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 Correctness of algorithms

 Growth of functions and asymptotic 
notation

 Revision of some basic math

 Conclusion
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Exercise

 Write a pseudocode of an algorithm to find 
the two smallest numbers in a sequence of 
numbers given as an array
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Correctness of Algorithms

 An algorithm is correct if 

 For any allowed input, it terminates and 
produces the desired output

 Automatic proof of correctness is not 
possible

 But there are practical techniques and rigorous 
formalisms that help to reason about the 
correctness of algorithms
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Partial and Total Correctness

 Partial correctness

Any allowed input Algorithm Output

IF this point is reached, THEN this is the desired output

 Total correctness

Any allowed input Algorithm Output

IF this point is reached, AND this is the desired output
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Correctness

 Difficult to prove

 How to test for all possible inputs?

 Test algorithm with sample of possible 
inputs

 Software testing

 Even more difficult is to prove total 
correctness
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Assertions

 To prove partial correctness 
 Associate a number of assertions (statements about 

the state of the execution) with specific checkpoints in 
the algorithm

 E.g.: i=k, A[1], …,A[k] form an increasing sequence (IS)

 Other important assertions:
 Preconditions

 Assertions that must be true before the execution of an 
algorithm or a subroutine (INPUT)

 Postconditions
 Assertions that must be true after the execution of an 

algorithm or a subroutine (OUTPUT)
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Exercise

 Write a pseudocode of an algorithm to find 
the two smallest numbers in a sequence of 
numbers given as an array
 Precondition:

8© André de Carvalho - ICMC/USP

Exercise

 Write a pseudocode of an algorithm to find 
the two smallest numbers in a sequence of 
numbers given as an array
 Precondition:

 INPUT: an array of integers A[1..n], n > 0
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Exercise

 Write a pseudocode of an algorithm to find 
the two smallest numbers in a sequence of 
numbers given as an array
 Precondition:

 INPUT: an array of integers A[1..n], n > 0

 Postcondition:
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Exercise

 Write a pseudocode of an algorithm to find 
the two smallest numbers in a sequence of 
numbers given as an array
 Precondition:

 INPUT: an array of integers A[1..n], n > 0

 Postcondition:

 OUTPUT: (m1, m2), s. t. (such that) m1 < m2 and 

 For each i [1..n], m1  A[i] and, if A[i] m1, then 

m2 A[i] 

 If there is no m2 satisfying these conditions, then …
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Exercise

 Write a pseudocode of an algorithm to find 
the two smallest numbers in a sequence of 
numbers given as an array
 Precondition:

 INPUT: an array of integers A[1..n], n > 0

 Postcondition:

 OUTPUT: (m1, m2), s. t. (such that) m1 < m2 and 

 For each i [1..n], m1  A[i] and, if A[i] m1, then 

m2 A[i] 

 If there is no m2 satisfying these conditions, then m2 

= m1
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Loop Invariants

 Used to evaluate partial correctness

 Invariants: assertions (statements) that are valid 
any time they are reached

 Are valid many times during the execution of an 
algorithm

 E.g., in loops, a property or condition is true before and after 
each iteration

int a = 5;
int b = 0;
for (a > 0){

a--;
b++;

}

What is loop invariant 
in this algorithm?
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Loop Invariants

 Used to evaluate partial correctness

 Invariants: assertions (statements) that are valid 
any time they are reached

 Are valid many times during the execution of an 
algorithm

 E.g., in loops, a property or condition is true before and after 
each iteration
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int a = 5;
int b = 0;
for (a > 0){

a--;
b++;

}

What is loop invariant 
in this algorithm?
a + b = 5

Loop Invariants

 Three facts about a loop invariant:

 Initialization

 It is true before the first loop iteration

 Maintenance

 If it is true before a loop iteration, then it remains 
true before the next iteration

 Termination

 When the loop finishes, the invariant gives a useful 
property to show the correctness of the algorithm
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Binary Search

