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Introduction 
 
Quantitative microbial risk assessment (QMRA) of drinking water systems requires 
the quantification of pathogen occurrence in source water and their removal through 
various treatment barriers to the consumer’s tap. When pathogen occurrence at the tap 
is combined with consumption patterns and pathogen dose-response relationships, the 
risk of infection (or other end-points) can be estimated.  
In this report, a framework for calculating and characterising the microbial risk from 
drinking water is presented (Figure 1). The process of quantifying model inputs and 
choosing numerical values for each variable is critical to the QMRA process, and yet 
potentially daunting for the risk analyst. Pathogen sources, transport and removal are 
complex processes dependent on many factors including hydrology, climate, land use, 
hydrodynamics, disease incidence, process design and performance, and unpredictable 
human behaviour.  
Experimental data is key, however datasets that relate directly to the variables of 
interest are limited. Analyses are costly, and pathogens generally occur at low 
densities in environmental waters making detection difficult. Datasets are 
characteristically small in size and often contain low numbers and many non-detects. 
Statistically, analysis of microbial datasets for characterising inputs to QMRA is 
therefore a less usual case. Whereas most traditional statistical methods are designed 
to analyse large datasets of relatively low variance, microbial datasets are generally 
small datasets of high variance with large uncertainties.  
The role of the risk analyst is to determine what the limited monitoring or 
experimental results reveal regarding the magnitude and variability of each 
quantitative input to the risk model. Statistical approaches appropriate for describing 
model inputs for QMRA from microbial data are therefore presented. Examples are 
given that require a specific and sometimes rigorous consideration of the relevant 
experimental data collected during the MicroRisk project. The authors argue that the 
greatest value will be obtained from the experimental data when the statistical 
analysis approach is tailored to the individual dataset. The aim of these detailed 
analyses is to learn as much as possible from the available information regarding 
appropriate quantitative estimates of model inputs, and the uncertainties associated 
with these estimates. 
Uncertainties1 in microbial risk modelling are important to untangle from variability2. 
The risk management implications of an isolated probability of infection estimate can 
be difficult to interpret without further understanding of how and why model inputs 
may vary and where the most important sources of uncertainty lie. The aim of this 
report is not only to demonstrate how risk calculations were undertaken, but also to 
give some guidance regarding the interpretation of uncertainty associated with 
modelling results.  
 In the MicroRisk project, a pragmatic approach to characterising uncertainty was 
applied by combining traditional quantitative methods and a more semi-quantitative 
                                                 
1 Uncertainties arise due to lack of precise knowledge of the input values or to lack of knowledge of the 

system being modelled, more data typically reduces these uncertainties. 
2 Variability refers to observed differences attributable to true heterogeneity or natural diversity in a 

parameter that cannot be reduced by additional data collection (but can be better characterised). 
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approach drawing on expert opinion. An expert may have prior knowledge that the 
estimated value for a model variable (quantified based on a small or surrogate dataset) 
is unlikely to be representative. In fact, discussion of this prior knowledge, aimed at 
ensuring the representativeness of data and assumptions to the real systems and 
processes being studied, was identified as a critical component of the quantitative risk 
assessment process. The importance of these kinds of uncertainties (or scepticisms) on 
risk calculations was explored using sensitivity analysis.  
A general framework for estimating pathogen risks from drinking water is illustrated 
in Figure 1. 
 

 
 
Figure 1 General framework for calculating microbial risk from drinking water 

 

Step 1 – Context 
 
The first step in the QMRA process is to define which pathogens will be modelled and 
what conditions will be investigated. These choices should be made so that the range 
of pathogen types are modelled under both baseline and hazardous event conditions, 
providing the context for the QMRA.  
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Step 2 - Exposure 

Source Water 
Pathogens may be present in the water column at the treatment plant off-take due to 
human and/or animal inputs (waterborne enteric viruses being assumed to only come 
from human excreta) within the catchment. The density of pathogens at the treatment 
plant off-take is dependent upon the magnitude of pathogen inputs and the 
environmental processes affecting their transport and inactivation; and is expected to 
vary both over time and between pathogen groups as described in Chapters 3-43.  
To calculate microbial risk the density of pathogens (number of micro-organisms per 
litre) in the source water must be quantified and entered into the risk model. The main 
sources of information for quantifying pathogen density in source waters are: 

• Water samples collected from the site and analysed directly for the presence of 
pathogens; 

• Water samples collected from the site and analysed for (pathogen) index 
organisms combined with some assumptions regarding the ratio of index 
organisms to pathogens (direct analysis of pathogens is often not undertaken 
as analytical methods for detection are costly, and pathogens are often present 
in low densities requiring the collection of large volume samples); and 

• Literature data from a catchment of similar pathogen sources and physical 
characteristics. 

For some systems, significant changes in pathogen density can be linked to specific 
events affecting the mobilisation of micro-organisms from their source to surface 
waters such as rainfall induced runoff, and discharge of sewage overflows. Identifying 
the occurrence and impact of such hazardous events can facilitate understanding and 
management of the microbial risks for a given system. Describing the source water 
concentration for such a system by a single estimate may underestimate the peak 
risks, as high pathogen densities can be dampened by nominal low densities. A simple 
approach to address this is to describe separately pathogen densities under “event” 
and “nominal” conditions, leading to a bimodal description of pathogen density.   

Treatment Efficacy 
A wide range of treatment processes exist for the physical, chemical and 
microbiological purification of drinking water as indicated in Chapter 4. Each of these 
processes contributes to the removal or inactivation of pathogens from the water 
column. The effectiveness of each process in removing pathogens is variable: between 
different types of processes; between the same processes operated at different 
treatment facilities; and even variable over time for an individual process at a 
specified treatment plant.  
Quantifying treatment removal performance for a drinking water CTS, accounting for 
the individual characteristics of the system being studied, and the expected temporal 
variability in performance for each process unit is a great challenge. Careful 
consideration of the available data is essential. In the QMRA framework, removal 
performance is represented by π (Figure 1) which is the fraction of organisms passing 
any treatment barrier (or barriers). When multiplied by the source water concentration 
(µ�π), the pathogen density in finished (treated) water may be estimated.  
The primary sources of data for quantifying treatment performance (π) include: 

                                                 
3 “Chapter” in this report refers to the corresponding chapter in the final report of MicroRisk. 
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• Pathogen densities at the inlet and outlet for a process or treatment plant; 
• Surrogate densities at the inlet and outlet for a process or treatment plant; and 
• Online performance data including turbidity, and chlorine residual. 

Treatment efficacy is often reported as decimal elimination or Log10 reduction in 
micro-organism density. Log10 reduction is simply the Log10 of π, and therefore can 
be directly transformed to an estimate of π for input to the risk model 
( reductionLog1010=π ). 

Distribution 
An ideal distribution system protects water quality as it transports treated water from 
the plant to the consumer’s tap. The only effect on pathogen density should be a 
reduction due to inactivation with travel time (increased in the presence of a 
disinfectant residual), and incorporation into pipe biofilms. 
In reality however two types of events in the distribution system may lead to an 
increase in the pathogen concentration between the treatment plant and the consumer: 

1. Deficiencies in the distribution system may lead to the ingress of pathogen 
contaminated material including cross-connections, contamination while in 
storage, contamination during construction or repair, and broken or leaking 
mains. In addition, common hydraulic transients may lead to contamination 
through negative pressure and subsequent intrusion of soil water.  

2. Biofilm sloughing events (caused by shear force from changes in water flow 
or change in disinfectant concentration) may lead to incorporation of pathogen 
rich material from the internal pipe surface into the water column [Storey and 
Ashbolt, 2003]. 

Calculation of the impact of events within the distribution system on the microbial 
risk to the consumer requires the quantification of the frequency and duration of each 
type of event, along with the numbers of pathogens incorporated into the drinking 
water. Techniques for identifying the occurrence and impact of these events are still in 
their infancy and there is a great need for research in this area, as described in Chapter 
5. 
The current risk model oversimplifies the problem by looking at the impact of an 
ingress event on the pathogen concentration at the consumer’s tap by considering the 
volume of contaminated material entering the water (Vingress) and the pathogen 
concentration in the contaminated material (µingress). Within this framework, the 
relative importance of ingress events on consumer risk can be explored. The 
concentration of pathogens at the tap may be calculated using Equation 1. 
 

).)(1( πµµµ XX ingresstap −+=  

Equation 1 

 

Where:   
tQ

V
X ingress

×
=  if no ingress event occurred, then 0=X   

 
(X) represents the proportion of external (ingressed) material present in the water column at 
the tap; Vingress is the volume of contaminated material entering the water column over time t 
for an ingress event; and Q is the flow rate in the pipe at the time of the ingress event.  
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No attempt has been made to quantify the impact of pathogen incorporation into and 
subsequent sloughing of biofilms. Given the oversimplified framework, however, the 
sloughing of biofilm could be tested as a special case of an ingress event where the 
estimated pathogen density in the biofilm is combined with the volume of material 
sloughed into the water with the subsequent concentration at the tap calculated using 
Equation 1. The likelihood and overall impact of these ingress events on the 
probability of infection to the consumer may then also be characterised (see section 
0). 

Consumption 
The volume of water consumed must be quantified in order to estimate the dose of 
pathogens. Results from analysis of unboiled tap water consumption patterns (Chapter 
6) indicate that the amount of water consumed is influenced by many factors 
including age, culture (or nationality) and level of physical activity. The volume of 
water consumed (litres per day) is multiplied by the pathogen concentration at the tap 
to calculate the total exposure or dose ( consumedtap VDose ×= µ ) per day. 

Step 3 – Dose-Response 
Dose-response modelling is the key to microbial risk assessment as it provides a link 
between exposure dose and the probability of infection. Prior to dose-response 
relationships, human feeding experiments were only used to estimate infectious doses 
such as ID50 or minimum infective dose (MID). However, in more recent years it has 
become clear that infection is theoretically possible from exposure to a single 
organism, and the use of models based on the ‘single-hit’ theory of dose-response 
have increased [Regli et al., 1991; Haas et al., 1993; Gerba et al., 1996b]. 

Dose –response models 
Quantitative dose-response models have been developed to estimate the probability of 
infection based on the average pathogen dose [Haas et al., 1983]. While the average 
dose of pathogens is continuous and can potentially take any value, the actual number 
of organism that an individual may consume is a discrete quantity (i.e. it is not 
possible to consume 2.67 Cryptosporidium oocysts, but rather given an average dose 
of 2.67 most individuals would consume 2 or 3 oocysts with a fewer number 
consuming lower [0, 1] or higher numbers [6, 7]). Beginning with the average dose, 
the calculation of probability of infection is a two step process, being the combined 
probability of exposure and infection shown in Equation 2. 

)|(inf)|()|(inf
0

nPnPP
n

×= ∑
∞

=

µµ  

Equation 2 

 
Where: )|(inf µP  is the probability of infection given the mean pathogen density. 

)|( µnP is the probability of exposure to n organisms given the mean pathogen 
density µ. 

 )|(inf nP  is the probability of infection given exposure to n organisms 
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The distribution of pathogens in the exposure media is assumed to be random, and 
therefore the probability of exposure to n organisms when the mean concentration is 
equal to µ (P(n| µ)) is given by the Poisson distribution. 
 
When an individual organism is ingested, the probability of that organism 
successfully overcoming host barriers and reaching a site for infection may be 
represented by r. If every organism is assumed to behave independently from other 
organisms within the host, then the overall probability of infection may be described 
as a binomial process. That is, each ingested organism may result in one of two 
outcomes; infection or not infection. If the probability that an individual organism 
may cause infection is denoted by r, then the probability of not being infection is 
equal to (1-r). Over a series of n independent trials (in this case, number of organisms 
consumed), the probability of not being infection is equal to (1-r)n, and hence the 
probability of at least one organism being successful in causing infection is the 
complement: 

nrnP )1(1)|(inf −−=  

Equation 3 

 
The implementation of the Poisson pathogen distribution and binomial probability of 
infection (Equation 3) leads to a family of models referred to as single-hit models, 
where the name relates to the concept that only a single organism is necessary to 
cause infection. The simplest form of the single-hit model assumes that for a given 
pathogen, every pathogenic particle within every host has the same constant 
probability of survival, given by r. When combined with the P(n| µ), the dose-
response relationship is the exponential model. 
 
Exponential model: When organisms are distributed randomly (Poisson) and the 
probability of infection for any organism equals r then: 
 

µreP −−= 1inf  

Equation 4 

 
While the exponential model is simple, the practical implications are unsatisfying 
since the between pathogen variation in infectivity, and between host variation in 
susceptibility is ignored. This limitation is partially overcome by Beta Poisson model. 
 
Beta Poisson model: When r is assumed vary according to a beta distribution, a 
complicated dose-response relationship emerges containing a confluent 
hypergeometric function [Haas et al., 1999]. Furumoto and Mickey [1967] made 
some simplifying assumptions to this relationship, and derived a simple dose-response 
relationship referred to as the Beta Poisson: 

α

β
µ

−









+−≈ 11infP which holds when β≥1 and α ≤ β 

Equation 5 
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The Beta Poisson approximation has been widely applied for describing dose-
response relationships for QMRA. In some studies, the Beta-Poisson approximation 
has been applied even when the criteria for the parameter values (Equation 5) are not 
satisfied. A notable example is the dose-response relationship for Rotavirus infection 
fitted to data from Ward et al. [1986] with maximum likelihood parameters of (α̂  = 
0.253, β̂  = 0.422). The implications of this inappropriate application, particularly as 
it relates to the maximum risk curve are discussed below. 
 
