that each II!‘I\S it 5 + ). i it does not invest, and In the Stackelberg example, commitment is achieved simply by moving
Firm 1's payoll 13 Yo U d = %l? M g; m‘yoﬂ is[12 = (g, + 41142 carlier than the opponent. Although this corresponds Lo 4 different exten-
= (14— (g, + ga¥1g, — S (ues. l:\ilibri': we work hackward, 1f fiem 1 sive form than the simultancous moves of Cournot competition, the set of
To ﬁnd‘lh‘: subgame-per vclf‘lun“ ‘;{;,1 5. and hence their reiction “physical actions" is in some sense the same. Thesearch for a way to commit
does not invest, both firms :ﬂ_!;m reaction functions intersect at the onesell can also lead 1o the use of actions that would not otherwisc have
" functions e {'eli‘hl =6- ihlf 1..6 och 1 firm 1 dos invest, its reaction been considered, Classic examples include 5 gencral burning his bridges
point (4,4) with payofis © l sc:carl destage equilibrivm is (. 09), and behind him as & commitment not to retreat and Odysseus having himsell
bocomes 7(¢2) =7 a2 ‘F Thus, firm 1 should make the investment if {ashed to the mast and ordering his sailors (o plag their ears with wax as
firm 1'stowl payallis 1561':’2 = J a commitment 1ot 1o go to the Sirens” istand. (Note that the natural way
25619 — [ > 16,00 f < i ;9; ent inereases firm 1 second-SWge profitin to mode! the Odysseus story is with two “players.” corresponding 0
— Mote that !!.‘I.liklngihel.l‘lm “r‘l is higher at any fixed pair of outpuls, Odysseus before and Odysseus after he is exposed to the Sirens.) Both of
WO WaYs. First, firm IS_vfﬂh' e down. Second, firm 1 gains because these cases correspond to a "total commitment™; Once the bridge is burned,
ol orpwducilﬂs: iz.-usd:‘crcusc-d -'l;hc reason firm 2's outpul is or Odysseus is lashed to the mast and the sailors' cars are filled with wax,
firm 2's second-stage OUtpY 415 cost firm | altered its own second-period e cost of turning back or escaping from the mast is taken to be infinite.
- !nwcr i because by lou).vc]:::g":ndc itself “more aggressive” in thesense that One can also consider partial commitments, which incrense the vost of, .2,

: tm:cmwe-a andd in Plilr ctwc oy moroabol this kind of *self-commitment” turning back without making it infinite.

y (gz) > nlaaNferallds: te that firm 2's output would not decrease il it As # final example of the value of itment, we ider what is
in the next subsr:chom Nt:_ Sceont squaled 2 known as the “time-consistency problem” in maeroeconomics. This prob-
continued to believe that hirm lem was first noted by Kydland and Prescott (1977); our discussion draws

323 The Value of Commitment and “Time Consistency” m:'| lh:: survey by Mankiw (1988). Suppose that the government sets 1::
) . ) namic games has been inflation ratew, and has preferences over inflation and ocutpul y represent
::::[: ;ir::‘;:cirur:‘?:“:h;ﬁ::r:::r:eb::eal!l{s[lrso: tdh):: opportgunity to make 8 by ugm.y)=y— 77, 50 that it is prepared to folerate inflation if doing
i1

. i 0 increases th 1 M i he macrocconomy is such
binding commitment to play in a certain way. In a one-player game—1 nereases the output level. The working of ¥
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that only unexpected inflation changes output:
(3.0
y=y*+@m="m #,

where y* is the wpatural level™ of sutput and i:‘; the cxpa_:wd |.ni1‘nt‘:‘ml';;;1
Regardless of the timing of moves, th_r: ugents’ expectations o_f in l:ural
are cortect in any pure-strategy equilibrium, nnd-s.o outpul izt ||1; :: e
level (Ina mixcd-stmlcgyoquiﬁbriurq the expeclations mnd m:;ly Yoo
on average) The variable of interest is l!‘lus the I:vc! of u'!flmmn. .nppmc
first that the government can commil itsell to an mﬂfﬂmn rate, :.:. ®
government moves first and chooses a level of @ that is observed by he
agents, Then output will equal y* repardless of the chosen level of 7, so the
uld choose n =0, )
Eﬂzn:(my:;:;::;znd Prescott point out, thi? solution to t'hl: curr:m:;Fm:
game is not “time consistent,” menning that if the agen}a mistakenly belicy
that 7 1& set cqual to 0 when in fact the government is free to Chu‘?;: nny;
level of m it wishes, then the government would prefer to ch(::t?sc.s di arc:
level of 7. That is, the commitment solution is not an equilibrivm of the
i mitment. . '
ga;?:h‘ae’:zs::ncr;):;t cannot commit itself, it will choose thelevel of mflat.\or;
that equates the marginal benefit from increaset.'lloutput tlo tt.le maln;gtl;:at
cost of increased inflation. The government’s utility function is suc ad
this tradeofl is independent of the level of output (')l‘ the level (?f expecte
inflation, and the government will choose 7 = %. Smc? output is th'e same
in the two cases, the government does strictly w.orse wnhou}’ commm-nem‘
In the context of monetary policy, the “comml!n?ent path” can be inter-
preted as a “money growth rule,” and noncommitment corresponds t;la a
“discretionary policy”; hence the conclusion that “rules can be better than
i N
dls/irse:;lnc;ss on the time-consistency problem, let us co?sidfer the anak.)g;usr
questions in relation to Stackelberg and Cou}'not equilibria. If we thmm'(:_
the government and the agents us both choosing output lc_vfls. lhc commi
ment solution corresponds to the Stackelberg outcome {q?,q2). This out-
come is not an equilibrium of the game where 1h|: gnvcmmo:n cannot
commit itself, because in general 4§ is not a best response to g when q3

i tes the way that the agents’ expectations
?“-Eq"'"':fufél . -mm i m::ullﬂi?:::: i o):llpul. Since e actions of the
e directly pond 10 an

B e e it sk “unirh:i:i extensiveform game with the same

game, but |hnammn#1!:mupply. Here ix un a fk st ﬂ":l ¥ l*ﬂslﬂl s

ooses. & nomir ice p. A te demand Is ¥ = mar(0,m — p), and the agent is can-

:lhnlnr.-d :o:::;!n; lq?mfm;':”fﬂ agent’s utility b5 p — p*f2m. and the aovt:"nn‘l_enl '.{m’;

fuy — (m — 1Y% This does not quite give equation 3.1, but the resulting model has very

glgﬁ:;:ltwdwm miodel where the agent chooses prices (see no!e'2), the agenl cho:)s::
e andd the commitment solution is to set m = 1. Without commitment lh;s is l{m
:‘I'l“ihﬁm sinee for fixed p the government could gain by choosing a larger value of m.
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is held fixed. The no-commitment solution = = } derived above corre-
sponds to a situation of simultaneous moves—-that is, to the Cournot
outcome.

‘Whether and when a commitment to a monetary rulc is credible have
been important topics of theoretical and applied research in macrocco-
nomics, This research has started from the observation that decisions about
the money supply are not made once and for all, but rather are made
repeatedly, Chapter 5, on repeated games, and chapter 9, on reputation
elfects, discuss game-theoretic analyses of the question of when repeated
play makes commitments credible.

Finally, note that a player does not always do better when he moves first
(and his choice of action is observed) than when players move stmultane-
ously: In “matching pennies” (example 1.6) each player’s equilibrium payoff
is 0, whereas if one player moves first his equilibrium payoffis — 1.

3.3 The Extensive Form'!

This section gives a formal development of the idea of an extensive-lorm
game. The extensive form is a lundamental concept in game theory and one
to which we will refer [requently, particularly in chapters 8 and 11, bul the
details of the definitions are not essential for much of the material in the
rest of the book. Thus, readers who are primarily interested in applications
ol the theory should not be discouraged if they do not masler all the fine
points of the extensive-form methodology. Instead of dwelling on this

section, they should proceed along, remembering to review this material
before beginning section 8.3.

Definition

The extensive form of a game contains the following information:

(1) the set of players

(2) the order of moves—i.e., who moves when

(3) the players’ payoffs as a function of the moves that were made
(4) what the players’ choices are when they move

(5) what each player knows when he makes his choices

(6) the probability distributions over any exogenous events.