 Very simple search algorithm

© André de Carvalho - ICMC/USP 16

https://brilliant.org/wiki/binary-search/

Example: Binary Search (1) 
left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

 We want to make sure 
that if NIL is return q is 
not in A

 Invariant: at the start 
of each while loop,     
q > A[i] for all i
[1..left-1] and q < A[i] 
for all i [right+1..n]
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Example: Binary Search (1) 
left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

 We want to make sure 
that if NIL is return q is 
not in A

 Invariant: at the start 
of each while loop, q > 
A[i] for all i [1..left-1] 
and q < A[i] for all i
[right+1..n]

Floor
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Example: Binary Search (1) 

 Initialization: left = 1, right = n, the invariant holds 
 Because there are no elements in A neither to the left of left nor 

to the right of right

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

 We want to make sure 
that if NIL is return q is 
not in A

 Invariant: at the start 
of each while loop, q > 
A[i] for all i [1..left-1] 
and q < A[i] for all i
[right+1..n]
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Example: Binary Search (2)

 Maintenance: if q < A[j], then q <A[i] for each i [j..n]
 Because the array is sorted, the algorithm assigns j-1 to right (the 

second part of the invariant holds)

 The first part of the invariant could similarly be shown to hold

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

 We want to make sure 
that if NIL is return q is 
not in A

 Invariant: at the start 
of each while loop, q > 
A[i] for all i [1..left-1] 
and q < A[i] for all i
[right+1..n]
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Example: Binary Search (3)

 Termination: the loop terminates when left > right
 The invariant states that q is smaller than all elements of A to the 

left of left and larger than all elements of A to the right of right

 This covers all elements of A, i.e. q is either smaller or larger 
that any element of A

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1 

while left<=right
return NIL

 We want to make sure 
that if NIL is return q is 
not in A

 Invariant: at the start 
of each while loop, q > 
A[i] for all i [1..left-1] 
and q < A[i] for all i
[right+1..n]

21© André de Carvalho - ICMC/USP

Insertion Sort

 One of the simplest sorting algorithms

 Is not the simplest

 People use it to sort cards in their hands

 E.g. Suppose you have the following cards in 
your hand:

 And received the card

© André de Carvalho - ICMC/USP 22

Example: Insertion Sort

23

To insert 12, it is necessary 
to make room for this card 
by moving first 36 and 
then 24

© André de Carvalho - ICMC/USP

Example: Insertion Sort

24© André de Carvalho - ICMC/USP



CHOROCHRONOS Midter Review

Timos Sellis 5

Example: Insertion Sort

25© André de Carvalho - ICMC/USP

Example: Insertion Sort
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Insertion Sort

27

5      2      4      6      1      3

Input array 

left sub-array right sub-array

at each iteration, the array is divided in two sub-arrays:

Sorted Unsorted

© André de Carvalho - ICMC/USP

Insertion Sort

28© André de Carvalho - ICMC/USP

Insertion Sort
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https://upload.wikimedia.org/wikipedia/commons/0/0f/Inserti
on-sort-example-300px.gif

Example: Insertion Sort (1)

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

30

 Invariant: at the start 
of each for loop, the 
elements in A[1…j-1] 
are in sorted order

© André de Carvalho - ICMC/USP
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Example: Insertion Sort (2)

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

 Initialization: j = 2, the invariant trivially holds because 
A[1] is a sorted array

31

 Invariant: at the start 
of each for loop, the 
elements in A[1…j-1] 
are in sorted order

© André de Carvalho - ICMC/USP

Example: Insertion Sort (3)

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

 Maintenance: the while loop moves elements A[j-1], 
A[j-2], …, A[j-k] one position to the right without 
changing their order
 Then the former A[j] element is inserted into k-th position so that 

A[k-1]  A[k] < A[k+1]

 A[1…j-1] sorted + A[j] A[1…j] sorted 

32

 Invariant: at the start 
of each for loop, the 
elements in A[1…j-1] 
are in sorted order

© André de Carvalho - ICMC/USP

Example: Insertion Sort (4)

