PMR3404 – Controle I Projeto de Laboratório

POSICIONAMENTO DE PLATAFORMA

1. Descrição

Neste sistema, utilizam-se dois navios de suporte offshore operando sistemas de posicionamento dinâmicos e trabalhando em conjunto para posicionar uma plataforma de perfuração não atuada. Os navios são ligados à plataforma por meio de cabos de rigidez conhecida. O objetivo do sistema de controle é posicionar os barcos 1 e 2 de forma que a plataforma seja levada à posição desejada e assim permaneça, mesmo em face de distúrbios ambientais.

2. Modelo matemático

A Figura 1 ilustra o sistema. A plataforma possui massa m_0 e os navios de suporte possuem massas $m_1=m_2=m$. Cada um dos cabos possui comprimento sem carga igual a L_0 e rigidez k. Para efeito de simplificação, os cabos são tratados como molas lineares.

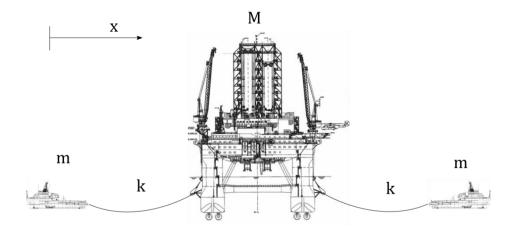


Figura 1 - Esquema da operação de posicionamento

2.1. Equações de movimento

O movimento do baricentro da plataforma é dado por

$$M\ddot{x}_0 = C_{r_0}[(v_c - \dot{x}_0)^3 + b_0(v_c - \dot{x}_0)] - k(x_0 - x_1 - L_0) + k(x_2 - x_0 - L_0)$$

Aqui, x_0 é a posição da plataforma, C_{r0} é o coeficiente de arraste, b_0 um coeficiente de ajuste linear, v_c é a componente da velocidade da corrente em x, x_1 é a posição do barco 1 e x_2 é a posição do barco 2.

As equações de movimento do barco 1 e 2 são dadas, respectivamente, por

$$m\ddot{x}_1 = F_{thr1} + C_r[(v_c - \dot{x}_1)^3 + b(v_c - \dot{x}_1)] + k(x_0 - x_1 - L_0)$$

Ε

$$m\ddot{x}_2 = F_{thr2} + C_r[(v_c - \dot{x}_2)^3 + b(v_c - \dot{x}_2)] - k(x_2 - x_0 - L_0)$$

O coeficiente de arrasto de cada barco é dado por C_r , com o coeficiente linear b. As forças dos propulsores nos barcos são dadas por F_{thr1} e F_{thr2} , respectivamente.

2.2. Sistema de Posicionamento dinâmico

Cada navio de suporte possui um sistema de controle de posição próprio, do tipo Proporcional-Derivativo, de ganhos k_p e k_d e cuja lei de controle é dada, respectivamente, por

$$F_{thr1} = -k_p(x_1 - x_{1d}) - k_d(\dot{x}_1 - \dot{x}_{1d})$$

$$F_{thr2} = -k_n(x_2 - x_{2d}) - k_d(\dot{x}_2 - \dot{x}_{2d})$$

Os valores x_{1d} e x_{2d} são os valores de referência para o sistema de controle individual desses navios, e cujos valores são determinados pelo controlador de posição relativa, aqui denominado sistema de controle cooperativo.

2.3. Sistema de controle cooperativo

O sistema de controle cooperativo acopla as dinâmicas dos navios de suporte, determinando os valores desejados do sistema de posicionamento dinâmico de cada navio. O valor de referência para cada sistema de posicionamento dinâmico é dado por

$$x_{1d} = x_1 + c[k_1(x_{0d} - x_1 - \delta_{01}) + k_2(\dot{x}_{0d} - \dot{x}_1) + k_1(x_2 - x_1 - \delta_{21}) + k_2(\dot{x}_2 - \dot{x}_1)]$$

$$x_{2d} = x_2 + c[k_1(x_{0d} - x_2 - \delta_{02}) + k_2(\dot{x}_{0d} - \dot{x}_2) + k_1(x_1 - x_2 - \delta_{12}) + k_2(\dot{x}_1 - \dot{x}_2)]$$

Os ganhos k_1 , k_2 e c são constantes de acoplamento e sincronização. δ_{01} , $\delta_{21} = \delta_{12}$ e δ_{02} são valores de referência para as posições relativas entre os navios e a plataforma. O valor x_{0d} é a posição desejada da plataforma e a variável manipulada pelo sistema de controle a ser projetado.

<u>Dica</u>: Considere a transformação do sistema para o uso de uma variável de estado conjunta $w = x_1 + x_2$

2.4. Parâmetros

Parâmetro	Valor
Massa da plataforma M	80124100 kg
Massa dos barcos m	7880970 kg
Rigidez dos cabos k	592500 N/m
Arraste da plataforma \mathcal{C}_{r0}	248335 N.s ³ /m ³

Coeficiente de correção b_0	$43.2562 m^2/s^2$
Arraste dos barcos C_r	$2242 N. s^3/m^3$
Coeficiente de correção b	$43.2562 \ m^2/s^2$
Comprimento do cabo em repouso L_0	490 m
Ganho proporcional do sistema DP k_p	4649.8 N/m
Ganho derivativo do sistema DP k_d	386167 N.s/m
Ganho proporcional do cooperativo k_1	2.582
Ganho derivativo do cooperativo k_2	109.9076 s
Constante de sincronia c	1
Referência relativa δ_{01}	490 m
Referência relativa δ_{02}	$-490 \ m$
Referência relativa δ_{21}	980 m
Referência relativa δ_{12}	-980 m
Máximo empuxo de cada barco	188000000 N

3. Requisitos de desempenho

O sistema de controle deve levar a plataforma para a posição desejada e mantê-la com as seguintes características em malha fechada:

- Erro de regime igual a zero para o comando de referência variando na forma de degrau;
- Máximo sobressinal menor do que 15% para o comando de referência variando na forma de degrau;
- Tempo de assentamento de 2% compatível com a dinâmica do sistema para o comando de referência variando na forma de degrau (estabeleça claramente o valor);
- Margem de ganho maior do que 10 dB;
- Margem de fase maior do que 45°;
- Rejeição completa de qualquer perturbação constante.
- Esforço de controle compatível com o valor máximo de empuxo dos barcos.
- Determine, para seu controlador, um valor máximo de velocidade de corrente para o qual o sistema se mantém estável.