The set of players is denoted by i € .#; the probability distributions over
exogenous events (point 6) are represented as moves by “Nature,” which is
denoted by N. The order of play (point 2) is represented by a game tree, T,
such as the one shown in figure 3.1.* A tree is a finite collection of ordered

4. Our development of the extensive form follows that of Kreps and Wilson 1982 with a

simplification suggesled by Jim Ratlifl. Their assumptions (and ours) are equivalent to those
of Kuhn 1953.
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Y Zz-

Figure 3,1

nodes x & X endowed with a precedence relation denoted by == x>=x'
means “x is belore x°" We assume thit the precedence relation is transitive
{if x is before x* and x* is belore x7, then x is before x”) and asymmelric
(if x is before 7, then X" is not before x). These assumptions imply that the
precedence relation is a partial order. {1t is not o complete order, because
two nodes may not be comparable: In figure 3.1, 2 js not hefore x”, and x”
i not before =, We include a single initial node o€ X that is before all
other nodes in X this node will correspond 1o a move by nature il any.
Figure 3.1 describes u situation where “nature’s move™ is trivial, as nature
simply gives the move to player 1 As in this figure, we will suppress nature's
move whendver it is trivial, und begin the tree with the first “real” choice.
The initial node will be depicted with o to distinguish it from the others,
In figure 3.1, the precedence order s from the top of the dingram down.
Givett Lhe assumptionswe willimpose, the precedence ordering will be clear

in most diag) when the intended preced is not clear we will use
arrows (~+} 1o connect o node to its immediale suceessors.
The plion that preced is 4 partial order rules out eycles of the

Kind shown in figure 3.20 If x>- 8/ x5, then by transitivity x> x'.
Since we ilfeady have x> x* this would violate the asymmelry condition.
However, the partinl ordering does not rule out the situation shown in
figure 3.2b, where both x and x" are immediate predecessars of node
x

We wish to rule out the situation in figure 3.2b, because cach node of
{lie Lree is meant 1o be a complete description of all events that preceded it,
and not just of the “physical situation” at -« given point in time, For
example, in figure 3.2¢, 8 firm in cach of lwo markets, A and B, might have
entered A wnd then B (node x and then x") or Band then A (node x* und
then x”), but we want our formalism to distinguish between these two

pences of events instead of describing them by i single node x". (OF
course, we are free 1o specily that both sequences Iead to the same payoll
for the firm.) In order o ensure that there is only one path through the tree
1o & given node, so that esch node is & complete description of the path
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Figure 3.2

1

ahe 115,201 1,19 (30,15) (16,16} (8,12} 1108} 2,84 10,00

Figure 3.3

preceding it, we require that each node x (except the initial node o) have
exactly one immediale predecessor—that is, one node x’> x such that
x" >x and x" # x’ implies x” > x". Thus, if x’ and x" are both predeces-
sors of x, then either x' is before x” or x” is before x'. (This makes the pair
(X, >) an arborescence.)

The nodes that are not predecessors of any other node are called “termi-
nal nodes™ and denoted by z € Z. Because each z completely determines a
path through the tree, we can assign payoffs to sequences of MOVES USING
functions u;: Z — B, with ,(z) being player s payoll if terminal node 2 is
ceached. In drawing extensive forms, the puyoff vectors (point 3 in the list
above)are displayed next 10 the corresponding lerminal nodes, as in figures
33 and 34, To complete the specification of point 2 (who moves when], we
introduce a map ¢: X —.# with the interpretation that player ¢(x) moves
at node x. Next we must describe what player £(x)’s choices are, which was
point 4 of our list. To do so, we introduce a finite set A of actions and a
function ¢ (hat labels each noninitial node x with the last action taken to
reach it. We require that ¢ be one-to-one on the set of immediate successors
of each node x, so Lhat diflferent successors correspond to different actions,
and let A(x) denote the set of feasible actions al x. (Thus A(x) is the range
of £ on the set of immediate successors of x.)

Point 5, the information players have when choosing their actions, is
the most subtle of the six points. This information is represented using
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inforitation sels Ji & H. which partition the nodes of the tree—tha{.is, every
node is in exactly one information se1.® The interpretation of the mljorma-
tion set hi(x) contnining node x/ls that the player who is choosing an
action at X is uncertain if he is at x or at some other x’ € h(x). We require
thatif x' € hix) thesame plyer moveat x and x'. Without this requirement.
the players might disagree about who was supposed 10 move. Also, we
require that if x" e hix) then Afx") = A(x), s0 the player on move hits the
same setof choicesut cach node of this information set. (Otherwise he might
“play” an infeasible action.) Thus, we can let A(h) denote the action set at
information set h.

A special case of interest {5 thut of games of perfect infarmation, in which
oll the information sets arc singletons. In a game of perfect information,
players move one ata time, and cach player knows all previoos moves when
mutking his decision. The Suickelborg game we Jiscussed at the start of this
chupier isa game ol perfect information. Figure 3.3 displays i tree for this

28 100}

l‘ﬂ:llll {16,20) (9,18} (20,18) 116,161 {8.12) 18,9}

fa,021 1000

peaer 20461 (18,9) 115,200 (16181 REXTREALY

Figure 3.4

5. Note thal we use Lhe same notation, h, for information sets and for histories in mullitslagc
games. This should nol cause too much confusion, especially as information sels can be viewed
as a generalizalion of the idea of a history.
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game on the assumption that each player has only three possible output
levels: 3, 4, and 6. The vectors at the end of each branch of the tree
are the payoffs of players | and 2, respectively.

Figure 34a displays an extensive form for the Cournol game, where
players | and 2 choose their output levels simultancously. Here player 2
does not know player 1's output level when choosing his own output. We
model this by placing the nodes corresponding Lo player 1's three possible
actions in the same information set for playes 2. This is indicated m the
figure by the broken line connecting the three nodes, (Some authors use
“loops" around he nodes instead.) Note well the way simultancous moves
are represented: As in figure 3.3, player I's decision comes “before” player
2'sin terms of the precedence ordering of the treg; the-dilference is in player
2's information set. As this shows, the precedence ordering in the tree need
not correspond to calendar time. To emphasize this point, consider the
extensive form in figure 34b, which begins with a move by player 2.
Figures 3.4a and 34b deseribe exactly the same strategic situation: Each
player chooses hisaction not knowing the choice of his opponent. However,
the situation represented in figure 3.3, where player 2 observed player I's
move before choosing his own, can only be described by an extensive form
in which player | moves first.

Almost all games in the economics literature are games of perfect recall:
Mo player ever forgets any informition he once knew, and 4l players know
the actions they have chosen previously. To impose this formally, we first
require that if x and ¥’ are in the same information set then neither is 3
predecessor of the other. This is not enough to ensure that o player never
forgets, as figure 3.5 shows. To rule oul this situation, we require that if
%" h(x'), if x is & predecessor of x’, and if the same player i moves at x
and at x* (and thus at x7), then there is o node # (possibly x itsell) that is
in the same information set as x, that £ is a predeeessor of x", and that the
action taken at x along the path to x” is the same as the action taken at
# along the path to x". Intuitively, the nodes x* and x" are distinguished
by information the player doesn’t have, so he can't have had it when he
was at information set A(x); x* and x” must be consistent with the same
action at h{x), since the player remembers his action there.

When a game involves moves by Nature, the exogenous probabilities nre
displayed in brackets, as in the two-player extensive form of figure 3.6, In

1 1
o 1 auuel

Figure 3.5
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Figure 3.6

figure 3.6, Nature moves first and chooses & “type" or“prialrate :nl‘:_»rTnuo; )
for player L. With probability 0.6 player 1 ll:s_lms_ lh‘stjus I.)']l::c ::r l;;lg -
(T), and with probubility 04 he learns that his type)s w::‘:ﬂ‘t [ lb u:m
1 then plays left (L) or right {R). Piayer 2 observes player 1's action u: 2
his type, and chooses belween up {U) and down (D).INolc that we have
allowed both players’ payolls to depend on the choice by Mature ‘i:::;
though this choice is initinlly observed only by player l: (Player 2 wx. :
able to infer Mature’s move from his payoifs) Fig,urv.-: 3.6is an example oh:u‘
“signaling game,” as player 1's action may reveal |n(orrnn}mn “b?l.“ u:
type to player 2. Signaling games, the simplest games of incomp in
formation, will be studied in detail in chapters 8 and 11

332 Multi-Stage Games with Observed Actions

Many of the applications of game theory to ec_onomlcs. polium:rsca;eé
and biology have used the special class of cxlcn:ﬂvc forms thut we . ::-:{t;h
in section 3.2: the class of “multi-stage games with abserved actions. c&;
games have “stages” such that (1) in cach stage k every player Icnowz‘a [t
the actions, including those by Nature, that were u;lkcn at any PI‘G\;IO\I;
stage; (2) cach player moves at most once within a given SLAge; nnd'l i] I:I ;
information set contained in stage k providesany k‘nlow!ed geof playint i
stage. (Exercise 3.4 asks you o give 8 formal ;icﬁmhon of these conditions
i {ree and information scts.
= :ﬁrfi::l;fmi game, all past nelions are cau_'nmon“kn::wledgc al ll::[
beginning of stage k, 50 thereisa wcll‘dcl’:nm. “history’ Kt at the siar‘lrﬂs
each stage k. Here a purc strategy for player iisa [ur!cuon 5 l.ha} !mcity
an action a; & A,(*) for each & and cach history h; mixed strategies spe
probability mixtures ovee the actions in cach stage.