Maximum Risk Model: An important property of the single-hit relationship is that a 
maximum risk curve exists. The maximum risk curve is calculated when the 
probability that an ingested organism will pass the host’s defense mechanisms and 
find a site suitable for colonisation is maximised and assumed equal to 1. The 
resulting equation is therefore the exponential dose-response function with r = 1.  
This property is not retained by the Beta-Poisson approximation. In a study aimed at 
investigating the Rotavirus Beta-Poisson model fitted to data from Ward et al. [1986] 
with maximum likelihood parameters of (α̂  = 0.253, β̂  = 0.422), the upper 
confidence level of the dose-response relation was shown to exceed the maximum risk 
curve [Teunis and Havelaar, 2000].  
In addition for some models used in the MicroRisk calculations, the Beta-Poisson 
approximation was shown to exceed the maximum risk curve at low doses. This 
exceedance is illustrated for the Campylobacter model (again α̂  and β̂  do not satisfy 
the criteria of approximation), in Figure 24. The implication was that at low doses, the 
dose-response model was predicting theoretically impossible probability of infection 
estimates. As an alternative, for low doses (< 0.1 org.L-1) the exact Beta Poisson 
model can be approximated by setting r (Equation 4) equal to the expected value of 
the Beta distribution (α/α+β)), thus avoiding this complication.  
 

 
 
Figure 2. Campylobacter and maximum risk dose response curves at low doses 
 

                                                 
4 Teunis et al. (2005) fitted the exact Beta Poisson model to the dose-response data to find estimates of 
the parameter values α and β. Here, the parameter values have been used in the Beta Poisson 
approximation (Equation 5). 
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The maximum risk curve is also an important tool for uncertainty analysis, providing 
the upper bound of possible infection response. The importance of uncertainties in the 
calculation of the dose-response relationship can be screened using the maximum risk 
curve as a worst case sensitivity input.  
The maximum risk curve could also be applied for risk assessment of pathogens with 
unknown properties. While for highly infectious pathogens the maximum risk curve 
appears to be a reasonable conservative assumption, it is however important to be 
aware that for less infectious pathogens, the maximum risk curve may significantly 
overestimate infection risk. 
 

Experimental Data 
In order to estimate the parameters of a dose-response model it is necessary to fit the 
dose-response relationship to some data. There are two primary sources of relevant 
data; they are from human feeding trials and unsolicited outbreaks. 
 
Human Feeding Trials: Human feeding trials are controlled experiments where 
“volunteers” are administered doses of different pathogen concentrations. The number 
of volunteers who then exhibit an infective response are recorded. Important 
uncertainties associated with these studies include: 

• The number of viable particles in the dose is unknown. Depending on the 
source of the inoculum and the individual pathogen, there is uncertainty as to 
how many of the administered particles were actually infectious at the time of 
consumption. 

• Strain of the micro-organisms contained in the inoculum. Practicalities drive 
the sourcing of pathogens for the feeding trials. In some circumstances the 
strain of the administered organisms varied from the strain most likely to 
cause infection in humans, for example, most Cryptosporidium feeding trials 
have been undertaken using Cryptosporidium parvum, whereas most human 
infections are thought to be caused by various strains of Cryptosporidium 
hominis. 

• Representativeness of volunteers. For ethical reasons human feeding trials are 
conducted on healthy adults who’s immune response may not be 
representative of the entire population. 

 
Outbreak data: In more recent years, information from outbreaks of enteric illness 
has been used to estimate dose-response parameters [Teunis et al., 2005; Teunis et al., 
2004]. The great advantage of data from a real outbreak is that it demonstrates an 
actual response to exposure to human pathogens, without the constraints and 
simplifications necessary for a controlled study; pathogens are native to the system, 
and those exposed are a true sample from the susceptible population. Conversely 
however, additional uncertainties are introduced including: 

• Estimating the dose. There is an incubation period between the time a 
pathogen is ingested and when a response (illness) is identified. Due to this 
incubation period, by the time an outbreak is identified, the source material is 
unlikely to be available for direct analysis. If it is available, the pathogen 
density may no longer be representative of the density at the time of exposure 
(due to inactivation or growth). 

• Illness rather than infection is the endpoint. In a controlled feeding trial, blood 
serum can be analysed on a daily interval following exposure to identify 
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whether or not an individual has been infected. For a real outbreak, 
identification of a response is limited to those who report symptoms of 
infection (illness) which is only a portion of the total infected population. 

 

Step 4 – Risk Characterisation 
The aim of risk characterisation is to integrate information from exposure and dose-
response assessment to express public health outcomes. Dose-response models are 
concerned with estimating probability of infection. Infection has been defined as a 
situation in which the pathogen, after ingestion and surviving all host barriers, 
actively grows at its target site [Last, 1995]. Infection may or may not result in illness, 
as asymptomatic infection can be common for some pathogens.  

Incorporating events into overall probability of infection 
Probability of infection estimates are based on the calculated exposure to pathogens. 
While the baseline (nominal) exposure can be calculated based on the expected 
variability in model inputs, it is often desirable to incorporate the likelihood and 
magnitude of certain events into the overall probability of infection estimate. One 
approach for undertaking this analysis is to calculate the probability of infection for 
each event condition that is to be investigated, and then to combine all events and 
nominal conditions based on their probability of occurrence (Equation 6). 
 

∑ ∑
= =

×−+×=
n

i

n

i
alnoii PPeventiPPeventP

1 1
mininf)1(infinf  

Equation 6 

Where:  Pinf is the overall probability of infection 
  n is the total number of event conditions to be included 
 Peventi is the probability of event i occurring 
 Pinf i is the probability of infection given that event i has occurred 
 Pinf nominal is the probability of infection under baseline or nominal conditions. 
 

Predicting the number of infections from multiple exposures 
When multiple exposures (either due to many individuals being exposed at the one 
time, one individual being exposed on multiple occasions, or a combination) are 
assumed to be independent events, then the number of infections (successes) may be 
described as a binomial random variable (X). The probability that the number of 
infections will equal a given number (k) is: 

knk pp
k
n

kXP −−







== )1()(   

Equation 7 

Where:  k is the number of infections 
n is the number of trials (i.e. for the number of infections per year for an individual, n = 365; for 
the number of infections per year for a population of 10 000, n = 3 650 000) 

 p is the probability of infection 
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This distribution can be maximized to find the most likely number of infections based 
on the calculated Pinf. 

Annual probability of one or more infections  
If consecutive exposures are assumed to be independent, the annual probability of 1 or 
more infections may be calculated under the assumptions of a binomial process (a 
series of trials with one of two possible outcomes – infection or not infection). If the 
probability of infection for an individual exposure is given by Pinf, then the probability 
of not being infected is (1-Pinf). For n exposures, the probability of not being infected 
is given by (1-Pinf)n. The annual probability of one or more infections is the corollary 
of this for n = 365, and is given by Equation 8 : 
 
 

365
inf )1(1 PPann −−=  

Equation 8 

 
When Pinf <<1, this may be approximated as Pann = 365× Pinf 

 

Incorporating the impact of events into the annual probability of one or more 
infections 
Equation 6 calculated the probability of infection given the likelihood of a range of 
possible event scenarios. It is also possible to consider the impact of events on the 
yearly probability of one or more infections when it is assumed that one (or more) 
events occurred during the year for a known duration (days). In this situation, the 
binomial assumption can be expanded: 

∏
=

−−−=
i

n

nt
n

alnot
alnoann PPP

1

)(
)inf(

)min(
)mininf( )1()1(1  

Equation 9 

 
For example, consider a scenario when an event was known to occur in a given 
treatment plant for 2 days during the year. The probability of infection during that 
event was calculated to be 0.01. For the remainder of the year (363 days) the 
probability of infection was calculated to be 0.00001 (1 × 10-5). The overall 
probability of one or more infections during that year was = 1- (1-0.00001)363 × (1-
0.01)2 = 0.023, if the event had not occurred the probability of one or more infections 
would have been = 1 - (1-0.00001)365 = 0.0036. 

Disease Outcomes 
Infection is necessary to cause disease, however not all infections will result in 
symptoms of illness. While asymptomatic infections may be important for disease 
transmission, they do not in themselves contribute to the disease burden on a 
community. Evaluating the disease burden requires consideration of illness outcomes 
including the likelihood, severity and duration. 
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Figure 3 Outcomes of exposure to pathogens 

 
Disability Adjusted Life Years (DALYs) is as a metric for translating the risk of 
disease burden a general health burden per case of illness, as discussed in Chapter 2. 
The DALY accounts for the years lived with a disability (YLD) plus the years of life 
lost (YLL) due to the hazard (compared to the average expected age of death in a 
community). One DALY per million people a year roughly equates to one cancer 
death per 100 000 in a 70 year lifetime (a benchmark often used in chemical risk 
assessments) [WHO, 2004]. The DALY is calculated as the product of the probability 
of each illness outcome with a severity factor and the duration (years). Calculation of 
the DALY contribution per infection is undertaken using Equation 10. 
 

∑
=

×××=
n

i
iii SeverityDurationilloutcomePillPDALY

1
)|(inf)|(  

Equation 10 

Where n is the total number of outcomes considered 
P (ill|inf) is the probability of illness given infection 
P (outcome|ill) is the probability of outcome i given illness 
Durationi is the duration (years) of outcome i 
Severityi is the severity weighting for outcome i 

 
The advantage of using DALYs over an infection risk end point is that it not only 
reflects the effects of acute end-points (e.g. diarrhoeal illness) but also the likelihood 
and severity of more serious disease outcomes (e.g. Guillain-Barré syndrome 
associated with Campylobacter). Disease burden per case varies widely, but can be 
focused on a locality. For example, the disease burden per 1000 cases of rotavirus 
diarrhoea is 480 DALYs in low-income regions, where child mortality frequently 
occurs. However, it is only 14 DALYs per 1000 cases in high-income regions, where 
hospital facilities are accessible to the great majority of the population. Disease 
burden estimates for different drinking water contaminants is summarised in Table 1. 
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Table 1 Summary of disease burden estimates for different drinking-water contaminants* 

 Disease burden per 1000 cases 
 YLD YLL DALY 
Cryptosporidium parvum 1.34 0.13 1.47 
Campylobacter spp 3.2 1.4 4.6 
STEC O157 13.8 40.9 54.7 
Rotavirus    

High income countries 2.0 12 14 
Low income countries 2.2 480 482 

Hepatitis-A virus    
High income countries, 15-49yr 5 250 255 
Low income countries 3 74 77 

* Reproduced from Havelaar and Melse [2003] 
 
While the use of DALYs has many conceptual advantages, research is necessary to 
facilitate its implementation. Estimates of incidence, severity and duration of disease 
outcomes based on epidemiologic data have only been presented in the literature for 
Rotavirus [Havelaar and Melse, 2003], Campylobacter [Havelaar et al., 2000b], E. 
coli O157 [Havelaar et al., 2003] and Cryptosporidium [Havelaar et al., 2000]. These 
inputs for DALY calculations are extremely uncertain and the variability in severity 
and duration between cases is still poorly understood. Havelaar et al. [2000b] 
however, argue that for Campylobacter spp that the uncertainty is relatively small and 
that the DALY remains a robust measure even when input parameters are varied. 
Nevertheless, risk calculations undertaken as part of the MicroRisk project maintained 
probability of infection as the endpoint. The implementation of the DALY metric is 
demonstrated in an illustrative example only. 

Example: Implementation of DALY metric for interpreting 
probability of infection estimates for Cryptosporidium.  
 
Estimates of severity and duration of health outcomes following infection with 
Cryptosporidium, based primarily on the Global Burden of Disease (GBD) project, 
have been presented by Havelaar et al. [2000a] and reviewed by Havelaar and Melse 
[2003]. In developed countries 71% of immunocompetent individuals infected with 
Cryptosporidium develop gastroenteritis. The mean duration and severity weightings 
are summarised in Table 2.  
 
Table 2 Summary of input assumptions for Cryptosporidium DALY calculations 

Outcome Probability of outcome given 
illness 

Duration Severity 

Diarrhoea 
(mild) 

1 7.2 (days) 0.067 

Death 0.00001 13.2 (years) 1 
  

Implementing 
Equation 10 with data for Cryptosporidium from Table 2: 

 
00103.012.131071.0067.0365/2.7171.0 5 =×××+×××= −

444 3444 214444 34444 21
DeathDiarrhoea

DALY  
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Note: the probability of diarrhoea given illness is 1 since in the case of Cryptosporidium infection, all 
ill individuals are assumed to have diarrhoea. 
 
The disease burden based on DALYs would therefore be calculated using the 
expected number of infections per year (maximising Equation 7) for the population 
multiplied by the DALY contribution per infection (0.00103). 
 

Tiered approach to qmra 
 
QMRA can be undertaken at various levels of detail, from a deterministic analysis 
aiming to characterise, say, worst or best case risk scenarios, to a full scale stochastic 
analysis. More detail is not always advantageous, but rather the QMRA scope and the 
perceived risk level of the system should govern what an assessor considers an 
appropriate level of detail. Figure 4 illustrates an iterative approach for conducting 
QMRA that aims to: 
 

i) Assess the health risks associated with a water supply system; 
ii) compare the estimated risks to the health targets; and 
iii) if necessary, identify points in the system whereby either more data is required 

to better characterise the risks, or, where management strategies could best be 
deployed to improve the overall system performance.  