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

 Termination: the loop terminates, when j=n+1. Then 
the invariant states: “A[1…n] consists of elements 
originally in A[1…n] but in sorted order” 
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 Invariant: at the start 
of each for loop, the 
elements in A[1…j-1] 
are in sorted order

Asymptotic analysis

 Goal: 
 Simplify analysis of running time by ignoring ”details” that 

may be affected by specific implementation and hardware 

 Like “rounding” for numbers:  1,000,001  1,000,000

 “Rounding” for functions: 3n2  n2

 Captures the essence: 
 How the running time of an algorithm increases with the 

size of the input in the limit

 Algorithms asymptotically more efficient are the best for all 
but small inputs

 Written using asymptotic notation 

34© André de Carvalho - ICMC/USP

Asymptotic notation

 For Q, O, W, o, w

 Defined for functions over the natural numbers.

 E.g.: f(n)  =  Q(n2).

 Describes how f(n) grows in comparison to n2

 Define a set of functions

 In practice used to compare two function sizes

 Describe different rate-of-growth relations 
between a defining function and a defined set of 
functions

© André de Carvalho - ICMC/USP 35

Asymptotic notation (1)

© André de Carvalho - ICMC/USP 36

Q(g(n)) = {f(n) :  positive constants 
c1, c2, and n0, such that n  n0, we 
have 0  c1g(n)  f(n)  c2g(n) }

For function g(n), we define Q(g(n)), 
big-Theta of n, as the set:

Input Size

R
un

ni
ng

 T
im

e )(nf

0n

)(ngc 2

)(ngc 1

Intuitively: Set of all functions that
have the same rate of growth as g(n).

g(n) is an asymptotically tight bound for f(n)
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Asymptotic notation (1)
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Q(g(n)) = {f(n) :  positive constants 
c1, c2, and n0, such that n  n0, we 
have 0  c1g(n)  f(n)  c2g(n) }

For function g(n), we define Q(g(n)), 
big-Theta of n, as the set:

Input Size

R
un

ni
ng

 T
im

e )(nf

0n

)(ngc 2

)(ngc 1

Technically, f(n)  Q(g(n))
Old use,  f(n) = Q(g(n))
Both can be used in this course

f(n) and g(n) are nonnegative, for large n

Example

 10n2 - 3n = Q(n2)

 What constants for n0, c1, and c2 will work?

 Make c1 a little smaller than the leading 
coefficient, and c2 a little bigger.
 To compare orders of growth, look at the 

leading term

 Exercise: Prove that n2/2-3n= Q(n2)
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Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Example

 Is 3n3  Q(n4) ?

 How about 22n Q(2n) ?

© André de Carvalho - ICMC/USP 39

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,
such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Asymptotic Notation

 Simple Rule: Drop lower order terms and 
constant factors

 50 n log n is ...

 7n - 3 is ...

 8n2 log n + 5n2 + n is ...

40© André de Carvalho - ICMC/USP

Asymptotic Notation

 Simple Rule: Drop lower order terms and 
constant factors

 50 n log n is O(n log n)

 7n - 3 is O(n)

 8n2 log n + 5n2 + n is O(n2 log n)
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Asymptotic Notation (2)

© André de Carvalho - ICMC/USP 42

O(g(n)) = {f(n) :  positive constants 
c and n0, such that n  n0, we have 
0  f(n)  cg(n) }

For a function g(n), we define 
O(g(n)), big-O of n, as the set:

g(n) is an asymptotic upper bound for f(n)

Intuitively: Set of all functions whose 
rate of growth is the same as or lower 
than that of g(n).

f(n) = Q(g(n))  f(n) = O(g(n))
Q(g(n))   O(g(n))

)(nf
( )c g n

0n Input Size

R
un

ni
ng

 T
im

e
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Example

 Any linear function an + b is in O(n2) ?

 Why?

