
CHOROCHRONOS Midter Review

Timos Sellis 1

SCC0602 - Algoritmos e
Estruturas de Dados I

Correctness

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor:

Today

 Correctness of algorithms

 Growth of functions and asymptotic
notation

 Revision of some basic math

 Conclusion

© André de Carvalho - ICMC/USP 2

Exercise

 Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array

3© André de Carvalho - ICMC/USP

Correctness of Algorithms

 An algorithm is correct if

 For any allowed input, it terminates and
produces the desired output

 Automatic proof of correctness is not
possible

 But there are practical techniques and rigorous
formalisms that help to reason about the
correctness of algorithms

4© André de Carvalho - ICMC/USP

Partial and Total Correctness

 Partial correctness

Any allowed input Algorithm Output

IF this point is reached, THEN this is the desired output

 Total correctness

Any allowed input Algorithm Output

IF this point is reached, AND this is the desired output

5© André de Carvalho - ICMC/USP

Correctness

 Difficult to prove

 How to test for all possible inputs?

 Test algorithm with sample of possible
inputs

 Software testing

 Even more difficult is to prove total
correctness

© André de Carvalho - ICMC/USP 6

CHOROCHRONOS Midter Review

Timos Sellis 2

Assertions

 To prove partial correctness
 Associate a number of assertions (statements about

the state of the execution) with specific checkpoints in
the algorithm

 E.g.: i=k, A[1], …,A[k] form an increasing sequence (IS)

 Other important assertions:
 Preconditions

 Assertions that must be true before the execution of an
algorithm or a subroutine (INPUT)

 Postconditions
 Assertions that must be true after the execution of an

algorithm or a subroutine (OUTPUT)

7© André de Carvalho - ICMC/USP

Exercise

 Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array
 Precondition:

8© André de Carvalho - ICMC/USP

Exercise

 Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array
 Precondition:

 INPUT: an array of integers A[1..n], n > 0

9© André de Carvalho - ICMC/USP

Exercise

 Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array
 Precondition:

 INPUT: an array of integers A[1..n], n > 0

 Postcondition:

10© André de Carvalho - ICMC/USP

Exercise

 Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array
 Precondition:

 INPUT: an array of integers A[1..n], n > 0

 Postcondition:

 OUTPUT: (m1, m2), s. t. (such that) m1 < m2 and

 For each i [1..n], m1  A[i] and, if A[i] m1, then

m2 A[i]

 If there is no m2 satisfying these conditions, then …

11© André de Carvalho - ICMC/USP

Exercise

 Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array
 Precondition:

 INPUT: an array of integers A[1..n], n > 0

 Postcondition:

 OUTPUT: (m1, m2), s. t. (such that) m1 < m2 and

 For each i [1..n], m1  A[i] and, if A[i] m1, then

m2 A[i]

 If there is no m2 satisfying these conditions, then m2

= m1

12© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 3

Loop Invariants

 Used to evaluate partial correctness

 Invariants: assertions (statements) that are valid
any time they are reached

 Are valid many times during the execution of an
algorithm

 E.g., in loops, a property or condition is true before and after
each iteration

int a = 5;
int b = 0;
for (a > 0){

a--;
b++;

}

What is loop invariant
in this algorithm?

13© André de Carvalho - ICMC/USP

Loop Invariants

 Used to evaluate partial correctness

 Invariants: assertions (statements) that are valid
any time they are reached

 Are valid many times during the execution of an
algorithm

 E.g., in loops, a property or condition is true before and after
each iteration

14© André de Carvalho - ICMC/USP

int a = 5;
int b = 0;
for (a > 0){

a--;
b++;

}

What is loop invariant
in this algorithm?
a + b = 5

Loop Invariants

 Three facts about a loop invariant:

 Initialization

 It is true before the first loop iteration

 Maintenance

 If it is true before a loop iteration, then it remains
true before the next iteration

 Termination

 When the loop finishes, the invariant gives a useful
property to show the correctness of the algorithm

15© André de Carvalho - ICMC/USP

Binary Search

 Very simple search algorithm

© André de Carvalho - ICMC/USP 16

https://brilliant.org/wiki/binary-search/

Example: Binary Search (1)
left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

 We want to make sure
that if NIL is return q is
not in A

 Invariant: at the start
of each while loop,
q > A[i] for all i
[1..left-1] and q < A[i]
for all i [right+1..n]

17© André de Carvalho - ICMC/USP

Example: Binary Search (1)
left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

 We want to make sure
that if NIL is return q is
not in A

 Invariant: at the start
of each while loop, q >
A[i] for all i [1..left-1]
and q < A[i] for all i
[right+1..n]

Floor

18© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 4

Example: Binary Search (1)

 Initialization: left = 1, right = n, the invariant holds
 Because there are no elements in A neither to the left of left nor

to the right of right

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

 We want to make sure
that if NIL is return q is
not in A

 Invariant: at the start
of each while loop, q >
A[i] for all i [1..left-1]
and q < A[i] for all i
[right+1..n]

19© André de Carvalho - ICMC/USP

Example: Binary Search (2)