H d
Caution Although the idea of a multi-stage game seems natural a0

. . e
intrinsic, it suffers from (he following drawback: There may be two ext

6. Such games are also often called “games of almosl-perfect information.

[
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Figure 3.7

sive forms that scem to represent the same real game, with one of them a
multi-stage game and the other one not. Consider for example figure 3.7,
“The extensive form on the left is not a multi-stage game: Player 2's informa-
tion set is not a singleten, and 5o it must belong 1o the first stage and not
10 1 second one. However, player 2 does have some information ahout
player s first move (if player 2's information set is reached, then player
1 did not piay C), so player 25 information sel cannot belong to the first
stage either. However, the extensive form on the right is & two-stage game,
and the two extensive forms seem to depict the same situation: When player
2 moves, e knows that player | is choosing A ot B but not €; player |
chooses A or B without knowing player 2's choice of L or R. The question
as to which extensive forms are “equivalent” isstill a topic of research —see
Fimes and Reny 1988, We will have more to say about this topic when we
discuss recent work on equilibrium refinements in ghapter 11

Before procecding to the next scetion, we should point out that in
applications the extensive form is usually described without using the
apparatus of the formal definition, and game trees are virtually never drawn
éxcept for very simple “toy” examples. The test of a good informal descrip-
lion is whether it provides enough information to construct the associated
extensive form; if the extensive form is not clear, the model has not been
well specilied.

34 Strategies and Equilibria in Extensive-Form Games'!

34.1 Behayior Strategies

This section defines strategies and equilibria in extensive-form games and
relates them to strategies and equilibria of the strategic-form model. Let H;
bie the set of player I's information scts, and let A =y e, Al) be
the set of all actions for player L. A pure strategy for player i is 1 map
30 Hy = Ay, with s,(h) & A(h,) for all by € Hy. Player I's space of pure sirate-
gies, §,, is simply the space of all such s, Since each pure stralegy is
a map from information sets Lo actions, we can write S, as the Cartesian
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product of the action spaces at each h;:

S = x Al
bty A,

In the Stackelberg cxample of figure 3.3, player Lhasa single information
set and three actions, so thal he has three pure stralegies. Player 2 has three
informition seis, corresponding to the three possible choices of player 1,
and player 2 has three possible actions at cach information set, so player
2 has 27 pure strategies in all. More generally, the number of player i’s pure
strategies, # S;, equals

[T #(Ah))

cell,

Given a pure strategy for cach player i and the probability distribution
over Nature’s moves, we can compule a probability distribution over
outcomes and thus assign expected payolls u;(s) to each strategy profile s.
The information sets that are reached with positive probability under
profile s are called the path of s.

Now that we have deflined the payofls to cach pure strategy, we can
proceed to define a pure-sirategy Nash equilibrium for an extensive-form
game as a strategy profile 5* such that cach player i's strategy 5% maximizes
his expected payofl given the strategics 52, of his opp Nate that since
the deflinition of Nash equilibrium holds the strategies of player s oppo-
nents fixed in testing whether player i wishes to deviate, it is as if the
players ch their strategies simul 1y. This does not mean that in
Nash equilibrium players necessarily choose their actions simultaneously.
For example, if player 2's fixed strategy in the Stackelberg game of figure
3.3 is the Cournot reaction function #; = (4,4,3), then when player 1 treats
player 2s strategy as fixed he does nol presume that player 2’s action is
unaffected by his own, but rather that player 2 will respond to player 1's
action in the way specified by §,.

To fifl in the details missing from our discussion of the Stackelberg
game in the introduction: The “Stackelberg equilibrium® of this game is
the outcome g, = 6. g, = 3. This outcome corresponds to the Nash-
equilibrium strategy profile s, = 6,5, = 4. The Cournot outcome is (4,4),
this is the outcome of the Nash equilibrium s, = 4, s, = (4.4,4).

The next order of business is 10 deline mixed strategics and mixed-
strategy equilibria for extensive-form games. Such strategies are called
behavior strategies to distinguish them from the strategic-form mixed strat-
egies we introduced in chapter 1. Let A(A(k;)) be the probability distribu-
tions on A(;). A behavior strategy for player i, denoted by, is an element of
the Cartesian product X, .y, AlA(h)). Thatis, a behavior strategy specifics
a_probability distribution over actions at each h;, and the probability
distributions at different information scts are independent. (Note that a
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pure strategy is a special kind of behavior strategy in which the distribution
at each informalion set is degenerate.) A profile b = (b,,..., b;) of behavior
stralegies generates a probability distribution over oulcomes in the obvious
way, and hence gives rise to an expected payofl for each player. A Nash
equilibriumin behavior strategies is a profile such that no player can increase
his expected payoll by using a different behavior strategy.

3.4.2  The Strategic-Form Representation of Extensive-Form Games

Our next slep is Lo relate extensive-form games and equilibria (o the
stralegic-form model, To define a strategic form from an exlensive form, we
simply let Lhe pure stralegies s & S and the payofls u,(s) be exactly those we
defined in the exlensive form. A different way of saying this is that the same
pure strategies can be interpreted as either exlensive-form or strategic-form
objects. With the extensive-form interpretation, player i “waits” until h; is
reached before deciding how o play there; with the strategic-form inter-
pretation, he makes u complete contingent plan in advance.

Figure 3.8 illustrates this passage from the extensive form (o Lhe strategic
form in a simple example. We order player 2's informalion sets from
left 1o right, so that, for example, the strategy s, = (L, R) means that he
plays L after U and R alter D.

As another example, consider Lhe Stackelberg game illustraled in (igure
3.3. We will again order player 2's information sets from left to right, so
that player 2's strategy 3, = (4.4,3) means that he plays 4 in response to
¢, = 3, plays 4 in response to 4, and plays 3 in response to 6. (This strategy
happens to be player 2's Cournot reaction function.) Since player 2 has
three information sets and three possible actions at each of these sets, he
has 27 pure stralegics. We trust that the reader will lorgive our nol display-
ing the strategic form in a matrix diagram!

f
1
u ‘\_D
2 ~2
L R L R
2,10 (0,00 (=1,1) (3,2)

a, Extensive Form

L LAl (AL RR}

U2 2,1 l 00 | oo |

D -1t 02 1—1.1 a,zJ

b. Strategic Form

Figure 3.8
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There can be several extensive forms with the saine strategic form, us the
example of simultancous moves shows: Figures 34a and 3.4b both corre-
spond to the same strategic farm fn;,i:ic Cournol game.

At this point we should note thaf the strategy space as we have ‘efined
it may be unnecessarily lagge, as il may contain pairs of strategies tht are
equivalent” in the sense of huving the same consequences vegardizss of
how the opponents play.

Definition 3.2 Two pure strategies s; and s are equivalent if th.cy lead
to the same probability distribution over outcomes [or all pure stri gies
of the opponents.

Counsider the example in figure 3.9, Here player 1 has four pure strategles:
(a,c), (a,d),(b,c) and (b, d). However, if player 1 plays b, his second informa-
tion set is never reached, and the strategies (b, ©) end (b, d) are equivalent.

Definition 3.3 The reduced strategic form (or reduced normal form) of an
extensive-form game is obtained by identilying equivalent pure strategies
(i.e., eliminating all but one member of each equivalence class).

Once we have derived the stritegic form from the extensive form, we can
(a5 in chapter 1) jefine mixed stritegies 1o be probubility distributions over
pure strategies in the reduced strategic form. Although the extensive form
and the stritegic form have exactly the same pure strutegics, the sets of
mixed and behavior strategios are dillerent. With behavior strategics, player
i performs a different randomization at each information set. Luee and
Railfu (1957) use the following analogy to expliin the relationship between
mixed and belvavior sirategies: A pure strategy 15 0 book of instructions,
where cach pige tells how to play at a particular information set. The
strategy space 8, is like 4 Bbrary of these books, and 2 mixed strategy is &
probability measure over hooks —i€., a random way of making a selection
from the library. A given behavior strategy, in conteast, is u single book, but
it prescribes a random choice of action on each page.