 
The level of detail required for each iteration cannot be prescriptive; instead it will 
depend on the exercise scope and the available data and resources. While any level of 
detail or method sophistication can be employed for the first or subsequent iterations, 
it is advisable to begin with a simple approach, i.e. to conduct a screening-level 
assessment, the simplest approach for QMRA is to describe each model input as a 
point estimate. As the aim of each iteration is to identify if further consideration of the 
microbial risk from the system of interest is necessary, any deterministic parameter 
estimates should be based on the best information available at the time, and be 
conservative. Should the infection risk estimate be well below some health target 
level, the management outcome may be interpreted as that the system is performing 
adequately, and that current practices are adequately safe. Alternatively, it may be that 
even following simple analyses while the infection risk is not below the target, that 
management options can be identified to reduce the risk to an acceptable level. In this 
circumstance, further data collection or analysis may also be considered unnecessary. 
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Figure 4 Iterative tiered approach for undertaking QMRA 

 
In many situations however, an effective risk management approach is not clear 
unless further analysis is undertaken to characterise the variability in risk and the 
important determinants that drive such variability for the specific system. In this case, 
higher level analyses, whereby parameters are described not as point estimates, but as 
variable quantities may be useful. 
 

(Higher level) probabilistic analyses 
 
All inputs in a QMRA model are likely to vary. Source water quality varies with time 
dependent on catchment activity, seasonal climate changes, or specific point-source 
contamination such as a sewer overflow entering the waterway. Treatment efficacy 
varies depending on a host of factors (Chapter 4) such as plant design, treatment 
methods, and plant breakdown. Water consumption and susceptibility to pathogens 
varies between consumers. Understanding the impact of this variability on consumer 
risk is important, especially in management terms, as such understanding will aid 
answering why and how higher risk periods may occur, and provide insight into 
controlling those effects.  
The central tool for describing variability is the Probability Density Function (PDF). 
When a model input is considered to be a variable rather than a constant, the input 
may be quantified using a PDF. When described by a PDF, the variable may take one 
of a range of values, each with a known probability of occurrence. The variable risk 
estimates may then be made using Monte Carlo simulation.  
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It is necessary to distinguish between the true PDF and an estimated PDF of an input 
variable. Each variable could be considered to have a true PDF; that is the actual 
frequency/duration of the range of values that the variable may take. This true PDF 
however, is unknown. For example, consider the Campylobacter density in a 
particular source water, which is known to be constantly changing. We may also 
know that it is higher at some times than others, perhaps due to season or hydrology. 
What we do not know is how high it can become, or for exactly how long it may be 
elevated.  
At best, we can use available data along with some understanding of the system and 
formulate a PDF that is an estimate of the true PDF. Hopefully the estimate will 
encapsulate the key features of the true distribution and provide a realistic 
representation of the variable of interest. In order to construct an estimate of the true 
PDF we rely on experimental data and process or statistical models. 
The manner in which a parameter is estimated and described depends on various 
factors, not least of all an understanding of the processes and mechanisms that may 
dictate the ‘true’ value of a parameter or the nature of its variability. The following 
sections (1.3 & 1.4) detail manners in which variable parameters (and the related 
concept of uncertainty) may be estimated using different types of relevant datasets. 
 

QUANTIFYING VARIABILITY FROM MICROBIO-
LOGICAL DATASETS 
 
Experimental data provides the most important insight into the quantitative value of 
each model variable. Numbers can be comforting, and tend to create an aura of 
certainty and accuracy; however numbers can be easily misinterpreted and 
inappropriately applied. Some elementary considerations when approaching a dataset 
for analysis include: 
  

1. Is the dataset a random representative sample? It is important to consider if the 
available dataset is representative of the variable being quantified. For example: 
The aim may be to estimate the PDF for source water density of a particular 
pathogen. Were the samples taken randomly? If the dataset was collected as part 
of a short term study and all results were collected say during winter, or if the 
data was collected to investigate the impact of rainfall events and every sample 
was collected following rain, then the results would not represent a random 
sample of the source water microbial density. Conversely, if samples were 
collected according to an arbitrary (or randomised) time factor, unrelated to water 
quality processes (e.g. the first Tuesday of every month) then the sample would 
be assumed to be random.  
 
2. Is the dataset representative of my system? There are countless factors that 
vary between water supply systems that affect microbial risk, including: 
catchment land use, climate, hydrology, water chemistry and treatment process 
performance. Direct application of published literature data, or data provided by a 
colleague from an apparently similar system is appealing, however processes that 
affect pathogen risk are complex and one system cannot necessarily be directly 
applied elsewhere. 
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3. What was the method of detection and how accurate may I expect it to be? 
Microbiological detection methods are constantly improving, but may differ due 
to changing water (matrix) effects and technician performance.  
 
4. What is the source of the numbers being used? Reported laboratory results 
may have already undergone transformation from their raw state due to averaging 
of replicate samples or translation into concentration estimates. Translation of 
raw laboratory results into reported densities can ignore underlying uncertainties 
arising from the detection and quantification process. It is extremely relevant to 
understand exactly what reported numbers represent. 

 

Characteristics of microbial data 
 
Microbiological datasets have many unique characteristics and represent a less usual 
case for statistical analysis. Understanding the source of microbial data, and where 
uncertainties may lie in their generation and analysis is important for QMRA. 

Detection and Quantification  
Microbiological species are small, and present in highly variable densities in 
environmental samples (ranging from <1 micro-organism per L to potentially >108 
micro-organism per L (e.g. for sewage)). Technical assay procedures rely on a range 
of approaches for developing a quantitative estimate of the micro-organism density in 
a water sample. Understanding the basis of quantitative density estimates is important 
for interpreting the inherent uncertainties associated with reported results. Hence, it is 
important to provide a brief description of microbiological methods employed so as to 
give the necessary background to understand the statistical difference between 
different types of microbiological data.  
There are three approaches for identifying the presence of an organism in the analysed 
sample including: 

• Visual identification: The presence of the organism is identified using a 
microscope. For example, analysis of Cryptosporidium and Giardia typically 
involves filtering a water sample concentrate through a membrane, staining 
oo/cysts then counting them with the aid of a microscope. The particular strain 
and infectivity status are not resolved. 

• Culture: The most common methods of pathogen detection and enumeration 
rely on culturing organisms (allowing organism to multiply under favourable 
conditions) in the laboratory. Viable organisms are quantified by the growth of 
colonies or diagnostic changes in liquid media (bacteria), or by measuring 
their effect on established host cell lines (viruses).  

• Molecular methods: Molecular methods are designed to detect and analyse 
specific genetic material unique to the group being enumerated. The genetic 
material is present in the sample whether or not the pathogen is infectious, and 
therefore routine molecular methods cannot distinguish between infectious and 
non-infectious organisms. Polymerase Chain Reaction (PCR) involves the 
specific amplification of DNA from the genome of the organism with the aid 
of primers. PCR can be undertaken as a non-quantitative presence/absence 
test, or as a semi-quantitative analysis (real-time PCR).  
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A combination of methods may be implemented such as the culture/ enrichment of 
organisms prior to PCR identification. In this case, the organisms are cultured to 
increase their concentration prior to PCR, therefore improving the sensitivity of the 
PCR identification and largely detecting viable micro-organisms. 
 
The results of these analytical processes are translated into a quantitative estimate of 
micro-organism densities using: 

• Count: A directly quantitative approach where the number of micro-
organisms (Giardia (cysts), Cryptosporidium (oocysts)), plaques (viruses), or 
colonies are counted (bacteria). The concentration is then estimated based on 
the volume of original sample analysed. 

• Most Probable Number: Results from a series of presence/absence analysis 
are used to predict the most probable number of organisms in the original 
sample based on the assumption of a Poisson distribution.  

 
Table 3. Summary of analytical approaches and datatypes obtained from MicroRisk CTSs 

 
 Detection method: 

 
Quantitative: 
P/A or Count 

Reported value: 

Campylobacter spp. Culture or enrichment + PCR P/A MPN.vol-1 

E. coli O157 Culture or enrichment + PCR P/A Estimated concentration 
Norovirus PCR  P/A Estimated concentration 

Enteroviruses Cell Culture P/A or count PFU or TCID50. L-1 
Cryptosporidium spp. Visual identification count Oocysts.10L-1 
Giardia spp. Visual identification count Cysts.10L-1 
Indicators and Surrogate Organisms 

Plate Culture  count CFU.100mL-1 E. coli  
Culture  P/A MPN.100mL-1 
Plate Culture count CFU.100mL-1 Clostridium 

perfringens Culture P/A MPN.100mL-1 
 

Key sources of uncertainty associated with these methods include: 
• One micro-organism or a cluster? In many of these methods, one organism 

or a cluster can initiate a positive reaction. For example, when counting 
colonies (bacteria) or plaques (viruses) either one or a cluster of cells/virions 
may have contributed to each colony or plaque. When a result is reported as 
PFU (plaque forming units) or CFU (colony forming units) in a sample 
volume, this is interpreted directly as the concentration estimate. In reality, the 
PFU or CFU may in fact underestimate the number of cells originally present 
in the sample. Similarly, for a Presence/Absence MPN a positive result may 
have been caused by either one or a cluster of organism. The estimated MPN 
is based on the assumption of a Poisson distribution which only accounts for 
random distribution of cells in the sample rather than clustering (see Section 
0). If micro-organisms are clustered, the MPN may also underestimate the 
original concentration.  

• Non-culturable but still infectious? Under environmental conditions, micro-
organisms may become stressed and as a result may be non-culturable in the 
laboratory. There is evidence however to suggest that such non-culturable 
organisms may still be infectious [McFeters, 1990; Barer and Harwood, 1999]. 
Though still controversial, the concept of cells being infectious but not 
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culturable has been raised for a number of the bacterial pathogens [Federighi 
et al., 1998].  

• Lastly, visual identification of pathogens, such as oo/cysts of Cryptosporidium 
or Giardia is fraught with additional problems to those outline above. 
Primarily, standard methods estimate total oo/cysts, or at best the presence of 
potentially infectious structures within these oo/cysts [US-EPA, 1999; Smith 
et al., 2004). Nonetheless, differences between strains, and indeed species can 
be missed, if not totally miss-identified by confounding microorganisms, such 
as algae [Rodgers et al., 1995].  

Recovery and Imperfect Detection 
Analytical methods for identifying microbial species in water are imperfect. Imperfect 
methods are evidenced by the presence of a detection limit; a value below which 
organisms cannot be detected. For example, consider an assay known to have a 
detection limit of 5 pathogens.L-1. If a sample containing 3 pathogens.L-1 is analysed, 
the result will be zero as the sample density is below the limit of detection. This 
detection limit may be caused by: 
 

• Method sensitivity - The detection limit may exist because a critical mass is 
necessary to perform a successful analysis. Once the detection limit is 
exceeded the analytical result is a direct reflection of the original organism 
density. Consider a sample containing 6 pathogens.L-1 to be analysed by a 
method with a detection limit of 5 pathogens.L-1. Under this explanation, the 
expected analytical result would be 6 pathogens.L-1, as the density is greater 
than the detection limit. This explanation may be true of many chemical 
analysis methods, and may also be true of microbiological analysis that aims 
to identify the presence or absence of the target organism in a sample volume. 

• Inactivation or loss- A portion of original microorganisms may be inactivated 
or lost during the assay process. Consider again the previous example of a 
sample containing 6 pathogens.L-1, and a detection limit of 5 pathogens.L-1. 
The result would be expected to be 2 pathogens.L-1 where four pathogens may 
be “lost” and two detected. The inactivation or loss of organisms throughout 
the analytical process potentially affects all methods. 

These underlying mechanisms5 are relevant for predicting original source water 
density from analytical results. Many results may be interpreted as though the cause 
of the detection limit was method sensitivity, i.e. any value above the detection limit 
is assumed representative. It may be more realistic to assume, particularly with 
microbiological species, that the detection limit exists due to inactivation or loss, and 
that those “lost” organisms should be accounted for over all reported values. This loss 
is described by the method recovery. 
Techniques for assaying microbial constituents in water samples can involve many 
processes and steps each of which may lead to loss or inactivation of some micro-
organisms. Recovery is the portion of micro-organisms “recovered” by a particular 
method. If the recovery was 100%, then there would be no loss, and the analytical 
result would be a direct refection of the original micro-organism density. 
                                                 
5 A third notable interpretation of the detection limit relates to the sample volume. The lower limit of 
detectable concentration is also limited by the size of sample, for example, if the sample volume was 
200mL, and one organism was found the estimated concentration would be reported as 5 org.L-1. 
Consequently, if no organisms were found, the concentration would be reported as < 5 org.L-1. This 
interpretation does not directly relate to the recovery, but represents negative results. 
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Alternatively, if the recovery was say 40%, then the original density would be 
estimated at 60% higher than the analytical result. For example, if the analytical result 
predicted a Cryptosporidium density of 10 oocysts.L-1, and the recovery of the method 
was 40%, then the original sample density would be estimated to be 10 × 1/0.4 = 25 
oocysts.L-1 

Little has been reported regarding the recovery of Campylobacter and E. coli 0157, 
however recoveries of Cryptosporidium and Giardia may vary from <10% to >80% 
(US-EPA Method 1623) and viruses enumerated by plaque assays from ~10% to 90%. 
Cryptosporidium and Giardia have received the most attention in the literature 
regarding recovery experimentation. US-EPA methods 1622 and 1623 for 
enumerating oocysts and oo/cysts respectively from environmental samples have been 
shown to yield highly variable recoveries [Kuhn and Oshima, 2002]. Many studies 
have sought to quantify the dependency between sample characteristics and recovery, 
however the results have been inconclusive. While some studies have identified a 
drop in recovery at high turbidities (e.g. 159 NTU) [Kuhn and Oshima, 2002; 
Digiorgio et al., 2002] a continuous relationship is not easily defined and may not 
exist. Digiorgio et al. [2002] noted that the nature of the turbidity and the background 
water matrix is likely to be just as important as the absolute NTU. Consequently, there 
is currently no easily measurable native surrogate for estimating recovery of 
Cryptosporidium and Giardia in water samples; hence the recommendation of an 
internal control with each sample assayed. 