 Show that 3n3 =O(n4)  (3n3  O(n4) )  for 
appropriate values of c and n0

© André de Carvalho - ICMC/USP 43

O(g(n)) = {f(n) :  positive constants c and n0,
such that n  n0, we have 0  f(n)  cg(n) }

Asymptotic Notation (3)

44© André de Carvalho - ICMC/USP

g(n) is an asymptotic lower bound for f(n)

Intuitively: Set of all functions 
whose rate of growth is the same 
as or higher than that of g(n)

f(n) = Q(g(n))  f(n) = W(g(n))
Q(g(n))   W(g(n))

W(g(n)) = {f(n) :  positive constants 
c and n0, such that n  n0, we have 
0  cg(n)  f(n)}

For function g(n), we define (g(n)), 
big-Omega of n, as the set:

Input Size

R
un

ni
ng

 T
im

e )(nf

( )c g n

0n

 f(n) = Q(g(n)) if and only if f(n) = O(g(n))  and        
f(n) = (g(n))

 O(f(n)) is often misused instead of Q(f(n)) 

Relations Between Q, O, 
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Input Size

R
un

ni
ng

 T
im

e

)(nf

0n

)(ngc 2

)(ngc 1

)(nf
( )c g n

0n
Input Size

R
un

ni
ng

 T
im
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Input Size

R
un

ni
ng

 T
im

e

)(nf

( )c g n

0n

f(n) = Q(g(n)) f(n) = O(g(n)) f(n) = (g(n))

Asymptotic Notation (5)

 "Little-Oh" notation f(n)=o(g(n))
non-tight analogue of Big-Oh

 Used for comparisons of running times

 If f(n)=o(g(n)), it is said that g(n) dominates 
f(n)
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o(g(n)) = {f(n):  c > 0,  n0 > 0 such 

that  n  n0, we have 0  f(n) < cg(n) }

O(g(n)) = {f(n) :  positive constants c and n0, such 
that n  n0, we have 0  f(n)  cg(n) }

Big-Oh

Asymptotic Notation (6)

 "Little-omega" notation f(n)=w(g(n))
non-tight analogue of Big-Omega

47© André de Carvalho - ICMC/USP

o(g(n)) = {f(n):  c > 0,  n0 > 0 such 

that  n  n0, we have 0  f(n) < cg(n) }

W(g(n)) = {f(n) :  positive constants c and n0, such 
that n  n0, we have 0  cg(n)  f(n)}

Big-Omega

Asymptotic properties

 Analogy with real numbers

 f(n) = O(g(n)) @ a b

 f(n) = (g(n)) @ a  b

 f(n) = Q(g(n)) @ a =b

 f(n) = o(g(n)) @ a <b

 f(n) = w(g(n)) @ a >b

 Abuse of notation: f(n) = O(g(n)) actually 
means f(n)  O(g(n)) 

48© André de Carvalho - ICMC/USP
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Limits

 lim [f(n) / g(n)] = 0  f(n)  o(g(n))
n

 lim [f(n) / g(n)] <   f(n)  O(g(n))
n

 0 < lim [f(n) / g(n)] <   f(n)  Q(g(n))
n

 0 < lim [f(n) / g(n)]  f(n)  (g(n))
n

 lim [f(n) / g(n)] =   f(n)  w(g(n))
n

 lim [f(n) / g(n)] undefined  Not possible to say
n

49© André de Carvalho - ICMC/USP

Properties

 Symmetry

f(n) = Q(g(n)) iff g(n) = Q(f(n))

 Transitivity
f(n) = Q(g(n)) & g(n) = Q(h(n))  f(n) = Q(h(n))

f(n) = O(g(n)) & g(n) = O(h(n))  f(n) = O(h(n))

f(n) = (g(n)) & g(n) = (h(n))  f(n) = (h(n))

f(n) =  o(g(n)) & g(n) = o (h(n))  f(n) = o (h(n))

f(n) = w(g(n)) & g(n) = w(h(n))  f(n) = w(h(n))