“The reader should suspect that these two Kinds of strategies are closely
telated. Indeed, they are equivalent in games of perfect recall, as was proved

Figure 3.9
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by Kuhn (1953). (Here we use “equivalence” as in our earlier definition:
Two strategies are equivalent if they give rise to the same distributions over
outcomes for all strategies of the opponents.)

343 The Equivalence between Mixed and Behavior Stratcgies in Games of Perfect

Recall

The equivalence between mixed and behavior strutegics under perfect
recall is worth explaining in some detail, as it also helps to clarify the
workings of the extensive-form model. Any mixed stritegy o, ol the strategic
form (not of the reduced strategic form) generates a unique behavior
strategy by #s follows: Let Rj(hy) be the set of player i's pure strategies
that do not preclude by, so that for all 5, e R(h) there is a profile 5,
for player s opponents that reaches hy. If g; ussigns positive probability
to some 5, in R(h,), define the probability that b, assigns to 4 € AU as
bi(ailh) = Z ai(s))-

ay(s;

{see Rithp) gﬂs,(m)n.} ! )/lsmmﬂn))

I o, assigns probability 0 to all s; € R(h), then set
bla;| ) = ; Z al(si)-7

siha=a;}
In either case, the b,(-|-) are nonnegative, and

2 biailh) =1,

age Alh)
because each s; specifies an action for player i at k.

Note that in the notation b(a;|h;), the variable h; is redundant, as
a, € A(h), but the conditioning helps emphasize thal g; is an action that is
feasible at information set ;.

It is useful to work through some examples 1o illustrate the construction
of behavior strategies from mixed strategies. In figure 3.10,2 single player
(player 1) moves (wice. Consider the mixed strategy o, = ((L,2), 3R, ).

Figure 3.10

7. Since by cannot be reached under o, thie behavior stralegies at h, are arbitrary in the same
semse that Bayes' rule does not detertine posterior probabilities after probabilily-0 events.
Our formuln is one of many possible specifications.
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The strategy plays » with probability 1 at information set hj, as only
(R, 2) € Ry (h1).

Figure 3.11 gives another example. Player 2's strategy o, assigns prob-
ability 3 each to s, = (L,L’,R")!2nd §, = (R,R",L"). The equi 'alent be-
havior strategy is

by(Lihy) = b(R1hy) =%

by(L'|h3) = 0 and by(R'|h3) = L,
and

bo(L" 1) = by(R"|5) = .

Many different mixed strategies can generate the same behavior strategy.
This can be seen [rom figure 3.12, where player 2 has four pure strategies:
5, = (A,C), 53 = (A, D), s; = (B,C), and 55 = (B,D).

Now consider two mixed strategies: 0, = (4, 4,4, 5), which assigns prob-
ability 4 to each purestrategy, and ¢, = (4,0,0,3), which assigns probability

110 5, and 4 to s5. Both of these mixed strategies generate the behav-
for strategy b, where b,(A|h) = b,(Blh) = 4 and b,(Clh") = b,(D|W’) = 3.

Pure strategy Sy Pure strategy §2

Figure 3.11

Figure 3.12
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Moreover, for any strategy o, of player 1, g,, 6,, and b, all lead to the same
probability distribution over terminal nodes; for example, the probability
of reaching node z, equals the probability of player 1's playing U times
by(Alh).

The relationship between mixed and behavior strategies is different in
the game illustrated in figure 3.13, which is not a game of perfect recall.
(Exercise 3.2 asks you to verify this using the formal definition.) Here, player
| has four strategies in the strategic form:

5 =(A,Q), 51 =(A, D), s{ = (B,C), 57 = (B,D).

Now consider the mixed strategy o, = (§,0,0,4). As in the last example,
this gencrates the behavior strategy b, = {(3,3).(3,5)}, which says that
player 1 mixes -4 at each information set. But b, is not equivalent to the
o, thal generated it. Consider the strategy s, = L [or player 2. Then (o, L)
generates a § probability of the terminal node corresponding to (A, L,C),
and a 4 probability of (B, L, D). However, since behavior strategies describe
independent randomizations at each information sel, (b,, L) assigns prob-
ability 3 to each of the four paths (A, L, C),{A,L,D), (B,L,C), and (B,L, D).
Since both A vs. B and C vs. D are choices made by player 1, the strategic-
form strategy o, can have the property that both A and B have positive
probability but Cis played wherever A is. Put differently, the strategic-form
strategies, where player 1 makes all his decisions at once, allow the decisions
at different information sets to be correlated. Behavior strategies can’t
produce this correlation in the example, because when it comes time to
choose between C and D player 1 has forgotten whether he chose A or
B. This forgetfulness means that there is not perfect recall in this game. If
we change the extensive form so that there is perfect recall (by partitioning
player 1’s sccond information set into two, corresponding to his choice of
A or B), it is easy to see Lhat every mixed strategy is indeed equivalent to
the behavior strategy it generates.

Theorem 3.1 (Kuhn 1953) In a game of perfect recall, mixed and behavior
strategies are equivalent. (More precisely: Every mixed strategy is equiv-

Figure 3.13
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alent to the unique behavior strategy it generates, and each behavior
strategy is equivalent to every mixed strategy that generates it.)

We will restrict our attention to games of perfect recall throughout this
book, and will use the terms “mixed strategy” and “Nash equilibrium” to
refer 1o the mixed and behavior formulations interchangeably. This leads
s o the following important natational convention: In the rest of part 11
and in most of part TV (exeept in sections 8.3 and £.4), we will be studying
behavioral steategics. Thus, when we speak of a mixed strategy of an
extensive form, we will mean a behavior strategy unless we state otherwise.
Although the distinction between the mixed strategy &, and the behavior
strategy by was necessary 1o establish their equivalence, we will follow
standard usage by denoting both objects by o/ {thus, the notation & is not
used in the rest of the book), In a multi-stage game with obscrved actions,
we will let a(at(h*) denote player i’ probability of playing action af &
Aj(h*) given the history of play B at stage k. In general extensive forms
{with perfect recall), we fet afa\h) denote pliyer i's probability of playing
action ¢, at information set /.

344 Iterated Strict Dominance and Nash Equilibrium

If the extensive form is finite, so is the corresponding strategic form,
and the Mash existence theorem yields the existence of i mixed-strategy
equilibrium. The notion of iterated strict deminance extends to extensive-
form games as well; however, as we mentioned above, this concepl lurns
onit 1o have little force in most extensive forms, The point is that a player
cannot strictly prefer one action over another at an information set thit is
not resched given his opponents” play.

Consider figure 3.14. Here, player 2's strategy R ix not strictly dominated,
as it is as good as L when player | plays 1. Moreover, this fact is not
“pathological.” 1t obtains for all strategic forms whose payolfs are derived
from an extensive form with the tree on the lefi-hand side of the figure. That
is, for any assignment of payoffs to the terminal nodes of the tree, the payolls
to (U, L) and (L), R) must be the same, as both strategy profiles lead 1o the
sumie terminal node. This shows that the set of strategic-form payoffs of a
fixed game tree is of lower dimension than the set of all payolis of the
corresponding strategic form, so theorems based on generic strategic-form
payofls (see chapter 12) do not apply. In particular, there can be an even
number of Nash équilibrin for an open set of extensive-form payoffs. The
game Ulustrated in figure 3.14 has two Nash equilibria, (U, R) and (D, L),
and this ber is not changed if the ive-form payoffs are slightly
perturbed. The one case where {he odd-number theorem of chapter 12
applies is (o a simullaneous-move game such as that of figure 3.4; in such a
game, cach terminal node corresponds 1o a unique strategy profile. Put
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dillerently: [n simultancous-move games, every strategy profile reaches
every inlormation set, and so no player’s strategy can involve a choice that
is not implemented given his apponents’ plisy.

Recall that a game of perfect information has all its information sets as
singletons, as in (he games illustrated in figures 33and 3.14.

Theorem 3.2 (Zermelo 1913; Kuhn 1953) A [inile game of perlect informa-
lion has a pure-strategy Nash equilibrium.