Sampling Effects 
Microbiological species consist of discrete entities or particles that cannot be assumed 
to be uniformly distributed throughout the water body. Rather, due to the random 
variation in the location of microbial particles, microbiological counts enumerated 
from a single well-mixed sample will rarely yield a series of identical numbers [Tillet 
and Lightfoot, 1995]. At low densities, the impact of sampling variability may be 
large. 
For example, consider a volume of water containing an unknown density of 
Cryptosporidium. Suppose that the density of organisms in the volume of water is to 
be estimated by taking several 1L samples at random. The first sample contains 5, 
second 3, third 2 and finally 1. Each of these counts is an estimate of the actual mean 
pathogen density, illustrated in Figure 5. 
 

 
 
Figure 5. Random sampling of oocysts in a fixed sample volume 
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If the volume of water is considered well-mixed, the counts may be expected to 
follow a Poisson distribution [Haas et al., 1999]. An illustration of the Poisson count 
distribution with a mean (µ) of three is shown in Figure 6.  
 

 
    
Figure 6 Poisson distribution (µ=3) highlighting 5th and 95th percentiles 
 
In a well-mixed water body, with a mean Cryptosporidium density of three oocysts 
per litre, replicate counts would be expected to vary from 1 to 6, 90% of the time, 
with 10% of samples outside these limits. It is therefore possible that while the mean 
density is three, samples may be collected from which eight oocysts are enumerated. 
This expected variability has implications for interpreting a pathogen’s density in 
source water from analytical results. Suppose the number of organisms enumerated 
from a 1 L sample was three, what was the actual organism density in the water body 
at that time? A common assumption would be to consider the result a direct measure 
of the mean organism density, at 3.oocysts L-1. However it is evident that due to 
sampling variability this count could have been enumerated from waters with a much 
higher or lower mean organism density.  
Similarly, for analysis techniques that rely on identifying the presence or absence of a 
target organism in the sample volume, sampling variability leads to uncertainty in 
interpreting analytical results. While the target organism may not have been identified 
in a particular sample volume, it is possible due to sampling variability that the mean 
density in the original sample was greater than zero. 

Model Fitting and Parameter Uncertainty 
 
Statistical models can be used to enable variability and uncertainty associated with 
model inputs to be quantified from microbiological data. Models are idealisations of 
reality that facilitate a description of the true situation. No model presents reality, 
however certain models are more useful descriptors than others. The aim is to choose 
a model that facilitates the description of the target variable for the purposes of the 
QMRA.  
The type of statistical model selected and implemented to describe a model variable 
will depend on the experimental data including the type of data available (e.g. 
continuous or discrete; raw data or reported densities); the size of the dataset (number 
of data points); and perhaps the appearance (the data may appear to have come from a 
particular type of underlying distribution).  
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Model choice will also depend on how much is known about the process or system 
being studied. If the process is poorly understood, a simple empirical model that 
simply describes the dataset may be selected. Alternatively, if the underlying 
processes are well known, a model may account for the environmental, mechanistic or 
social processes that drive the value of the variable. Finally, the choice of model will 
depend on the aims of the individual risk investigation. A screening-level (tier 1) risk 
assessment, may intentionally select an overly simple approach.  

Parametric distributions 
Parametric distributions are important modelling tools for describing variability. A 
great number of distributions are available; however this section is limited to a 
description of the distributions applied as part of the MicroRisk project. In this 
context, the choice of distribution depended on the type of data (continuous or 
discrete), and the constraints (or domain) of the target variable. 
 
Continuous data 
A continuous variable can take on any value within a specified range and is not 
limited to discrete integer values. For continuous variables limited to positive values 
(such as pathogen density in source water, which cannot be negative), the Gamma 
distribution was applied for describing the probability density. The gamma 
distribution is a family of curves described by two parameters, shape (ρ) and scale 
(λ), of which the exponential and Chi-square distributions are special cases. The 
gamma distribution is particularly flexible for describing PDFs of different shapes 
(Figure 7). When ρ is large, the gamma distribution closely approximates the normal 
distribution however gamma only has density for positive numbers. 
 

 

 
Gamma distribution: 
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Euler gamma function 

 

 

Figure 7. Shape of the gamma distribution for different combinations of shape and scale parameter 
values 

 
For continuous variables limited to values between 0 and 1, the Beta distribution was 
applied for describing the probability density. The beta distribution is described by 
two parameters α and β and is extremely flexible for describing PDFs for binomial 
probabilities which will always lie between 0 and 1 (such as method recovery and 
probability of passage through a treatment barrier), some parameter combinations are 
illustrated in Figure 8. 
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Beta distribution: 
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Where ),( βαBeta represents the 
Euler beta function 

 

Figure 8. Shape of the Beta distribution for combinations of parameter values 

 
Discrete data 
Microbial datasets frequently consist of discrete counts of micro-organisms, colonies 
or plaques in a certain sample volume. At low microbial densities, sampling 
variability should be incorporated into the statistical model structure using discrete 
distributions. Apart from satisfying statistical correctness, there are two practical 
advantages associated with accounting for sampling variability: 

1. Provides greater flexibility in describing the target variable. If a particular 
analytical result could have eventuated from a range of source water 
densities, then to only consider the most likely density limits the flexibility of 
the statistical model to predict the most likely parameter values for the PDF; 
and 

2. Handling zero counts. Under the assumption of a discrete counting 
distribution, zeros are a result with a known probability of occurrence and 
can therefore be directly included within the model. There is no need to 
substitute zero values with a less than, or a detection limit, this approach 
describes what actually happened. 

 
Two types of discrete distributions are presented here for describing microbial 
counts: the Poisson and the negative binomial distributions.  
 
When particles are assumed to be randomly distributed in the water body, then a 
series of counts enumerated from water samples may be described by a Poisson 
distribution. The Poisson distribution assumes that the mean density of particles is a 
constant value. In reality, the mean density of micro-organisms in a water body may 
be expected to vary both spatially and temporally. This variability in mean density 
implies that micro-organisms are overdispersed, rather than randomly dispersed, in 
the waterbody (Figure 9). When that variability is described by a gamma distribution, 
the result is a Poisson-gamma mixture model, which is a form of the negative 
binomial distribution (BOX 1). The negative binomial distribution has been widely 
used to describe microbial count data [Haas et al., 1999; Teunis et al., 1999a; Teunis 
et al., 1999b; DeVires and Hamilton, 1999; Pipes et al., 1977].  



QMRA methodology 

31 

 
Figure 9. Illustration of the expected distribution of counts resulting from random and over-dispersion 
of micro-organisms. 
 
 
BOX 1 - Parameterisation of the Poisson-gamma mixture model 
While a range of equivalent parameterisations are available, the following 
description is reproduced from the work of Teunis et al. [1999a, b].  
 
When counts are assumed to be generated from a Poisson (random) process, then the 
probability of counting n organisms given a mean concentration (µ) and sample 
volume (V) is given by: 
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Equation 11 

If that mean concentration (µ) is assumed to follow a gamma distribution, then the 
distribution of counts (n) is given by: 
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The solution to the integral can be rearranged into the form of the negative binomial 
count distribution described by gamma parameters ρ and λ:  
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This function can be used to construct a likelihood function based on measured 
counts. The maximum likelihood estimators for the gamma distribution parameters 
describe the variability in mean concentration µ. 

 

Parameter estimation and uncertainty 
Models used to predict and describe process variables are defined by parameters. 
Once a model has been selected, and it is hypothesised to be a useful representation 
of the underlying variable or system, appropriate values for the model parameters 
need to be estimated.  
Given the experimental data (observations), the aim is to infer the parameter values 
of the selected distribution describing them. Several combinations of parameter 
values may be possible, and could have led to the observations, however the 
objective is to find the most likely parameter values, along with the probable region 
within which the parameter values may be expected to lie. The size of this region is 
reduced as the number of observations is increased. This uncertainty is referred to as 
parameter uncertainty and can be significant for small datasets. 

Method of Maximum Likelihood  
The concept of likelihood has been widely applied in the development of statistical 
models, and refers to the probability that the experimental data was generated from 
the assumed model [Edwards, 1992]. Construction of the likelihood function 
facilitates the inference of parameters values and evaluation of their uncertainty. 
Values of the model parameters that maximise the value of the likelihood function 
are termed the Maximum Likelihood Estimators (MLE), and are deemed the 
parameter values that are most consistent with the observations (data). It is also 
possible to construct a confidence region for a parameter vector based on the 
likelihood function6. For a full explanation of constructing likelihood functions and 
the method of maximum likelihood see a standard text, such as Montgomery and 
Runger [1999]. 

Bayesian Inference and MCMC 
For complex models containing large numbers of parameters, numerical optimization 
of the likelihood function can be laborious. Simulation techniques using Markov 

                                                 
6 Confidence region for parameter vector ),....,( 21 kθθθθ = consists of all parameter vector values 
that do not lead to rejection of the hypothesis H0 : θ = θ0. Leading to a 100(1-α)% confidence 

region:












<









− ]1;[

2

)(
)ˆ(2, αχ

θ
θθ v

L
LLn  



QMRA methodology 

33 

Chain Monte Carlo (MCMC) analysis, are available that allow the characteristics of 
the likelihood function to be explored within a Bayesian framework7 
MCMC methods are well established and have been used for parameter estimation 
and uncertainty analysis in a range of modelling applications [Gilks et al., 1996; 
Gelman et al., 2004], particularly hydrology [Campbell et al., 1999; Bates and 
Campbell, 2001]. The approach is well suited to risk assessment for evaluating 
uncertainty associated with models fitted to small datasets [Teunis et al., 1997; 
Teunis et al., 1999]. In the examples presented in this chapter, MCMC has been 
applied to quantify the uncertainty associated with parameter estimates. For a 
detailed explanation of the MCMC techniques and applications see Gilks et al. 
[1996] and Gelman et al. [2004].  
For MicroRisk, models were constructed in Mathematica® software package 
(Wolfram Research, Inc.) and a Markov Chain Monte Carlo approach using the 
Metropolis-Hastings algorithm was used to obtain a sample of the posterior 
distribution for model parameters.  These samples were used to construct credible 
intervals for the PDF (see Figure 10). The posterior sample of parameter values was 
used to construct a sample of PDFs, one PDF representing each sample of the 
parameter vector (gray lines, Figure 10). For each value of the given variable (x-
axis), the lower 2.5% and upper 97.5% quantiles of the sample of PDFs were 
selected. These quantiles were joined, resulting in a 95% credible region for the PDF 
of interest. The credible region is a representation of the parameter uncertainty, and 
represents the region within which the PDF is expected to lie – with 95% confidence. 
 

 
 

Figure 10 Illustration of method for constructing 95% credible interval (dashed line) from posterior 
sample of parameter pairs (PDFs constructed from posterior sample shown in grey) 

                                                 
7 Statistical methods have great difficulty in determining uncertainty distributions for two or more 
parameters from the same data set when these distributions are correlated. Classical statistical 
methods either assume that the uncertainty distributions are Normally distributed, and then use a 
covariance matrix to create the correlation, or use resampling methods (bootstrapping). MCMC is a 
technique to obtain a required Bayesian posterior distribution and is particularly useful for multi-
parameter models where it is difficult to algebraically define, normalise and draw from a posterior 
distribution. The method is based on Markov chain simulation: a technique that creates a Markov 
process (a type of random walk) whose stationary distribution (the distribution of the values it will 
take after a very large number of steps) is the required posterior distribution. The technique requires 
that one runs the Markov chain a sufficiently large number of steps to be close to the stationary 
distribution, and then record the generated values [Vose, 2004]. 
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Triangular Distributions  
 
For some of the MicroRisk systems examined representative pathogen data was 
completely lacking and attempting to predict the shape of the PDF for certain 
variables was considered to be inappropriate. Other forms of information were 
however often accessible including related literature data, MicroRisk data from other 
similar systems and expert opinion. It was desirable to be able to quantitatively 
describe this prior knowledge or expert opinion in a simple way for the purposes of a 
low tier assessment. While many formal approaches for incorporating prior 
knowledge into risk calculations are available in the statistical literature – the 
complexity of implementation did not fit well with the objective of undertaking a 
simple analysis. In these situations the triangular distribution was considered to be a 
useful representation of the region within which the variable may be expected to lie. 
The triangular distribution is defined by a minimum, most likely and maximum 
value, these limits of the distribution could be estimated based on general 
information. While the true distribution of environmental variables may never be 
expected to be triangularly distributed, it was considered to be useful representation 
of existing knowledge surrounding the value of variables at a low tier level. 
 

Quantifying uncertainty 
 
Once a PDF has been constructed to estimate the target variable – it is relevant to 
ask, how good is the estimate? How confident may I be that the estimate is a realistic 
representation of reality? There are many sources of uncertainty associated with 
predicting PDFs from experimental data. The key to accounting for uncertainty is to 
be precise about the uncertainty: that is, to be precise about the source of uncertainty 
and quantify it accordingly. 
Two approaches are presented here for quantifying uncertainty. The first is to use 
statistical methods to account for and quantify uncertainty based on experimental 
data and model selection. These methods answer the question of: given my selected 
model, and experimental data, how much could the predictions deviate from the best 
estimate. These methods are presented in Section 0.  
But what if the selected model is not only wrong (as all models are) but is a major 
misrepresentation of the system? or, What if the dataset is not-representative 
(perhaps all source water samples were collected under low flow conditions missing 
potential event driven spikes)? The second approach to quantifying uncertainty relies 
on expert opinion to explore the impact of these possible underlying errors or 
inadequacies on the overall risk estimates. Sensitivity analysis is used to investigate 
the sensitivity of the risk model to such underlying assumptions. 