50© André de Carvalho - ICMC/USP

Properties

 Reflexivity

f(n) = Q(f(n))

f(n) = O(f(n))

f(n) = (f(n))

 Complementarity

f(n) = O(g(n)) iff g(n) = (f(n))

f(n) =  o(g(n)) iff g(n) = w((f(n))

51© André de Carvalho - ICMC/USP 52

Brief 
Mathematical 
review
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Monotonicity

 f(n) is 

 monotonically increasing if m  n  f(m) 
f(n)

 monotonically decreasing if m  n  f(m) 
f(n)

 strictly increasing if m < n  f(m) < f(n)

 strictly decreasing if m > n  f(m) > f(n)

53© André de Carvalho - ICMC/USP

Exponentials and Logarithms 

 Properties of 

logarithms:

logb(xy) = logbx + logby

logb (x/y) = logbx - logby

logbxa = alogbx

logba = logxa/logxb

 Properties of 

exponentials:

a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a log
a
b

bc = a c*log
a
b
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Bases of logarithms and exponentials

 The base of a logarithm can be changed 
multiplying the logarithm by a constant 

 E.g. log10 n * log210 = log2 n

 Base of logarithm is not important in 
asymptotic notation

 Exponentials with different bases differ by 
a exponential (not a constant)

 E.g. 2n = (2/3)n*3n
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Summations

 Constant series

 Given integers a and n, a  n

 Arithmetic progression (linear series)

 Given an integer n

0

(1 )
1 2 3 ...

2

n

i

n n
i n




     

56





n

ai

an 11
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Summations

57

Arithmetic
Progression (n even)
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Summations

 Quadratic Series  

 Given an integer n  0

 Cubic Series  

 Given an integer n  0

58







n

i

nnn
ni

1

2222

6

)12)(1(
21 







n

i

nn
ni

1

22
3333

4

)1(
21 
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Summations

 Geometric progression (series)

 Given an integer n and a real number 0< a  1

 Geometric progressions exhibit exponential 
growth behaviour

 For |a| < 1

59




 


0 1

1

i

i

a
a











n

i

n
ni
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a
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1
2

1

1
1 
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Summations

 Linear-Geometric Series

 Given an integer n  0 and a real c  1

 Harmonic Series

 Given a nth harmonic number, nI+

60

n
Hn

1

3

1

2

1
1   




n

i

n
i1

1)ln(
1











n

i
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c
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2
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2 
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Popular with architects, 
mainly in the Baroque 
period, to define 
Harmonic relations 
between interior and 
exterior architecture 
of churches and palaces
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Summations

 The running time of insertion sort is 
determined by a nested loop

 Nested loops correspond to summations

for j2 to length(A)
keyA[j]
ij-1
while i>0 and A[i]>key

A[i+1]A[i]
ii-1

A[i+1]key

for j2 to length(A)
keyA[j]
ij-1
while i>0 and A[i]>key

A[i+1]A[i]
ii-1

A[i+1]key

2

2
( 1) ( )

n

j
j O n


 
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Proof by Induction

 Correctness estimation and time complexity 
estimation can be proved by mathematical 
induction

 Important mathematical tool for proofs

 Allow simple proofs
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Proof by Induction (1)

 We want to show that property P is true for all 
integers n  n0 

 Basis: prove that P is true for n0

 Inductive step: prove that if P is true for all k
such that n0  k  n – 1 then P is also true for n

 Example

 Basis

0

( 1)
( )  for 1

2

n

i

n n
S n i n




  

1

0

1(1 1)
(1)

2i

S i



 
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Proof by Induction (2)

0

1

0 0

2

( 1)
( )  for 1 k 1

2

( ) ( 1)

( 1 1) ( 2 )
( 1)

2 2

( 1)

2

k

i

n n

i i

k k
S k i n

S n i i n S n n

n n n n
n n

n n





 


    

      

   
    






 

 Inductive Step
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Next Week

 Divide-and-conquer

 Merge sort 

 Writing recurrences to describe the running 
time of divide-and-conquer algorithms
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Questions
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