The proof of this theorem constructs the equilibrium strategies using “7er-
melo’s algorithm” which is a many-player generalization of backward
induetion in dynamic programming. Since the game is finite, it has a set of
penultimate nodes— i, nodes whose immediate successors are terminal
nodes, Specify that the player who can move at cach such node chooses
whichever strategy leads to the successive terminal node with the highest
piayofl for him. (In case of a tie, mauke an arbitrary selection) Now speaify
that each player at nodes whose immedinte successors are penullimate
nades chooses the action that maximizes her payoll over the feasible
successors, given that players at the penultimate nodes play as we have just
specilicd. We can now roll bitck through the tree, specifying actions ot cach
node. When we are done, we will have specified a strategy for cach player,
and it is casy to check that these strategics form a Nash cquilibrium, {In
fact, the strategies satisly the more restrictive concept of subgame perfec-
tion, which we will introduce in the next seetion.)

Zermelo's atgorithm is not well defined if the hypotheses of the theorem
are weakened, Firsl consider infinite games, An infinite game necessarily

has either a single node with an infini ber of {as do games
with & continuum of actions) or a path consisting of an infinite number of
nodes (as do multi-stage gumes with @n infinite number of stages). In the
first case, an optimal choice need not exist without further restrictions on
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the payoll functions®; in the second, there need not be 4 penultimate node
on a given path from which to work backward. Il-mully, |‘m|\51dcr a pame
of imperfect information in which some of the information sets are not
singletons, as in figure dda. Here there is no way (o dcljm«:. an uptlma:fl
choice for player 2 at his information sct without firstspecifying player 2_5
beliel about the previous choice of player 1i the algorithm lr_n‘.s hccn_u.r.: it
presumes that such an optimal choice cxifts at every information set given a
specification of play at ils SULCEsSOS. ) )

We will have much more 10 say about this issue when we treat equi-
librium fefinements in detail. We conclude this section with one caveat
about the assertion that the Nash equilibrinm isa mininial reguirement .[ﬂl‘
& nable” point prediction: Although the Nash concept can hn:_upphcd
(o any game, the assumption that eich player correetly [t.}rccusls his oppo-
nents strategy may be less plausible when the strategies mrr:spolnd 1o
choices ol contingent plans than when the strategies are simply choices of
actions. The issue here is that when some information sets may not be
reached in the equilibrium, Nash equilibrium requires that pl'.\ycrscarrcf:fly
forceast their opponents’ play at information sets that have 0 probu\?:hty
according to the equilibrium strategies. This may not be a problem If. the
forecasts are derived from introspection, but if the forecasts are derived
from observiitions of previous play it is less obvious why forceasts shoulld
be correct at the information scts that are not reached, This point 15
examined in detail in Fudenberg and Kreps 1988 and in Fudenberg and
Levine 1990.

35 Backward Induction and Subgame Perfection'’

As we have seen, the steategic form can be used to represent arbitrarily
complex extensive-form games, with the strategies of .lhc slmc{;ic form
being complete contingent plans of action in the extensive form. Thus, the
concept of Nash cquilibrium can be applied to all games, not only to games
where players choose their actions simultaneously. However, many game
{heorists doubt that Nash equilibrium is the right solution concept for

i 1 optimal choice from a compact sel of actions requires that payolls be

:p:';: ::&:ﬂf:;:::mnpin the chaice mad} t;\ real-valued function f(x) is upper sends
{ if x® = x implies i, Jx") = tx)) ) )

“T;?:;::s that pnyoﬂﬁ’ by rE c:ﬁx{inuous in a does not guaranice that an optimal gm!m
exists at each node. Although the tast maover's payoll is continuous and thereforcan OF'Im.;pm
exists if his netion set is compact, the last mover's optimal action necd not be # :onl;‘n 4o
function of the aclion chosen by the previous player. In this case, when we replace ll“ﬂ
maver by in arbitrary specification ofan oplim!dnclipn on cach path, the next-to-last Mo
derived payoflf function pced not be upper semi-cantinuous, cven though that player .kp:ud<
s n continuous function of the actions chosen at each node. Thus, (he simple bacl oy
induction algorithmn defined ahove cannot be applied. However, subgame-perfect muud o
do exist in infimite-action games of perfect information, as shown by Harris (1985) a
Hellwig and Leininger (1987).
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general games. In this section we will present a first Jook at “equilibrium
refinements,” which are designed Lo separale the “reasonable” Nash equi-
libria from the “unreasonable” ones. In particular, we will discuss the ideas
of backward induction and “subgame perfection.” Chapters 4, 5 and 13
apply these ideas to some classes of games of inlerest to economists.

Selten (1965) was the first to argue that in general extensive games some
of the Nash equilibria are “morc reasonable” than others. He began with
the example illustrated here in figure 3.14. This is a finite game of perfect
information, and the backward-induction solution (that is, the one ob-
tained using Kuhn's algorithm) is that player 2 should play L if his informa-
tion set is reached, and so player 1 should play D. Inspection of the strategic
form corresponding to this game shows that there is another Nash equi-
librium, where player 1 plays U and player 2 plays R. The profile (U,R) is
a Nash equilibrium because, given that player 1 plays U, player 2’s informa-
tion set is not reached, and player 2 loses nothing by playing R. But Selten
argued, and we agreg, that this equilibrium is suspect. After all, if player 2's
information set is reached, then, as long as player 2 is convinced that his
payolfs are as specified in the figure, player 2 should play L. And il we were
player 2, this is how we would play. Moreover, il we were player 1, we would
expect player 2 to play L, and so we would play D.

In the now-familiar language, the equilibrium (U, R) is not “credible,”
because it relies on an “cmpty threat” by player 2 to play R. The threat is
“empty” because player 2 would never wish to carry it out.

The idea that backward induction gives the right answer in simple
games like that of ligure 3.14 was implicit in the cconomics literature before
Sclten's paper. In particulur, it Is embodied in the idea of Stackelberg
equilibrium: The requirement that player 2's strategy be the Cournot
reaction function is exactly the idea of backward induction, and ull other
Nash equilibria of the game are inconsistent with backward induction. So
we see that the expression "Stackelberg equilibrium” does not simply refer
{0 the extensive form of the Stackelberg game, but instead is shorthand for
“the backward-induction solution to the sequential quantity-choice game.”
Just as with *Cournot equilibrium,” this shorthand terminology can be
convenient when no confusion can arise. However, our experience suggests
that the terminology can indeed lead to conlusion, so we advise the student
to use the more precise language instead.

Consider the game illustrated in figure 3.15. Here neither of player 2’s
choices is dominated at his last information set, and so backward induction
does not apply. However, given that one accepts the logic of backward
induction, the following argument seems compelling as well: “The game
beginning at player 1's second information set is a zero-sum simuitaneous-
move game ('matching pennies’) whose unique Nash equilibrium has ex-
pected payofls (0, 0). Player 2 should choose R only if he expects that there is
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(2,~2) (-2,2) (-2,2) (2,-2)

Figure 3.15

probability  ar better that he will outguess player 1.i“ the simultaneous-
move subgame and end up with +2 instead of — 2. Since player 2 assumes
that player | is as cational as he is, it would be very rash of player 210
expeet to get the better of player 1, especially to su?h‘:m extent, Thus, player
2 should go L, and so player | should go R.” This is the ]np,.lt of suhgnr{m
perfection: Replace any “proper subgame” of the tree u.uth one of its
Mash-equilibrium payoffs, and perform bnckwmcd_ an'ducu.on on the re-
duced tree. (If the subgame has multiple Mash cqmllhr_m. this requires |hrf1
all players agree on which of them would occur, we will come pufk 1o this
point in subsection 3.6.1.) Once the subgame starting ut player 1's second
information set is replaced by its Mash-cquilibrium outcome, the games
ibed in figures 3.14 and 3.15 coincide. _
dﬁ&;:m: f:bgamc perfection formally we mu_si first t!cl'me the ides of a
proper subgame. Informally, a proper suhgumc‘ isa por[:on ofa gan}c that
can be analyzed as o game in its own right, like ‘1I_1c s;_multnnwm-move
game embedded in figure 3.15. The formal definition is not much more
complicated:

Definition 34 A proper subgame G of an ive-form game T 0
of a single node and all its suctessors in T, with the property thatif x"e G
and x”" & h{x')thenx" € G. The information setsand payofl’n ol't_hc subgame
are inherited from the original game. That is, x' nm! x" are in :'hc same
information sct in the subgame if and only if they are in the same m.fc?n:na—
tion seL in the original game, and the payoff function on 1h‘c subgame is just
the restriction of the original payofl function to the terminal nodes of the
subgame.

Here the word "proper” here does not mean strict inclusion, as it doesf
in the term “proper subset.” Any game is always‘ a proper subgame of
itself. Proper subgames are particularly easy to .ldemlfy in the class 011
deterministic multi-stage games with observed actions. In these games, 3
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Figure 3.17

previous actions are known to all players at the start of each stage, so each
stage begins a new proper subgame. (Checking this is part of exercise 3.4.)