Expert opinion and worst case sensitivity  
 
Limited datasets available for QMRA rarely tell the whole story. Expert opinion has 
an important role to play in interpreting environmental and risk implications of the 
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data available. In particular, incorporating known sources of uncertainty, even when 
they cannot be easily quantified is desirable. Two such sources include: 
 
Uncertainty regarding the representativeness of experimental data: The risk 
analyst may consider a small dataset of pathogen counts from their water supply 
system. Due to some prior experience or knowledge (for example the range of 
pathogen densities expected given catchment sources), the analyst may question 
whether the dataset is in fact representative of the system. Incorporation of this 
uncertainty or scepticism is relevant for understanding the risk. Ignoring all prior 
knowledge from literature studies, other datasets or epidemiologic experience in 
favour of local data alone is irrational, particularly if the local dataset was extremely 
small, or from an unknown source. The data itself is subject to many uncertainties 
including influences from random sampling, and method recovery. It is therefore 
desirable to be able to use small local datasets for estimating the PDF, but then also 
to test the importance of any perceived inadequacies.  

 
Uncertainty regarding model selection: The basis of some models may be 
relatively poorly understood, containing necessary but questionable simplifications. 
While the risk analyst may believe that the selected model is the most appropriate 
choice given the available data and understanding of the system, they may also be 
interested to test the importance of this model choice on the calculated probability of 
infection. The selection of a second possible model may lead to much higher 
probability of infection, highlighting the need to consider carefully which model is 
chosen, and perhaps the need for further data collection to understand which model is 
likely to be more representative. 
In order to provide a quantitative framework for the consideration of these 
uncertainties, a pragmatic approach, using a sensitivity analysis calculation was 
proposed.  
In a model that contains a series of steps, sensitivity analysis may be used to identify 
which components or variables within the model are most important to the outcome. 
Sensitivity analysis allows for the effect of changing assumptions to be assessed and 
is a valuable tool for determining the critical drivers of microbial risk within the 
system. Using sensitivity analysis tools, uncertainties can be evaluated for the 
purpose of prioritising data collection and research. Methods for undertaking 
sensitivity analysis have been reviewed by Frey and Patil [2002]. In that article, 
sensitivity analysis methods were categorized into three groups: mathematical, 
statistical or graphical. The method adopted to evaluate the sensitivity of the model 
to uncertainty in variable estimation was the worst case sensitivity. This method was 
presented by Zwietering and van Gerwen [2000] in the context of food safety and 
risk assessment.  

 
Worst case sensitivity: The importance of uncertainty in each model component 
may be evaluated by calculating the factor sensitivity at each step. The factor 
sensitivity compares the impact of worst case, or extreme assumptions relative to the 
average.  
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The risk model was initially constructed and simulated using best-estimates of all 
model variables. The results from this analysis were used to find the dose under 
“average” conditions (Nk (average)). A worst-case value was then selected for each 
of the model variables. Keeping all other variables at their average or “best” 
estimates, the model was simulated to find the dose under “extreme” conditions (Nk 
(extreme)), with reference to each individual variable. The resulting factor sensitivity 
for each step indicates the relative importance of uncertainties associated with each 
model variable. Given that the dose under average and extreme conditions is 
described by a PDF, the FS is also represented by a PDF, and was calculated for both 
the average and the 95th percentile of the PDF. 
 
Selection of worst case value: For each model variable, a “worst case” value was 
selected, the basis of which depended on the particular variable in question and the 
perceived uncertainty associated with the estimation of that variable. Sources 
included: 

1. Parameter uncertainty: There is uncertainty associated with the parameter 
values fitted to local datasets. For small datasets, this uncertainty can be 
significant. The worst case value was selected as the conservative (i.e. for 
source water concentration the upper, for treatment performance the lower) 
95% credible limit of the estimated PDF.  

2. Data from another system or literature – Perhaps the Cryptosporidium 
density in source waters was estimated from a small experimental dataset to 
be 0.001 oocysts. L-1. However results from another similar catchment 
indicate densities closer to 2 oocysts.L-1. This higher density of 2 could be 
adopted as a worst case value, to test the sensitivity of the risk model to the 
uncertainty in source water Cryptosporidium density. If found to be 
important, further investigation of the source waters may then be justified. 

3. Event impact – Particularly for treatment performance, the impact of loss of 
a treatment barrier in the process was estimated by assuming that removal 
performance was zero as an extreme value.  

 
The aim of the framework is to allow the sensitivity of any assumed variable value to 
be tested. Whether selected arbitrarily or as a set percentile from parameter 
uncertainty, the influence of any hypothesis or assumption can be tested in a 
structure way allowing for uncertainties that are important to the risk outcomes to be 
identified and prioritised. 
 

Auditing Score 
 
Each model input, for each system studied was quantified with a varying degree of 
precision and complexity. This variation depended on the quantity and quality of 
data available, the importance of the model input to the overall quantitative risk 
outcomes and the tier level of the investigation (Figure 4). The level of knowledge 
and uncertainty associated with quantifying each model input needs to be weighed in 
the light of the QMRA outcomes. For example, consider the case where a system’s 
source water pathogen content was estimated from measured pathogens in the 
specific source water, while removal by sedimentation was based on observed 
removals in particle count data at the treatment plant, and removal by filtration was 
estimated based on removals of an indicator organism at a similar plant elsewhere. A 
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sensitivity analysis result might imply that the source water content of pathogens 
most heavily dictates the risks, and so should be the first point for a water manager to 
begin implementing management resources. However, there is greater unquantified 
uncertainty regarding how representative the estimates of removal by sedimentation, 
and removal by filtration were compared to the true values for the system of interest. 
A framework for testing the importance of these uncertainties on the risk outcomes 
has been presented (see section 0), however there is also a need to evaluate and 
document the level of detail and confidence associated with each model input, 
alongside the QMRA calculations. The need to consider and communicate such 
information suitability uncertainties for QMRAs has been raised before (e.g. 
Fewtrell, et al. [2000]). 
To facilitate this auditing process in the MicroRisk project, each variable in the 
QMRA model was given an audit score as described in (Appendix 2, Chapter 8). 
When determining data needs for future iterations of the QMRA models, 
consideration needs to be given both to the quantified assessment results as well as 
the data quality audit scores. 
 

Implementation for CTS’s 
 
Ideally, each variable should be described by a PDF, with the resulting variability in 
exposure characterized by Monte Carlo simulation. Variability and uncertainty are 
inevitably woven together, however at least conceptually, they were separated for 
this risk analysis. PDFs were limited to the description of variability. Second order 
analysis (where PDFs are also used to describe uncertainty) was not undertaken. This 
was a deliberate choice, given the magnitude of variability, and the limited datasets 
available (leading to high uncertainty). An exposure characterisation that 
incorporates all variability and uncertainty was considered to be so broad as to limit 
its practical application. 
As an alternative, PDFs for model variables were estimated based on relevant data 
and parameter uncertainty associated with those PDFs was predicted. The 
importance of uncertainty due to model assumptions and adequacy of experimental 
data was evaluated within a more pragmatic framework. The sensitivity of the risk 
model to uncertainty associated with each variable was estimated by choosing a 
worst case value (i.e. how high/low could an expert realistically expect this variable 
to be) and calculating the Factor Sensitivity.  
The resulting risk characterisation, therefore reflects variability in model inputs, 
described using the best available data. Factor sensitivity results identify the most 
important sources of uncertainty in terms of risk outcomes, therefore identifying 
where additional information is required to improve risk predictions. 
The following sections outline specific techniques applied for estimating PDFs from 
microbiological data for source water concentration, recovery and treatment 
performance; distribution and consumption are not included in this section since 
results from Chapters 5 and 6 were directly applied for the risk calculations in 
Chapter 8. Published dose-response parameter values are included along with some 
discussion of the influence of model choice on the estimated probability of infection 
estimates. 
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Source water pathogen densities 
 
Pathogens may be present in the source water due to human or animal inputs 
(waterborne enteric viruses being assumed to only come from human excreta). The 
density of pathogens at the treatment plant off-take is dependent upon the magnitude 
of pathogen inputs and the environmental processes affecting the transport and 
inactivation; and is expected to vary both over time and between pathogen groups.  
Literature and Chapter 3 data was used to describe pathogen densities at the off-take 
for each studied system. With few exceptions, the Gamma distribution was selected 
for describing variability in source water pathogen density due to its flexibility. The 
modelling approach adopted for fitting a PDF for source water density depended 
upon the type of experimental data provided.  

Microbial Counts 
Consider Giardia counts from the raw water source for CTS 7 (shown in Table 4). 
Direct conversion of these counts to concentrations (i.e. number cysts 
counted/Volume = cysts.L-1) leads to a mean cyst concentration of 0.117 cysts. L -1 
with a maximum concentration of 0.97 cysts L-1. Describing these counts directly as 
densities ignores the influence of sampling variability (the mean bulk water density 
at the time the sample was taken is assumed to be exactly equal to No. 
cysts/Volume), and necessitates the substitution of zero counts with some positive 
value. To obtain a more realistic picture of the source water concentration, these data 
should be analysed as a discrete dataset using counting statistics (relying on each raw 
count in the measured sample volume) rather than a continuous distribution.  
Assuming that these discrete counts reflect random samples (Poisson process) from 
the source water with mean Giardia concentration (µ), and that the mean 
concentration varies according to a gamma distribution leads to a negative binomial 
count distribution (Equation 13). When the negative binomial distribution was fitted 
to the counts and volumes (Equation 3), the maximum likelihood gamma distribution 
describing Giardia cyst concentration in source water for CTS 7 was found and is 
illustrated in Figure 11. 
 
 
Table 4. Giardia cysts counts from CTS7 
 source water  

Count Volume 
(L) 

8 16.25 
9 9.25 
8 65 
7 67.5 
9 92.5 
1 110 
3 130.75 
4 134 
5 105 
2 76.25 
0 137.5 
3 125 
2 125 

2 125 
0 125 
0 125 
1 112.25 
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Figure 11. PDF for the Giardia cyst density in the 
source water for CTS 7 – Maximum likelihood 
Gamma distribution ρ = 0.41 and λ =0.24 (solid 
line) and 95% Bayesian credible intervals (dashed 
lines) constructed from posterior MCMC samples.  

 
Parameter uncertainty was explored by constructing a sample of the Bayesian 
posterior distribution of ρ and λ using MCMC simulation with uninformative priors.  
The variable Giardia cyst concentration in source water for CTS7 was included in 
the risk model as a gamma distribution defined by maximum likelihood values of ρ = 
0.41 and λ = 0.24. While the upper 95% of the best fit PDF was 1.12 cysts.L-1, the 
uncertainty analysis indicates that given the data, the mean Giardia cyst 
concentration could reach concentrations as high as 10 cysts.L-1 (upper credible 
interval).  

Incorporation of Events 
For some source waters, elevated concentrations of pathogens may be directly linked 
to events that mobilise pathogens in the catchment such as rainfall induced runoff, or 
sewage discharges. In these situations, rather than fitting one distribution to all data 
points, it may be more representative to describe the source water pathogen 
concentration separately for event and nominal (baseline) conditions.  
For the Giardia dataset from CTS 7, elevated pathogen concentrations were 
hypothesised to be associated with periods following a rapid rise in water level in the 
source river. To investigate this hypothesis, when the samples were collected, the 
operator identified whether the conditions were classified as “event” or “nominal”. 
The same dataset from Table 4 is categorised as event and nominal in Table 5. 
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Table 5. Giardia cyst counts from CTS7  
source water. Samples classified as “event  
affected” and “nominal” 

 

 

 
Figure 12 PDF for variability in the mean Giardia 
density (µ) under nominal (a) [ λ̂ =0.002 , ρ̂ =4.48] 

and event (b) [ λ̂ = 0.22, ρ̂  = 0.72] conditions. 
Maximum likelihood gamma distribution (solid 
line), with 95% credible intervals from MCMC 
analysis (dashed lines). 

 
The aim of the analysis was firstly to determine if there was a significant difference 
between the Giardia density under event and nominal conditions; and secondly if 
appropriate, to estimate the PDF for each condition. The maximum likelihood 
estimates of the parameter values and deviance were calculated for each separate 
condition and the pooled (combined) dataset. A comparison of the deviance indicated 
that there was a significant improvement in fit achieved by separating the datasets 
(Combined (101.23) - (Nominal (20.33) + Event (68.34)) = 12.56 > 5.991, Chi 
squared distribution at 95% level with 2 degrees of freedom), and describing the PDF 
for nominal and event conditions separately. The PDFs for nominal and event 
conditions are illustrated in Figure 12 with their credible intervals. 
The expected value of the Giardia density under event conditions was 0.16 cysts.L-1 

in comparison to 0.009 cysts.L-1 under nominal conditions. Giardia density was 
clearly higher during events.  