The requirements that all the successors of x be in the subgame and that
the subgame not “chop up” any information sct ensure that the subgame
corresponds to a situation that could arise in the original game. In figure
3.16, the game on the right isn’t a subgame of the game on the left, because
on the right player 2 knows that player 1 didn’t play L, which he did not
know in the original game.

Together, the requirements that the subgame begin with a single node x
and that the subgame respect information sets imply that in the original
game x musl be a singleton information set, i.e., h(x) = {x}. This ensures
that the payolls in the subgame, conditional on the subgame being reached,
are well defined. In figure 3.17, the “game” on the right has the problem that
player 2’s optimal choice depends on the relative probabilities of nodes x
and x’, bul the specification of the game does not provide these probabili-
ties. Tn other words, the diagram on the right cannot be analyzed as an
independent game; it makes sense only as a component of the game on the
left, which is needed to provide the missing probabilities.

Since payoffs conditional on reaching a proper subgame are well defined,
we can test whether strategies yield a Nash equilibrium when restricted to
the subgame in the obvious way. That is, if o; is a behavior strategy for
player i in the original game, and A, is the collection of player i’s informa-
tion sets in the proper subgame, then the restriction of o; to the subgame
is the map 6; such that &,(|h,) = oi(*|h;) for every h; € H,.

We have now developed the machinery needed to define subgame
perfection,

Definition3.5 A behavior-strategy profile o of an extensive-form game isa
subgame-perfect equilibrium il the restriction of o to G is a Nash equilibrium
of G for every proper subgame G.
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Because any game is @ proper subgame of itsell, & subgame-perfect
cquilibrium profile is necessarily it Nash equilibrium. 1f the only proper
subgameis the whole game, the sets of Nash and subjame-perfect equilibria
caincide. If there are other propef subgames, some Mash equilibria may
fail to be subgame perfect.

It is easy to see that subgame perfection coincides with backward
;nduction in finite games of perfect information. Consider the penultimate
nodes of the tree, where the last choices are made. Each of these nodes
begins a trivial one-player proper subgame, and Nash equilibrium in these
subgames requires that the player now make a choice that maximizes
his payofl; thus, any subgame-perfect equilibrium must coincide with a
backward-induction solution at every penultimate node, and we can
continue up the tree by induction. But subgame perfection is more general
than backward induction; for example, it gives the suggested answer in
the game of figure 3.15.

We remarked above that in multi-stage games with observed actions
every stage begins a new proper subgime. Thus, in these games, subgame
perlection is simply the requirement that the restrictions of the strategy
profile yield n Nash cquilibrium from the start of cach stage k for each
history K" If the game has a fixed finite number of stages (K - 1), then we
cancharacterize the subgame-perfect equilibria nsing backward induction:
The strategies in the last stage must bo & Nash equilibrium of the corre-
sponding one-shot simultaneaus-move game, and for each history h* we
replace the last stage by one of its Nash-cquilibrium payoffs. For each
such assignment of Nash equilibria to the Iast stage, we then consider the
set of Nash equilibria beginning from each stage hK~1. (With the last
stage replaced by a payoff vector, the game from hX~! on is a one-shot
simultaneous-move game.) The characterization proceeds to “roll back
the tree” in the manner of the Kuhn-Zermelo algorithm. Note that even
if two different stage-K histories lead to the “same game” in the last stage
(that is, if there is a way of identifying strategies in the two games that
preserves payoffs), the two histories still correspond to different subgames,
and subgame perfection allows us to specify a different Nash equilibrium

for each history. This has important consequences, as we will see in section’

43 and in chapter 5.

3.6 Critiques of Backward Induction and Subgame Perfection'’

This section discusses some of the limitations of the arguments for back-
wards induction and subgame perfection as necessary conditions for rea-
sonable play. Although these concepts scem compelling in simple two-stage
games of perfect information, such as the Stackelberg game we discussed
at the start of the chapter, things are more complicated if there are many
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3.6.1

players or if each player moves several times; in these games, equilibrium
refinements are less compelling.

Critiques of Backward Induction

Consider the I-player game illustrated in figure 3.18, where each player
i < I can either end the game by playing “D” or play “A” and give the move
to player i+ 1. {To readers who skipped sections 3.3-3.5 Figure 3.18
depicts a “game tree.” Though you have not scen a formal definition of
such trees, we trust thiit the particular trees we use in this subsection will be
clear.) 1f player i plays D, each player gets 1/5; if all players play A, each
gels 2.

Since only one player moves at a time, this is a game of pecfect informa-
tion, and we can apply the backward-induction algorithm, which predicts
that all players should play A. If T is'small, this scems like @ reasonable
prediction, If [ is very large, then, as player 1, we outselves would play D
and not A on the basis of 1 “robustness” argument similar to the one that
suggested the inefficient equilibrium in the stag-hunt game of subscction
1.2.4, [

First, the payoflf 2 requires that all / — | other players play A. 17 the
probability that a given player plays Ads p < 1, independent of the others,
the probability that all 1 — | other players play A is p'™, which can
be quite small even if p is very large. Seeond, we would worry that pliyer 2
might have these same concerns; that is, player 2 might play D to sufeguard
against eithur “mistakes™ by future players or the possibility that player 3
might intentionally play D.

A related observation is that longer chains of backward induction pre-
sume longer chuing of the hypothesis that “player 1 knows thist player 2
knows that player 3 knows ... the payoffs™ I/ = 2in figure 318, buckward
induction supposes that player | knows player 2's puyoll, or at least that
player | is fairly sure that player 2's optimal choice is A, 1T /=3, not
only must players | and 2 know player s payolff, in addition, player |
st know that plaver 2 knows player 3's payolf, so that player | can
forecast pliyer 2' forecast of player 3's play. If piayer | thinks that plnyer
2 will forccast player 3's play incorrectly, then player | may choose to play
D. Traditionally, cquilibrium analysis is motivated by the assumption that

11 1
(1.1.”.1)(5,5._.5) {

Figure 3.18
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payoffs are “common knowledge,” so that arbitrarily long chains of i
knows that j knows that k knows" are valid, but conclusions that require
very long chains of this form are lgss compelling than conclusions that
require less of the power of the common-knowledge assumption. (In part
this is because longer chains of buckward induction are more sensitive 1o
small changes in the information structure of the gume, as we will see in
chapter 9.}

The example in figure 3.18 is most troubling if I is very large. A second
complication with backward induction arises whenever the same player
can move several times in succession. Consider the game illustrated in
figure 3.19. Here the backward-induction solution is that at every informa-
tion set the player who has the move plays D. Is this solution compelling?
Imugine that it is, that you afe player 2, and that, contrary to expectation,
player 1 plays A, at his first move. How should you play? Backward
induction says 10 play D; because player 1 will chioose D if given o chance,
but backward induction also says that player 1 should have played Dy, In
this game, unlike the simple examples we started with, player 2's best action
if player 1 deviates from the p licted play A, depends on how player 2
expeets player 1 1o play in the future: 1 player 2 thinks there is at least
25 percent chance that player | will play A, then pliyer 2 should play A;.
How should player 2 form these belicls, and what beliefs are reasonable?
In particular, how should player 2 predict how player | will play il contrary
to backward induction, player 1 decides to play A,? In some contexts,
playing A, may seem like a good gamble.

Most analyses of dynamic games in the econormics literature continue to
use backward induction and its refinements without reservations, but
recently the skeptics have become more numerous. The game depicted in
figure 3.19 is based on an example provided by Rosenthal (1981), who was
one of the first to question the logic of backward induction. Basu (1988,
1990), Bonanno (1988), Binmore (1987, 1988), and Reny (1986) have argued
that reasonable theories of play should not try to rule out any behavior
once an event to which the theory assigns probability O has occurred,
because the theory provides no way for players to form their predictions
conditional on these events. Chapter 11 discusses the work ol Fudenberg,
Kreps, and Levine (1988), who propose that players interpret unexpected
deviations as being due to the payofls’ differing from those that were

T I As , Ps

2 & - ? : 15,5)
101 D, Dy D, Dg

(1,0) (0,1) (3,0} {2,4) (6,3}

Figure 3.19
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originally thought to be most likely. Since any observation of play can be
explained by some specification of the opponents’ payolls, this approach
sidesteps the difficulty of forming beliefs conditional on probability-0
events, and it recasts the question of how to predict play after a “deviation”
asa question of which alternative payofls are most likely given the observed
play. Fudenberg and Kreps (1988) extend this to a methodological princi-
ple: They argue that any theory of play should be “complete” in the sense
of assigning positive probability to any possible sequence of play, so that,
using the theory, the players’ condilional forecasts of subsequent play are
always well defined.