Event affected 
Cou
nt 

Analysed 
Volume 
(L) 

8 16.25 
9 9.25 
8 65 
7 67.5 
9 92.5 
1 110 
3 130.75 
4 134 
5 105 
2 76.25 

Nominal 
Cou
nt 

Analysed 
Volume 
(L) 

0 137.5 
3 125 
2 125 
2 125 
0 125 
0 125 
1 122.25 
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The separation of data for describing event and nominal conditions affected the spread 
of the distribution, and hence the assumed variability associated with the mean 
density. Firstly, when counts measured under event conditions were removed, the 
baseline or nominal dataset showed very little variability and was equally well fit by 
the Poisson distribution (Deviance = 0.11 < Chi-Square at 95% level with 1 degree of freedom = 
3.841), indicating no evidence in the nominal data for variability in the mean density 
(µ). Under nominal conditions, the source water could be assumed constant at 0.009 
cysts.L-1 (The upper 95% quantile of the MCMC posterior sample of the Poisson 
parameter µ was 0.016 cyst.L-1). 
Secondly, predictions of upper concentration values were reduced by considering 
event conditions separately. Comparison of the upper 95 quantile of the distribution 
for event conditions (0.69 cysts.L-1 ) with the upper 95 quantile of the pooled dataset 
(Table 4 and Figure 11) (1.12 cysts.L-1) demonstrates that the assumed peaks in 
concentration are in this case reduced by considering events separately. Similarly, the 
upper credible interval of parameter uncertainty was lower for the event only dataset 
(1.57 cysts.L-1) in comparison to the pooled dataset, where the upper credible interval 
for the upper 95 quantile approached 10 cysts.L-1.  
Exposure to pathogens could be calculated in the risk model for event and nominal 
conditions separately, in which case the relative importance of each condition could 
be examined during risk characterisation. Alternatively, the two distributions could be 
combined to form one single PDF for source water Giardia concentration.  
Combining the two PDFs for a single model input requires a representation of the 
proportion of time that the water quality is represented by each condition. If the 
dataset itself was representative, the river would be under event conditions 10/17= 
58.8% of the time. More accurate data relating to the cause of events would be 
expected to exist, that would provide a better estimate of this parameter [Signor et al., 
2005 application to CTS 8]. The overall PDF for source water density would be given 
by Equation 15: 
 

alnoeventrSourcewate AA min)1( µµµ ×−+×=  

Equation 15 

 
Where: 
A is the proportion of time that source water is under event conditions  
µevent is the Giardia concentration under event conditions 
µnominal is the Giardia concentration under nominal conditions 
Given the analysis of the Giardia count data, the best estimate for implementing 
Equation 15 and describing source water density of Giardia at CTS 7 
is: 009.0422.0]22.0,72.0[588.0 ×+==×= λρµ ibutionGammaDistrrSourcewate . 

Presence/Absence results 
For many pathogens, the number of pathogens present cannot be directly identified 
and analytical methods are limited to identifying the presence or absence of the target 
organism in a sample volume. A presence/absence approach can however be used 
quantitatively when several replicate samples at different dilutions are analysed in 
parallel.  
One such organism that is analysed for presence or absence is E. coli O157. Sampling 
and analytical procedure for quantifying E. coli O157 concentration in source water 
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for CTS 10 included 15 samples, each of which was sub-sampled at three ten-fold 
dilutions. The presence or absence of E. coli O157 was identified in each sub-sample. 
The results, along with reported density estimates are included in Table 6. 
 
Table 6. Presence/Absence results for 
E. coli O157 from CTS 10 source water 
samples 

Volume (L) *Estimat
e org.L-1 

0.01 0.1 1  
0 0 0 <1 
0 0 0 <1 
0 0 1 1-10 
0 0 0 <1 
0 0 0 <1 
0 0 0 <1 
0 0 0 <1 
0 0 0 <1 
0 0 1 1-10 
1 1 1 >100 
0 1 1 10-100 
1 1 1 >100 
1 1 1 >100 
0 0 1 1-10 
0 0 0 <1 

*Without taking into account recovery  
of the method 

Figure 13 PDF for E. coli O157 density based on 
presence/absence data from CTS10. Maximum posterior 
gamma distribution (solid line) with 95% credible 
intervals (dashed line) from MCMC analysis. 

 
 
The estimated concentrations give some idea of the expected range of how many E. 
coli O157 may have been present in the source water; however quantifying the PDF 
of E. coli O157 concentration for input into the risk model is more complicated. A 
statistical approach is required that allows the shape of the PDF to be estimated 
(including a realistic representation of the parameter uncertainty) based on the 
presence/absence results. 
In order to undertake this analysis, some relatively simple assumptions regarding the 
underlying processes influencing the pathogen density were made: 

1. The three sub-samples for each sampling day were assumed to be random 
samples (Poisson process,) from the source water with mean E. coli O157 
concentration µ.  

2. The mean density (µ) was assumed to vary between sampling occasions 
according to a gamma distribution. 

 
The model is no-longer a straight forward Poisson-gamma mixed model but rather a 
special case where gamma dispersion is only assumed between sampling days; on any 
individual sampling day, the dispersion between sub-samples is assumed random 
(Poisson). Implementing these assumptions by constructing a likelihood function is 
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mathematically complex, however when the model is constructed within a Bayesian 
hierarchical framework, the calculations are simplified.  
 

 
 
Figure 14 Structure of the hierarchical model for estimating gamma distribution parameters from 
Presence/Absence results 

 
The posterior distribution of ρ and λ can be investigated by simulation using MCMC. 
The maximum posterior gamma distribution with 95% credible intervals for the PDF 
of E. coli O157 density illustrated in Figure 13. Sampling days that consisted of all 
negative results led to a lack of convergence in the posterior samples of ρ and λ. To 
avoid this problem, sampling days where all results were negative, were modelled as 
half the detection limit, rather than zero. This was achieved by substituting a positive 
result for the 1L sample volume, and estimating µ as half the predicted value for that 
day. The expected value of the E. coli O157 density was 2.78 org.L-1 with an upper 
95% quantile of variability of 15.73 org.L-1. The upper 95% quantile of parameter 
uncertainty was 134.8 org.L-1. The clear benefit of this approach is that the shape of 
the PDF, along with associated uncertainty can be estimated directly from the 
presence/absence results.  

Index Organisms 
Index organisms are microbial species that are present in water samples at a known 
ratio to one or more human pathogens [Ashbolt et al., 2001]. Not only do index 
organisms indicate the presence of human pathogens, but they can be used to 
quantitatively estimate the concentration of a particular pathogen using the ratio 
between their densities. In order to be useful as an index organism, a microbial 
species should be from the same source as the human pathogen, and respond similarly 
to environmental conditions. 
Given the complexity and hence expense associated with analysing directly for 
pathogens in source water samples, the use of index organisms for quantifying source 
water pathogen concentration is desirable.  
Within the MicroRisk project, E. coli and thermotolerant coliforms (Coli 44C) have 
been used as an index for quantifying pathogen densities in surface waters and sewage 
from reported concentrations (Chapter 5). These estimated pathogen to E. coli or 
thermotolerant coliform ratios were used to predict possible pathogen densities in 
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distribution systems based on E. coli measurements. The data used to estimate these 
ratios are summarised in Figures 15 & 16 for surface waters and sewage respectively. 
The illustrated PDFs were constructed by fitting a gamma distribution separately to 
the sample of pathogen and index densities, and then calculating the PDF for the ratio 
between the two gamma distributions. The estimated ratios based on paired index and 
pathogen reported densities are also shown for each figure. 
The illustrations demonstrate the variability in the estimated ratios based on reported 
concentrations, spanning several orders of magnitude for all organisms. For some 
organisms such as Campylobacter in sewage, the ratio with E. coli varied by nearly 6 
orders of magnitude. The uncertainty associated with the estimated ratios was not 
possible to capture since the underlying (raw) data was not available for analysis. 
While the theory behind the use of index organisms is attractive, the practical 
application is subject to both the existence and quantitative description of the ratio 
between the particular index organism and pathogen under consideration. It may be 
that to assume that a ratio exists at all between E. coli or thermotolerant coliforms and 
pathogens is erroneous. Nonetheless, if these assumptions are applied for the purposes 
quantifying pathogen densities, then the variability and uncertainty associated with the 
estimated ratio need to be incorporated into the calculations. In particular, the 
implications of significantly underestimating pathogen densitie should be thoroughly 
explored. 
 
 

 
 

Figure 15. PDFs for the ratio between maximum likelihood gamma distributions for index organisms 
(E. coli and Coliforms at 44°C) and pathogen concentration, based on reported concentrations in 
surface waters (n is the number of paired concentrations). Data source: Medema et al. [2000] 

 



QMRA methodology 

45 

 
Figure 16. PDFs for the ratio between maximum likelihood gamma distributions for index organisms 
(E. coli and Coliforms at 44°C) and pathogen concentration, based on reported concentrations in 
sewage (n is the number of paired concentrations) Data source: Campylobacter [Hőller,1988], Giardia, 
Cryptosporidium and Enteroviruses [Medema et al., 2000] 

 
 

Quantifying Method Recovery 
 
Analytical methods are imperfect, not all organisms present in the original sample 
may be recovered and enumerated in the laboratory. The result of a microbiological 
analysis is therefore a reflection of the number of identifiable micro-organisms 
present at the conclusion of the assay method. Interpretation of the original sample 
density from the assay results requires a quantitative understanding of the method 
recovery. Assuming that analytical results are precise representations of the original 
organism numbers may significantly underestimate the density. In addition, 
unaccounted for variability in method recovery may lead to apparent high variability 
in micro-organism density that is actually a product of the analytical process rather 
than of the original water quality. 
Quantifying the magnitude and variability of recovery is important for interpreting 
analytical results. Experiments specifically designed to estimate recovery involve 
spiking a known number of micro-organisms into a sample volume that is 
subsequently analysed using the relevant protocol. Results of such experiments 
indicate that recovery varies between micro-organisms, between analytical methods 
and between laboratories. Recovery may also be expected to vary between subsequent 
samples even when analysis is undertaken using the same method at a single 
laboratory. There is also uncertainty that the spiked microbial preparation behaves the 
same as ‘native’ microorganisms or how difference in the water matrix between 
laboratory and natural samples influence the method recovery. 
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Microbial counts 
In conventional seeding procedures for Cryptosporidium and Giardia, one sample is 
typically split into two for analysis. One sample is spiked with a known number of 
oo/cysts, while the other is unseeded. Statistical models for analysing this type of 
recovery data have been published [Teunis et al., 1999a]. A modification to this 
approach has been developed [Francey et al., 2004] involving the use of labelled 
oo/cysts known as ColorSeed™ (BTF Pty. Ltd., Sydney) that are spiked into a single 
sample, enabling the analyst to estimate the number of recovered seeded organisms 
(due to a unique colour), along with the native organisms from a single sample. Every 
sample analysed for Cryptosporidium and Giardia from the CTS 8 source water 
reservoir received a ColorSeed™ internal spike. The recovered ColorSeed™ counts 
(100 ±1 oocysts seeded from 110 samples analysed for Cryptosporidium are 
illustrated in Figure 17.  

 
Figure 17 Histogram of the number of seeded oocysts recovered (from 100 spiked) for 
Cryptosporidium samples from raw river water at CTC 1 
 
The variability in recovery between samples is clearly evident. These results are from 
the same source water, analysed at the same laboratory, using the same experimental 
protocol, and yet the variability is still high. The great advantage of the ColorSeed™ 
internal spike, is that a sample specific estimate of the recovery is obtained for each 
native count. Factors that drive the variability in recovery are still largely unknown, 
and therefore the internal spike reduces the uncertainty associated with the unknown 
influence of sample characteristics (including turbidity, temperature and pH) on the 
estimated recovery.  
When an internal spike result is available for each native count, the recovery can be 
accounted for directly when estimating the PDF for source water concentration. If the 
recovery is assumed to be a binomial process (each organism may have one of two 
outcomes – it will be recovered or not recovered), where every organism has a certain 
probability (p) of being recovered. The number of spiked organisms recovered is an 
estimator of the probability of recovery (p). In this example, the probability of 
recovery on each sampling day was assumed to be independent of other sampling 
occasions.  
Native counts were assumed to follow a negative binomial distribution and a 
likelihood function was constructed to account for the binomial probability of 
recovery (BOX 2).  
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BOX 2- Incorporating recovery into the negative binomial count distribution 
 
If the counts are assumed to be generated from a Poisson process, with a probability 
of detection (p), then the probability of counting n organisms given a sample 
concentration (µ) is: 
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When the mean source water concentration (µ) is assumed to follow a gamma 
distribution. The solution can be rearranged into the form of the negative binomial 
count distribution:  
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If the number of recovered organisms ki is assumed to be a precise estimate of the 
probability of recovery, then the likelihood function may be constructed as: 

∏
=

−− =
n

i

i
imm

k
ngknL

1
11 )

100
,,|(),|,( ρλρλ  

Equation 18 

 
Allowing for uncertainty in estimation of binomial parameter (p) 
 

The uncertainty associated with estimating p from the number of recovered organisms 
may be incorporated into the model using a hierarchical structure. Within a Bayesian 
framework, the posterior distribution of λ and ρ is proportional to the likelihood 
multiplied by the prior: 
 

4434421444 3444 21
4434421

Binomial

m

i
ii

nomalNegativebi

ii

m

iior

mmm kpPpnPpPknP ∏∏
==

−−− ∝
11Pr

111 )|(.),|,(.),,(),|,( ρλρλρλ  

Equation 19 

 

Where the binomial likelihood is described by: kk pp
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An MCMC procedure then allows the stationary posterior distribution of λ and ρ to be 
characterised. 
 
 
The maximum likelihood gamma distribution (expected value = 2.02 oocysts.L-1 and 
upper 95 percentile (variability) = 8.59 oocysts.L-1) and credible intervals from 
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MCMC (upper 95 percentile = 11.57 oocysts.L-1) for the source water 
Cryptosporidium concentration CTS 8 is illustrated in Figure 18. The size of the dataset 
and the incorporation of recovery estimates for each day leads to a small credible 
interval surrounding the maximum likelihood gamma distribution. 
 

 
 
Figure 18. PDF for Cryptosporidium oocyst density in the raw river water for CTC 1: accounting for 
method recovery. Maximum likelihood gamma distribution (solid line), and 95% credible intervals 
(dashed lines) from MCMC modelling.  
 
Internal spike material appears to be the most appropriate approach for estimating 
sample specific recovery for Cryptosporidium and Giardia oo/cysts. Unfortunately, 
this analysis was not provided with the dataset from any of the other CTSs studied. At 
best, laboratories provided a sample of recovery results believed to be representative 
for the entire dataset. In this case, recovery may be included as a variable in the risk 
model, described by a PDF [Teunis et al., 1996]. In comparison to the 110 recovery 
results provided for CTS 8, three recovery experiments were undertaken for CTS 11. 
These experiments were also undertaken using the ColorSeed™ internal spike, 
however as they were not undertaken for every sample, the direct sample specific 
recoveries cannot be applied to the native results in the same manner as the previous 
example for CTS 8. Rather, by fitting a distribution to the recovery results, recovery 
may be included in the risk model as an independent variable. The results of these 
experiments are included in Table 7. Based on these results, the average recovery for 
Cryptosporidium oocysts may be expected to be 12%. This would be an appropriate 
point estimate assumption based on this data, however a point estimate does not allow 
for variability in the recovery between samples. 
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Table 7. Cryptosporidium oocyst recovery results CTS 11 
 

Cryptosporidium 
oocysts 
Number 
Spiked 

Number 
Recovered

100 12 
100 10 
100 14 

 
 

 
Figure 19. PDF for Cryptosporidium oocyst recovery with Maximum likelihood Beta 
Distribution(α= 47.1, β=345.43) (solid line), and 95% credible intervals from MCMC analysis. 
 
 
 
To incorporate variability of recovery in the QMRA model, the probability 
distribution for recovery needs to be estimated. The variability in recovery has 
previously been described using a Beta distribution [Teunis et al., 1999a, Teunis et 
al., 1996] which is considered suitable as it is flexible and bound by 0 and 1. The Beta 
distribution was fitted to the data points (Table 7) using the method of maximum 
likelihood to obtain a best estimate of the PDF for recovery. Figure 19 show the shape 
of the beta distribution with the maximum likelihood estimates for α and β,  and the 
95% credible region constructed using an MCMC approach. Additional uncertainty is 
introduced when the recovery is incorporated into the model as an independent 
variable. Firstly, when the range of between sample variability is applied to every 
result, the variability and uncertainty associated with the source density may be 
expected to be increased. Secondly, there is danger that a small sample from a highly 
variable recovery may lead to an unrepresentative PDF. Comparison of the results in 
Table 7 with the variability in results illustrated in Figure 17, along with consideration 
of recoveries reported in the literature [Kuhn and Oshima, 2002], suggest that the 
three datapoints from CTS 11 may not be representative of the entire distribution of 
recovery. The reported recoveries are however low, leading to conservative estimates 
of source water density when the distribution in Figure 19 is applied to the native 
counts.  
An important consideration of this approach for describing variability is the impact of 
fitting a continuous distribution to the experimental datapoints. The beta distribution 
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projects to very low values close to 0. The true recovery would not however be 
expected to approach zero, but rather there would be minimum result below which, 
samples would be disregarded (based on laboratory QA protocols). When running the 
Monte Carlo simulation for QMRA, these unrealistic, very low values lead to 
occasional excessively high pathogen densities. These high pathogen densities are not 
considered to be representative of the system, but rather a consequence of the model 
assumptions. The parametric distributions are a tool to enable the estimation of the 
true PDF, and when they project beyond the realistic range of values, it is pragmatic 
to truncate them. It is therefore advisable to select a lower value at which to truncate 
the PDF for recovery, such as 1%, to avoid the generation of unrealistic values. 

Presence/Absence results 
Quantifying method recovery is also important for analytical methods that rely on 
identifying the presence/absence of the target organism in a sample volume. The 
assumptions of the previous examples involving microbial counts where recovery was 
assumed to be a binomial process may be extended to the presence/absence scenario. 
A specific experiment was used to investigate the recovery of E. coli O157 at one 
CTS [Suez Environnement, 2005]. This investigation consisted of three separate 
spiked solutions of known density (BioBallTM). Each of these three solutions was sub-
sampled (1L) and analysed 10 times for the presence or absence of the E. coli 
O157:H7. The results are included in  
Table 0.8. 
Assuming that the spiked solution has a known concentration (µ), then the probability 
of the analysis yielding a positive (n ≥ 1) or negative (n = 0) will follow a Poisson 
distribution with mean (pµ, Equation 16) - where p is the binomial probability of 
recovery. A likelihood function was constructed based on the analytical outcomes ( 
Table 0.8) to estimate the constant probability of recovery (p). The maximum 
likelihood estimator for the probability of recovery was 0.4, and the posterior sample 
for p based on MCMC sampling is illustrated in Figure 20. 
 
Table 0.8. Results from E. coli 0157 detection limit experiment [Suez Environment, 2005] 
 
Spike 
(org.L-

1) 

No.  
Pos (+) 

No. 
Neg (-
) 

1 2 8 
5 9 1 
10 10 0 
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Figure 20. Posterior sample of probability of E coli O157 recovery parameter (p) from MCMC analysis 
 
 
Figure 20 illustrates the uncertainty associated with the estimation of the probability of 
recovery. When these results are used in the QMRA the estimated recovery must be 
assumed to be representative of all E. coli 0157 analyses to which it is applied; 
therefore assuming that native organisms behave in the same manner as the spiked 
organisms regardless of water quality. The current model was chosen for simplicity 
and considered appropriate to the available data, however the recovery is only 
described as a point estimate and variation is not accounted for.  
 

Quantifying Treatment Performance 
 
A wide range of treatment processes exist for the physical, chemical and 
microbiological purification of drinking water. Each of these processes contributes to 
the removal or inactivation of pathogens from the water column. The effectiveness of 
each process in removing pathogens is variable: variable between different types of 
processes; between the same processes operated at different treatment facilities; and 
even variable over time for an individual process at a specified treatment plant.  
The same treatment process may perform differently with respect to pathogen 
removal at different plants due to a number of factors including: 

• process design – processes are optimized for the treatment of specific source 
waters, within the physical constraints of each specific sight;  

• Source water- Different physical and chemical characteristics of source waters 
may be expected to affect the treatment performance; and 

• Management – management protocol can vary between different managing 
agencies. 

The performance of any given process may be expected to vary over time depending 
upon: 

• Inlet water quality (including chemical, e.g pH, physical, e.g turbidity, and 
microbiological, e.g. algae count); 

• Process conditions (e.g. chemical dosing, flow rate); and 
• Maintenance (e.g. age of filter media). 

Quantifying treatment removal performance for a drinking water CTS, accounting for 
the individual characteristics of the system being studied, and the expected temporal 
variability in performance for each process unit is a great challenge. Careful 
consideration of the available data is essential. Incorporation of different types of data 
(including literature data, online data and surrogates) for estimating removal 
performance has been discussed in Chapter 4. In this section, modelling techniques 
for quantifying variability (and the associated uncertainty) in treatment performance 
based on microbiological data are discussed.  
Two general approaches to modelling treatment performance can be applied: 

• Mechanistic process model: Treatment performance is predicted based on 
models describing the mechanisms of pathogen removal/inactivation. For 
example, disinfection is modelled based on hydraulic flow characteristics, 
disinfection dosage and individual pathogen inactivation kinetics (Chapter 4).  

• Empirical transformation model: Without specific consideration of the 
individual process, the outflow pathogen concentration is compared with the 
inflow pathogen concentration. This approach has great value for many 
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processes, where quantitative information regarding the mechanisms of 
removal is very limited. For example, when modelling filtration performance, 
a mechanistic process model would give specific consideration to 
adsorption/desorption of microorganisms to the filter media, straining 
efficiency and inactivation rates within the filter. In contrast, a transformation 
model simply estimates total removal across the filter (or series of filters) 
based on outflow concentration as a fraction of the inflow.  

The obvious limitation of simplifying a treatment process to a simple transformation 
is that any estimated removal is specific to the individual process and system studied, 
for the time frame represented by the available dataset. Since the underlying 
mechanisms and process characteristics are not accounted for (e.g. flow rate, source 
water quality, hydraulic design etc.) the impact of modifications to the system on 
pathogen removal cannot be quantitatively projected. Similarly, direct translation of 
results from one system to another is difficult, since the impact of even apparently 
minor differences in design or source water quality is unknown. In this section, 
approaches for modelling treatment processes by simple transformation are presented. 
The emphasis is placed on describing the variability and uncertainty associated with 
the transformation from the data available.  

Transformation model assumptions 

Pairing data points 
Samples collected at the inlet and outlet may or may not be paired. Given a set of 
data, where samples have been collected and analysed from the inlet and the outlet of 
a water treatment process, should samples collected on the same day be assumed to be 
paired? For example, consider results from the enumeration of Giardia from water 
samples collected from the inlet and outlet of the water treatment process at CTS 10 
(Table 9). For these results, is the reduction in Giardia cysts calculated on a daily basis 
actually representative of the variability in removal performance of the process? Or is 
it better to look at the overall removal as a point estimate of the process performance? 
When two samples are assumed to be paired, they are assumed to represent the 
“same” water as it enters and leaves the treatment process. To obtain a truly paired 
sample, the outlet sample must be delayed from the inlet sample by the hydraulic 
retention time of the process. In reality this is rarely the case. Results from CTS 10, 
while not technically “paired”, are clearly correlated (Spearman rank correlation 
coefficient = 0.37)8, with high inflow samples coinciding with high outflow samples 
(e.g. day 11) and vice versa (Day 5 and 6). It is often reasonable, for rapid processes, 
to assume that samples collected at approximately the same time, on a given sampling 
occasion are paired. Analysis can be undertaken with or without the assumption of 
pairing, however assuming that samples are paired allows for between sampling day 
variability to be characterized. 
  

                                                 

8Spearman rank correlation coefficient: 
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sample points and r1 and r2 are the within sample ranks for each inflow and outflow sample [Haas et 
al., 1999, p343] 
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Table 9. Giardia counts enumerated from inflow and outflow samples collected from CTS10, with 
estimated concentrations and Log10 removal rates9 

Inflow Outflow REDUCTION 

Sa
m

pl
in

g 
D

ay
 

Count Volume Estimated 
Conc. 

(cysts.L-1)

Count Volume Estimated 
Conc. 

(cysts.L-1) 

Estimated Removal 
(Log10 reduction) 

1 3 10 0.3 0 100 0 > 0.52 
2 6 10 0.6 14 100 0.14 0.63 
3 2 10 0.2 7 100 0.07 0.46 
4 2 10 0.2 3 100 0.03 0.82 
5 0 10 0 0 100 0 - 
6 0 10 0 0 100 0 - 
7 1 10 0.1 6 100 0.06 0.22 
8 3 10 0.3 0 100 0 > 0.52 
9 6 10 0.6 0 50 0 > 0.22 
10 2 10 0.2 0 50 0 > 0.70 
11 30 10 3 18 100 0.18 1.22 
12 0 5 0 2 100 0.02 - 

 Average of all days  0.46   0.042 1.04 
 
 
 
 

Variability in source water concentration 
Constantly varying source water concentrations and random sampling effects can 
influence the representativeness of direct concentration comparisons, particularly for 
small microbial datasets. When outflow density estimates are “paired” with inflow 
samples collected on the same day, perplexing results can emerge including the 
apparent increase in microbial densities on some days (e.g. Table 9, Day 12). It is 
conceivable that for some processes, during a particular event, the microbiological 
concentration in the water column may be increased as a result of passage (for 
example regrowth of bacterial pathogens in filter media, or sloughing of a filter), 
however a far more likely and common explanation leans on the knowledge that 
source water concentration is constantly varying. By implication, if the number of 
organisms in the sample collected at the inlet was an instantaneous low density, while 
the outflow sample contained an instantaneous high density, the apparent change in 
density would be an increase, even though the underlying mean concentration may 
have decreased. Similarly, as a result of random sampling variability (see Section 0 
p24) if the inflow sample contained a small number or organisms given the mean 
density, and the outflow sample contained a large number of organisms, an apparent 
increase in concentration may also result.  
Accounting for random sampling variability and a varying source water concentration 
in the transformation model allows the underlying treatment removal performance to 
be characterised. In the same way as for source water characterisation, for the analysis 

                                                 
9 Raw results are the counted number of organism (“Count”) in sample volume (“Volume”). These 
results were used directly to find an estimate of the cyst density for that sample (Count/Volume), and 
then the estimated Log reduction was calculated from those densities (Log10Reduction = 
Log10(Concout/Concin) ). When there were no cysts found in the outflow concentration, the estimated 
Log10Reduction was reported as >Log10Concin, when there were no organisms reported in the inflow 
and outflow, then no estimate of reduction could be made. Overall removal was calculated based on the 
average Concin and average Concout over all samples (including zeros). 
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of MicroRisk datasets, sampling variability was accounted for using the Poisson 
distribution, and mean sample concentration was assumed to vary according to a 
Gamma distribution (see Section 0).  

Ratio of outflow concentration to inflow concentration 
The probability that any individual organism will pass the treatment barrier (π, see 
Figure 1) can be estimated by the ratio of the outflow concentration to the inflow 
concentration. The Log10 of π is the Log10 removal of the process(es). For example, in 
Table 9, the Log10 removal is estimated for each day by calculated the ratio of the 
outflow concentration to the inflow concentration for each sampling day. This concept 
may be extended to account for variability in the inflow and outflow concentrations 
by finding the ratio of the outflow concentration PDF to the inflow concentration 
PDF. The resulting PDF for the ratio is therefore the PDF for π. An example of this 
approach is illustrated using Giardia results from CTS 10 (Table 9 ). This example is 
illustrative of using pathogen data to characterise treatment performance. In this 
situation, if the only aim was to calculate microbial risk, the outflow Giardia density 
PDF would be a suitable input to the QMRA model. By characterising the process 
performance, however, opportunities for management are possible (i.e. is the process 
working according as expected) and source water pathogen densities (where 
monitoring is more feasible) can be translated to expected outflow density.  
 A gamma distribution was fitted to the Giardia counts using the Poisson-gamma 
(negative binomial) mixture model (Equation 13), the maximum likelihood gamma 
distributions for the inflow and outflow are illustrated in Figure 21. 