Payofl uncertainty is not the only way to obtain a complete theory.
A second family of complete theories is obtained by interpreting any
extensive-form game as implicitly including the fact that players sometimes
make small “mistakes” or “trembles” in the sense of Selten 1975. If, as
Selten assumes, the probabilities of “trembling” at different information
sets are independent, then no matter how often past play has failed to
conform to the predictions of backward induction, a player is justified in
continuing to use backward induction to predict play in the current sub-
game. Thus, interpreting “srembles” as deviations is a way to defend back-
ward induction. The relevant question is how likely players view this
“trembles” explanation of deviations as opposed to others. In figure 3.19,
ifplayer 2 observes A, should she (or will she) interpret this as a “tremble,”
or as a signal that player 1 is likely to play A,?

362 Critiques of Subgame Perfection

Since subgame perfection is an extension of backward induction, it is
vulnerable to the critiques just discussed. Moreover, subgame perfection
requires that players all agree on the play in a subgame even if that play
cannot be predicted from backward-induction argyments. This point is
emphasized by Rabin (1988), who proposes alternatiye, weaker equilibrium
refinements that allow playess to disagree about which Nash equilibrium
will occur in a subgame off the equilibrium path.

Té see the difference this makes, consider the following three-player
game. In the first stage, player 1 can either play L, ending the game with
payofls (6,0,6), or play R, which gives the move to player 2. Player 2 can
then either play R, ending the game with payolfs (8, 6,8), or play L, i which
case players 1 and 3 (but not player 2) play a simultaneous-move “coordina-
tion game” in which they each choose F or G. If their choices differ, they
each receive 7 and player 2 gets 10; if the choices match, all three players
receive 0. This game is depicted in figure 3.20.

The coordination game between players 1 and 3 at the third stage has
three Nash equilibria: two in pure strategies with payoffs (7,10,7) and a
mixed-strategy equilibrium with payofls (3%, 5,34). II we specify an equi-
librium in which players 1 and 3 successfully coordinate, then player 2 plays
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18,6.81
16,0,6}

(0,0,0} (7,10,71 17,10,7} {0,0,0)

Figure 3.20

L and so player 1 plays R, expecting @ payoll of 7. 11 we specily the
inefficient mixed equilibrium in the third stage, then player 2 will pi_uy R
and tgain player 1 plays B, this time expecting a payoff of 8, Thus, i all
subgame-perfect equilibria of this game, player 1 plays R.

As Rabin argues, it may nevertheless be reasonable for player 1 to play L.
He would do 50 if he suw no way {0 coordinate in the third stage, and hence
expected a payofl of 34 conditional on that stage being reached, but Ican?d
that player 2 would believe that play in the third stage would result in
eoordination on an efficient equilibrium.

The point is that subgame perfection SUpposes not only that the players
cxpect Nash equilibria in all subgames but also that all players expect the
same equilibrin. Whether this is plausible depends on the reason one thinks
an equilibrium might arise in the first place.

B Vi

Exercises

Exercise 3.1*  Players 1 and 2 must deeide whether or not Lo carry an
umbrella when leaving home. They know that there is a 50-30 chance of
rain. Bach player’s payoffis — 5 il he doesn't carry an umbrella and it rains,
_ 2 il he carries an umbrella and it rains, — 1if he carries an umbrella and
it is sunny, and 1 if he doesn't arry an wmbrelln and it is sunny. Pluyer 1
learns the weather before leaving home; player 2 does not, bul he can
observe player 1's action elore choosing his own. Give the extensive and
strategic forms of the game. I it dominance solvable?

Exercise 3.2.*  Verify that the game in figure 3.13 does not meet the formal
definition of a game of perfect recall.

Exercise 3.3* Player 1, the “govemmem," wishes to inlluence the c.hoice
of player 2. Player 2 chooses an action d, € A, = {0, 1} and receives 2

r
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transfer t € T = {0, 1} from the government, which observes a,. Player 2's
objective is to maximize the expected value of his transfer, minus the cost
of his action, which is 0 for a, = 0 and 4 for a, = 1. Player U's objective is
to minimize the sum 2(a; — 1)2 + t. Before player 2 chooses his action, the
government can announce a transfer rule f{as)

(a) Draw the exlensive form for the case whese the government’s an-
nouncement is not binding and has no effect on payoffs.

(b) Draw the extensive form for the case where the government is con-
strained to implement the Lransfer rule it announced.

(c) Give the strategic forms for both games.

{d) Characterize the subgame-perfect equilibria of the two games.

Exercise 3.4** Define a deterministic multi-stage game with observed
actions using conditions on the information sets of an extensive form. Show
that in these games the start of each stage begins a proper subgame.

Exercise 3.5** Show thal subgame-perfect equilibria exist in finite multi-
stage games.

Exercise 3.6* There are two players, a seller and a buyer, and two dates.
At date [, the seller chooses his investment level I = 0 at cost I. At date 2,
the seller may sell one unit of 2 good and the scller has cost ¢(I) of
supplying it, where ¢(0) = —o0, ¢ <0, ¢ >0, and ¢(0) is less than the
buyer’s valuation. There is no discounting, so the socially optimal Jevel of
investment, I*, is given by | +'(I*) = 0.

(a) Suppose that at date 2 the buyer observes the investment I and makes
a take-it-or-leave-il offer to the seller, What is this offer? Whal is the
perlect equilibrium of the game?

(b) Can you think of a contractual way of avoiding the inefficient out-
come of (a)? (Assume that contracts cannot be written on the tevel of 1)

Exercise 3.7% Consider a voting game in which three players, 1, 2, and
3, are deciding among three alternatives, A, B, and C. Alternative B is
the “status quo™ and alternatives A and C are “challengers.” At the first
stage, players choose which of the two challengers should be considered by
casting votes for either A ot C, with the majority choice being the winner
and abstentions not allowed. At the second stage, players vote between the
status quo B and whichever alternative was victorious in the first round,
wilth majority rule again determining the winner. Players vote simulta-
neously in each round. The players care only about the alternative that is
finally selected, and are indifferent as to the sequence of votes that leads to
a given selection. The payofl functions are u, (A) = 2, 4,{B) = 0, u(C)=1;
uy(A) = 1, 1u,(B) = 2, u(C) = O u3(A) = 0, u3(B) = 1,u3(C) = 2.

(a) What would happen if at each stage the players voted for the alterna-
tive they would most preler as the final outcome?
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(b) Find the subgame-perfect equilibrium outcome that satisfies the
additional condition that no strategy can be eliminated by iterated weak
dowminance. Indicate what happens if dominated strategies are allowed.

(c) Discuss whether differént “agendas” for arriving at a final decision by
voting between two alternatives at a time would lead to a different equi-
librium outcome.

(This exercise is based on Eckel and Holt 1989, in which the play of this
game in experiments is reported.)

Exercise 3.8* Subsection 3.2.3 discussed a player's “strategic incentive”
to alter his first-period actions in order 1o change his own second-period
incentives and thus alter (he second-period equilibrium. A player may also
have a strategic incentive to alter the second-period incentives of others.
One application of this idea is the literature on strategic trade policies
(c.g. Brander and Spencer 1985; Eaton and Grossman 1986—see Helpman
and Krugman 1989, chapters § and 6, for a clear review of the arguments).
Consider two countries, A and B, and a single good which is consumed
only in country B, The inverse demand function is p = P(Q), where Qis the
total output produced by firms in countries A and B. Let ¢ denote the
constant marginal cosl of production and @, the monopoly output (@,
maximizes Q(P(Q) — ¢)).

(a) Suppose Lhat country B does not produce the good. The / (> 1) firms
in country A are Cournot competitors. Find conditions under which an
optimal policy for the government of country A is to levy a unit export tax
equal to - P(Q )1 — 1)Q,,/1. (The objective of country A’s government
is to raaximize the sum ol its own receipts and the profit of its firm.) Give
an externalily interpretation.

(b} Suppose now that there are two producers, one in each country.
The game has two periods. In petiod 1, the government of country A
chooses an export tax or subsidy (per unit of exports); in period 2, the
two firms, which have observed the government's choice, simultaneously
choose quantities. Suppose that the Cournot reaction curves are downward
sloping and intersect ouly once, at a point at which country A’s firm’s
reaction curve is steeper than country B's [irm’s reaction curve in the
(@, Gu) SPace. Show that an export subsidy is optimal,

(¢) What would happen in question (b) il there were more than one firm
in country A? If the strategic variables of period 2 gave rise to upward-
sloping reaction curves? Caution: The answer to the latter depends on a
“stability condition™ of the kind discussed in subsection 1,2.5.

Exercise 3.9%* Consider the three-player extensive-form game depicted
in figure 3.21.

(a) Show that (A, A) is not the outcome of a Nash equilibrium.

(b) Consider the nonequilibrium situation where player 1 expects player
3 to play R, player 2 expects player 3 to play L, and consequently players
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1,1,0)

{3,0,0) {0,3,0) (3,0,0) (0,3,0)

Figure 3.21

1 and 2 both play A. When might this be a fixed point of a learning process
like those discussed in chapter 1? When might learning be expected to lead
players 1 and 2 to have the same beliefs about player 3’s action, as required
for Nash equilibrium? (Give an informal answer.) For more on this question
see Fudenberg and Kreps 1988 and Fudenberg and Levine 1990.

Exercise 3.10%** I the class of zero-sum games, the sets of outcomes of
Nash and subgame-perfect equilibria arc the same. That is, for every
outcome (probability distribution over terminal nodes) of a Nash-
equilibrium strategy profile, there is a perfect cquilibrium profile with the
same outcome. This result has limited interest, because most games in the
social sciences are not zero-sum; however, its proof, which we give in the
context of a multi-stage game with observed aotions, is a nice way to get
acquainted with the logic of perfect equilibrium. Consider a two-person
game and let u (o, 7,) denote player 1I's expected payofl (by definition of
a zero-sum game, u, = —u,). Let u,(6,,0,| k) denote player 1's expected
payofl conditional on history h* having been reached at date ¢ (for
simplicily, we identily “stages” with “dates”). Last, let ¢,/¢}" denote player
i’s strategy o;, except that il b’ is reached at date ¢, player i adopts strategy
¢! in the subgame associated with history A’ (henceforth called “the
subgame”).

(a) Let (6,,0,) be a Nash equilibrium. If (s, 0,) is not perfect, therc is a
dale ¢, a history h', and a player (say player 1) such that this player does
not maximize his payoff conditional on history 4 being rcached. (Of course,
this history h' must have probability 0 of being reached according to
strategies (g, 0,); otherwise player 1 will not be maximizing his uncondi-
tional payollu,(o,,a,) given 6,.)

Let 6 denote the strategy that maximizes u, (a,/¢%,0,|h‘). Lasl, let
(o ¥, 0 ") denote a Nash equilibrium of the subgame. Show that for any &,

uy(6,/67, 05| 1") 2 u, (8, /o™, o3 /o™ | ).

{Hint: Use the facts that 03" is a best response to " in subgame &', that

the game is a zero-sum game, and that ¢ is an optimal response to o, in
the subgame.)
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{0,0) (1=1)

Figure 3.22

(b) Show that the strategy profile [a,!a?".a:r,,!o;‘"] islals:: a Mash equi-
librium. (Hint: Use the fact that hgi k' is not under {a,,73)
and the definition of Nash behavier in the subgame.) —_

(¢) Conclude that the Mash-equilibrium outcome {thcl prabability dis-
tribution on terminzel notdes generated by @y and a,) is also @ perfect-

ilibrium outcome. !
oq:g?:r :Ih‘:t although outcomes coincide, the Nash-equilibrium sfmtcum
need not be perfeet-equilibrivm giratepies—as is dl:‘l‘\:lutllsil‘illi:d in figure
3.72. where (R, Ry) 15 # Nash, but not a perfeet, cquilibrium,

Exercise 3.11*  Consider the agenda-seiter model of Romct..and Ro-
senthal (1978) (sée also Shepsle 1981). The object of the game is 10 muki_
a one-dimensional decision. There nre Lwo players, The "uge‘nr.lu-seltnr
(player 1, who may stand for i committee in a closed-rule voting s)f:;:‘m]
offers a point 5, € & The “voter” (player 2, who may :fumd for the m n;]n
voter in the legislature) can then aceept 5y OF refuse it; in the latter case, the
decision is the status gito of reversion point 55, Thus, 5; € {5, % i !'h;:
adopted policy is thus 5,. The voter hiss quadratic preferences. —{5; — LAk
ste £, is his bliss point. _
wt;;;’:s;:pp:: :hat :):e agenda setler’s nbjn_cnw: is 5, (she prefers Ifghui;
policy levels). Show thal, in perfect equilibrium, the setter offers 5, = %
=28 — 8,1 <y

s (Eb]si““d . _tl;g: ih: s li’a 1 {:cl!cr'a obyj function is quadratic
as well: '—IL'): ~ &, ). Fixing 3, and &, t'." 2 §,), depict how the perfect-
equilibrium policy varies with the reversion sq.

Exercise 3127 Consider the twice-repeated version of the ngt_:ndn-f:clllti
model developed in the previous exercise. The new status quo i penod ;
is whatever policy {agends setter's proposal or umm% slatas guo) .bw:;n
adopted in period 1. Suppose that the objective function u.r the ult;r.nm5
setter is the sum of the two periods” policies, and Ibut}ihc voter's preferen od.
are — (st — )? — (s3 — 12)7 (that is, his bliss point is 4 for the ﬁfsi—pcn
policy and 12 for the second-petiod one). The initial t:vlnl_uﬁ c!uu is z.ﬁ »
(a) Suppose first that the voter is myapic (acts as il his discount lat g
were 0 instead of 1), but that the agenda setter is not. Show that the agen
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setter offers 6 in period 1, and that the payoffs arc 24 for the agenda
setter and —40 [or the voter. Assume in this exercise that the voter
chooses the higher acceptable policy when indifferent. If you are coura-
geous, show that this policy is uniquely optimal when the agenda setter’s
discount factor is slightly less than 1 instead of 1.

(b) Suppose now Lhat both playecs ace rational, Show that the agenda
setter’s utility is higher and the voter’s utility is lower than in question (a),
What point does this comparison illustrate? (See Ingberman 1985 and
Rosenthal 1990.)
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Applications of Multi-Stage Games with Observed Actions

4.1

Introduction’

In chapter 3 we introduced a class of extensive-form games that we called
“multi-stage games with obscrved actions,” where the players move simul-
taneously within each stage and know the actions that were chosen in
all past stages. Although these games ure very special, they have been
used in many applications in cconamics, political science, and biology.
The repeated games we study in chapier 5 belong to this class, as do
the games of resource extraclion, preemplive iuvestinent, and strategic
bequests discussed in chapter 13. This chapter develops a basic fact about
dynamic optimization and presents a few inleresting examples of mult-
stage games. The chapter concludes with discussions of what is meant by
“open-loop™ and “closed-loop’ equilibria, of the notion of iterated condi-
tional dominance, and ol the relationship between cquilibria of finite-
horizon and infinite-horizon games.

Recall that in a multi-stage game with observed actions the history #'
at the beginning of stage t is simply the sequence of actious (a%,a',...,a'™")
chosen in previous periods, and that a pure strategy s; for player i is
a sequence of maps | [rom histories ii' to actions af in the feasible sets
Ah"). Player i's payofl u; is a function of the lerminal history hTvE
i.e., of the entire scquence of actions from the initial stage 0 through the
terminal stuge T, where T is somelimes taken Lo be infinite. In some of the
examples of his section, payolfs take the special form of the discounted sum
3o 8igia") of per-period payolls g/(a’).

Section 4.3 presents a first look al the subclass of repeated games,
where the payofls are given by averages as above and where the sets of
feasible actions af each stage and the per-period payofls are independent of
previous play and time, so that the “pbysical environment” of the game is
memoryless. Nevertheless, the [act that the game is repeated means that
the players can condition lheir current play on the past play of their
opponents, and indeed there can be equilibria in strategies of this kind,
Section 4.3 considers only a few examples of repeated games, and does not
try to characterize all the equilibria of the examples it examines; chapter 5
gives a more thorough treatment.

[n this chapter we consider mostly games with an infinite horizon as
opposed to a horizon that is long but finite. Games with a long but finite
horizon represenl a situation where the horizon is long but well foreseen;
infinite-horizon games describe a situation where players are fairly un-
certain as to which period will be the last. This latter assumption seems to
be a better model of many situations with a large number of stages; we will
say more about Lhis point when discussing some of the examples.

When the horizon is infinite, the set of subgame-perfect equilibria cannot
be determined by backward induction from the terminal date, as it can