 
 
Figure 21. Maximum Likelihood Gamma distributions for mean Giardia density in the inflow (solid 
line) and outflow (dashed line) at CTS 10. Inflow: Gamma [ ρ̂ =0.61, λ̂ =0.75], Outflow: Gamma 

[ ρ̂ =0.31, λ̂ =0.13]. 
 
The distribution for the ratio of the outflow gamma distribution to the inflow gamma 
distribution was calculated using a random sampling procedure (Monte Carlo 
analysis) were random sample were drawn from the inflow and outflow distribution, 
and the ratio calculated for each random sample. A histogram of 10 000 random 
samples is illustrated in Figure 22a). 
The great advantage of using the ratio to estimate treatment performance is simplicity; 
the estimate is a direct comparison between outflow and inflow. In addition the 
assumptions associated with the removal performance are limited, relying only on the 
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assumed pathogen density distribution. The ratio is not constrained to be less than 
one, and therefore the removal performance can take any value, and may even be  
 

 
 
Figure 22. Histogram of Monte Carlo sample for the ratio between inflow and outflow Gamma 
distributions for Giardia density. a) no correlation - Lower 5%, 50% and Upper 95% quantiles of the 
sample were [- 4.51, -1.33, 0.70] b) complete correlation – random samples sorted before ratios 
calculated Lower 5%, 50% and Upper 95% quantiles of the sample were[-2.76, -1.34, -0.92]  
 
positive (increase in pathogen density). Application of this ratio, to any Giardia 
inflow density sample, should provide an indicative estimate of the outflow density at 
CTS 1010. The ratio distribution illustrated in Figure 22a) was constructed assuming 
that the inflow and outflow concentrations were independent. This is however counter 
intuitive. Since the mean concentration would be expected to be reduced as a result of 
treatment, the random sample from the outflow distribution should always be less 
than the random sample from the inflow distribution. A simple modification to the 
Monte Carlo sampling procedure was undertaken assuming 100% correlation between 
the variables: random samples of inflow and outflow distributions were sorted 
(forcing complete rank correlation). The ratio was then calculated on these rank 
paired random samples, the resulting histogram of the Log10 reduction is illustrated in 
Figure 22b. The expected values of both analysis are similar (-1.33 versus -1.34), 
however the variability (and uncertainty, since they are not separated in this model) in 
the distribution for Giardia removal is greatly reduced in the correlated model in 
comparison to the independent model. The true result would be expected to lie 
somewhere between these two unrealistic extremes.  

Binomial models 
Models have been presented in the literature that describes organism passage through 
treatment as a binomial process [Teunis et al., 1999a], where each microorganism 
faces one of two possible outcomes, passage or removal. Mean microorganism 
concentration in the inflow (µ) is assumed to follow a gamma distribution. 
Microorganism concentration in the finished water is then assumed to equal π.µ, 
where π is the binomial probability of passage. A joint likelihood function can then be 
constructed that describes the inflow and outflow counts by a single gamma 

                                                 
10 Parameter uncertainty associated with the fit of the Gamma distributions was not accounted for in 
this analysis.  
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distribution, scaled by the binomial probability of passage (π). Models for estimating 
the beta distributed probability of passage, under the assumptions of paired and 
unpaired data, as presented by [Teunis et al., 1999a] were applied to the Giardia data 
from CTS 10 (Table 9). The results from likelihood analysis, including maximum 
likelihood parameter values are given in Table 10. 
 
Table 10 Results from likelihood analysis of paired and unpaired binomial models fitted to Giardia 
counts from CTS 10 (Table 9) 

 -
2Loglik 

ρ̂  λ̂  α̂  β̂  Log10(α/α+β)* 

Unpaired 116.3 0.62 0.73 0.63 5.23 - 0.97 
Paired 112.9 0.67 0.67 0.51 3.72 - 0.92 

*Log10 of the expected value of the beta distribution 

 
Results from the likelihood analysis indicate that estimated reduction in Giardia was 
similar under either the paired or unpaired data assumptions. The paired model 
achieved a slightly better fit than the unpaired model (compare -2Loglik, deviance = 
3.7) for the given dataset. The maximum likelihood beta distribution is illustrated with 
credible intervals in Figure 23. The expected removal of Giardia was 0.92 Log 10 
units with a 95% interval of variability ranging from 3.3 to 0.37 Log 10 units. 

 
 
Figure 23 Maximum likelihood Beta distribution (solid line) and 95% credible intervals (dashed lines) 
for Giardia removal at CTS 10 

 
The binomial modelling approach goes beyond the ratio calculations presented 
previously by making additional assumptions, in particular, that the passage of 
organisms through a treatment barrier is a binomial process. If each organism is 
assumed to have a certain probability π of passage, then the estimation of π is 
restricted to values between 0 and 1, eliminating the issue of negative removal. 
Within this approach, the uncertainty associated with the shape of the beta distribution 
can also be explored. The calculations involved in undertaking this analysis are 
relatively straight forward to implement in a mathematical software package 
(equations available in Teunis et al. [1999]), however the likelihood functions can 
become complex requiring not insignificant computational time. The implementation 
of a hierarchical modelling approach can simplify these computational issues (see 
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Gelman et al. [2004] for full explanation of methodology) while achieving equivalent 
results. 

Surrogates 
In order to apply a transformation model, and estimate the removal of organisms, it is 
necessary to have a sample of data points from the inlet and the outlet of the 
individual process or treatment chain to be studied. While some negative results can 
be easily managed through the application of a discrete distribution, the outlet sample 
must contain some positive results. Pathogens are usually present in finished waters at 
densities well below the limits of detection, and therefore this data requirement can be 
difficult to meet. The analysis and interpretation of surrogates (native or spiked) can 
then be necessary. While the same models can be used to evaluate treatment removal 
of microbiological surrogates, it is important to not ignore the uncertainty associated 
with assuming a given surrogate is representative of the pathogen of interest. In order 
to account for this quantitatively, data must be available to quantify the ratio or 
relationship between the surrogate and the pathogen for the given treatment process. 
When this ratio (including uncertainty) is applied to the surrogate removal PDF, a 
more representative estimate of the uncertainty associated with the pathogen removal 
PDF may be obtained. This type of data is rarely available, however the implications 
of uncertainty associated with the application of treatment performance surrogates 
must be accounted for. One proposal would be to use evaluate the assumption using 
sensitivity analysis (see Section 0). 
 

Dose-Response 
 
Many studies have been published that estimate dose-response relationships for 
human pathogens. Those studies relevant to the MicroRisk project are summarised in 
Table 11 and in the following sections. There are numerous sources of uncertainty 
regarding how adequately the cited dose-response models reflect the true impact of 
pathogen consumption on the population. Frequently, more than one model is relevant 
for consideration. Rather than proposing one single model as correct for each 
reference pathogen, some notes providing guidance on the different models 
considered and the data on which they are based are included in the following 
sections.  

Campylobacter  
Two studies have been conducted for estimating parameter values for the dose-
response relationship of Campylobacter jejuni. The first fitted the Beta-Poisson model 
to data from a single human feeding trial, where administered doses were generally 
high [Black et al. 1988; Medema et al. 1996]. More recently, a second study has been 
presented that fits the dose-response relationship to both the first human feeding study 
and also two small outbreaks related to the consumption of raw milk [Teunis et al. 
2005]. This second study gives consideration to low dose behaviour and indicates that 
health risks may be higher at lower doses than previously assumed from the first 
published parameter estimates. This second model is therefore more conservative and 
may be more representative of the entire population (including children) rather than 
simply healthy adults.  
 
Table 11. Summary of key dose-response studies and associated results to be used for risk analysis 
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Reference 
Pathogen 

DR Study 
Organism 

Model Parameters Original 
Data 

Source 

DR 
Analysis 
Source 

Campylobacter 
jejuni- Human 
feeding study 

Beta-
Poisson 

α 
=0.145 

β =7.59 Black et al. 
[1988] 

Medema 
et al. 

[1996] 

Campylobact
er 

Campylobacter 
jejuni –
Outbreak data* 

Beta-
Poisson** 

α 
=0.024 

β =0.011 Van den 
Brandhof 

et al. 
[2003] 

Evans et 
al. [1996] 

Teunis et 
al. [2005]

Enteropathoge
nic E. coli 
(EPEC) 
Shigella 
disenteriae 
(combined 
data) 

Beta-
Poisson 

α =0.22 β =8.7 
×103 

 
Levine et 
al. [1973] 

 

Powel et 
al. [2000]

E. coli 0157 – 
Outbreak data 
 Adults: 
Children: 

Beta-
Poisson** 

 
 

α 
=0.084 

α 
=0.050 

 
 

β =1.44 

β =1.001 

Shinagawa 
et al. 

[1997] 

Teunis et 
al. [2004]

E. coli 0157 

Shigella 
disenteriae 

Beta-
Poisson 

α 
=0.157 

β =9.16 Levine et 
al. [1973] 

Teunis et 
al. [1996]

Norovirus Rotavirus  
strain CJN( 
clinical isolate, 
not passed 
prior to 
administration) 
Human 
feeding trial 

Beta -
Poisson 

α = 
0.253 

 

β = 0.422 Ward et al. 
[1986] 

Teunis et 
al. [1996] 

Enterovirus Echovirus 12 
clinical isolate 
Human 
feeding trial 

Beta –
Poisson 

α = 
0.401 

 

β = 227.2 Schiff et 
al. [1984] 

Teunis et 
al. [1996] 

 Coxsackie A Exponenti
al 

r = 0.014493   

Cryptosporidiu
m parvum 
(isolate from a 
calf) 
Human 
feeding trial 

Exponenti
al 

r =4.005 × 10-3 DuPont et 
al. [1995] 

Teunis et 
al. [1996]

Cryptosporidi
um 

Combined 
dataset of three 
isolates 

Beta-
Poisson 

α = 0.115 β = 
0.17

6 

Teunis et 
al., 2002a 

Teunis et 
al., 2002a
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 collected from 
neonatal 
calves. 

Giardia Giardia 
lamblia 
Human 
feeding trial 

Exponenti
al 

r = 1.99×10-2 Rendtorff 
(1954) 

Teunis et 
al. 1996 

*In this study, outbreak data was combined with the previous human feeding study to find overall dose-
response parameter estimates. 
**This study used the exact Beta-Poisson relationship rather than the approximation used in the other 
studies cited in the table. 
 
Figure 24 illustrates the difference between the two published Campylobacter models. 
Teunis et al. [2005] assumes higher infectivity at low doses. If this model were used 
instead of the previous model Medema et al. [1996], predicted infection estimates 
would be more than an order of magnitude higher at low doses. Conversely, at high 
doses, the model from Teunis et al. [2005] would predict lower infection rates. 
 
 

  
 
Figure 24. Dose-response relationships for Campylobacter and maximum risk curve, including the 
Log10 difference in calculated probability of infection with dose 
 

E. coli 0157  
Powell et al. [2000] combined human feeding study results from two surrogate 
organisms Enteropathogenic E. coli (EPEC) and Shigella disenteriae to provide a 
relationship for E. coli 0157:H7. Teunis et al. [2004] analysed actual outbreak data 
from school children and teachers who ate contaminated lunch [Shinagawa et al. 
1997]. This later study compared their results with the former and identified the 
results from Shigella disenteriae (analysed by Teunis et al. [1996]) appeared to have 
the greatest agreement with the actual outbreak data [Teunis et al. 2004].  
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Viruses  
While under development, the dose-response model for Norovirus is yet to be 
published. The dose-response relationships for Rotavirus, Echovirus and Coxsackie A 
are illustrated in Figure 25 with the maximum risk curve.  
Figure 25 illustrates the relative infectivity assumed for each virus dose-response 
model. Echovirus 12 is the least infectious, followed by Coxsackie A and Rotavirus. 
The comparison of each individual model prediction with the maximum risk 
demonstrates that model choice has a large impact on estimated probability of 
infection at low doses. For viruses of relatively low infectivity, such as Echovirus 12, 
the choice of a conservative model such as Rotavirus or the maximum risk curve, may 
overestimate infection risk by more than 2 orders of magnitude. Conversely for 
pathogens that are known to be highly infectious, the assumption of the maximum risk 
curve may be considered, particularly in the absence of pathogen specific information. 
 

 
 
Figure 25 Dose-response relationships for Rotavirus, Coxsackie A, Echovirus 12 and the maximum 
risk curve, including the Log10 difference in calculated probability of infection between each 
individual model and the maximum risk. 
 

Giardia 
Results from human feeding trial with Giardia lamblia in were reported more than 50 
years ago [Rendtorff, 1954]. The data was adequately fitted by an exponential 
distribution.  
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Cryptosporidium 
Results from a human feeding trial with Cryptosporidium parvum were published by 
DuPont et al. [1995]. The data was adequately fit by the exponential model. More 
recently, work has been undertaken to investigate the variability in infectivity for 
Cryptosporidium between isolates [Teunis et al. 2002a] and between hosts [Teunis et 
al. 2002b]. The maximum likelihood estimates for parameter values when the Beta-
Poisson model was fitted to the combined isolates dataset is included in Figure 26 The 
dose-response relationships for Cryptosporidium and Giardia are illustrated in Figure 
26. 
 
Figure 26 illustrates the comparison between the two published Cryptosporidium 
models. Selection of the more recent Cryptosporidium dose-response model instead of 
the previous model [Teunis et al., 1996] may increase probability of infection 
estimates at low doses by more than 2 orders of magnitude.  
 

 
 
Figure 26 Two dose-response relationships for Cryptosporidium, Giardia and the maximum risk curve, 
including the Log10 difference in calculated probability of infection between the two Cryptosporidium 
curves 
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