 Maintenance: if q < A[j], then q <A[i] for each i [j..n]
 Because the array is sorted, the algorithm assigns j-1 to right (the

second part of the invariant holds)

 The first part of the invariant could similarly be shown to hold

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

 We want to make sure
that if NIL is return q is
not in A

 Invariant: at the start
of each while loop, q >
A[i] for all i [1..left-1]
and q < A[i] for all i
[right+1..n]

20© André de Carvalho - ICMC/USP

Example: Binary Search (3)

 Termination: the loop terminates when left > right
 The invariant states that q is smaller than all elements of A to the

left of left and larger than all elements of A to the right of right

 This covers all elements of A, i.e. q is either smaller or larger
that any element of A

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

left1
rightn
do

j(left+right)/2
if A[j]=q then return j
else if A[j]>q then rightj-1
else left=j+1

while left<=right
return NIL

 We want to make sure
that if NIL is return q is
not in A

 Invariant: at the start
of each while loop, q >
A[i] for all i [1..left-1]
and q < A[i] for all i
[right+1..n]

21© André de Carvalho - ICMC/USP

Insertion Sort

 One of the simplest sorting algorithms

 Is not the simplest

 People use it to sort cards in their hands

 E.g. Suppose you have the following cards in
your hand:

 And received the card

© André de Carvalho - ICMC/USP 22

Example: Insertion Sort

23

To insert 12, it is necessary
to make room for this card
by moving first 36 and
then 24

© André de Carvalho - ICMC/USP

Example: Insertion Sort

24© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 5

Example: Insertion Sort

25© André de Carvalho - ICMC/USP

Example: Insertion Sort

26© André de Carvalho - ICMC/USP

Insertion Sort

27

5 2 4 6 1 3

Input array

left sub-array right sub-array

at each iteration, the array is divided in two sub-arrays:

Sorted Unsorted

© André de Carvalho - ICMC/USP

Insertion Sort

28© André de Carvalho - ICMC/USP

Insertion Sort

© André de Carvalho - ICMC/USP 29

https://upload.wikimedia.org/wikipedia/commons/0/0f/Inserti
on-sort-example-300px.gif

Example: Insertion Sort (1)

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

30

 Invariant: at the start
of each for loop, the
elements in A[1…j-1]
are in sorted order

© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 6

Example: Insertion Sort (2)

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

 Initialization: j = 2, the invariant trivially holds because
A[1] is a sorted array

31

 Invariant: at the start
of each for loop, the
elements in A[1…j-1]
are in sorted order

© André de Carvalho - ICMC/USP

Example: Insertion Sort (3)

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

 Maintenance: the while loop moves elements A[j-1],
A[j-2], …, A[j-k] one position to the right without
changing their order
 Then the former A[j] element is inserted into k-th position so that

A[k-1]  A[k] < A[k+1]

 A[1…j-1] sorted + A[j] A[1…j] sorted

32

 Invariant: at the start
of each for loop, the
elements in A[1…j-1]
are in sorted order

© André de Carvalho - ICMC/USP

Example: Insertion Sort (4)

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

 Termination: the loop terminates, when j=n+1. Then
the invariant states: “A[1…n] consists of elements
originally in A[1…n] but in sorted order”

33© André de Carvalho - ICMC/USP

 Invariant: at the start
of each for loop, the
elements in A[1…j-1]
are in sorted order

Asymptotic analysis

 Goal:
 Simplify analysis of running time by ignoring ”details” that

may be affected by specific implementation and hardware

 Like “rounding” for numbers: 1,000,001  1,000,000

 “Rounding” for functions: 3n2  n2

 Captures the essence:
 How the running time of an algorithm increases with the

size of the input in the limit

 Algorithms asymptotically more efficient are the best for all
but small inputs

 Written using asymptotic notation

34© André de Carvalho - ICMC/USP

Asymptotic notation

 For Q, O, W, o, w

 Defined for functions over the natural numbers.

 E.g.: f(n) = Q(n2).

 Describes how f(n) grows in comparison to n2

 Define a set of functions

 In practice used to compare two function sizes

 Describe different rate-of-growth relations
between a defining function and a defined set of
functions

© André de Carvalho - ICMC/USP 35

Asymptotic notation (1)

© André de Carvalho - ICMC/USP 36

Q(g(n)) = {f(n) :  positive constants
c1, c2, and n0, such that n  n0, we
have 0  c1g(n)  f(n)  c2g(n) }

For function g(n), we define Q(g(n)),
big-Theta of n, as the set:

Input Size

R
un

ni
ng

 T
im

e)(nf

0n

)(ngc 2

)(ngc 1

Intuitively: Set of all functions that
have the same rate of growth as g(n).

g(n) is an asymptotically tight bound for f(n)

CHOROCHRONOS Midter Review

Timos Sellis 7

Asymptotic notation (1)

© André de Carvalho - ICMC/USP 37

Q(g(n)) = {f(n) :  positive constants
c1, c2, and n0, such that n  n0, we
have 0  c1g(n)  f(n)  c2g(n) }

For function g(n), we define Q(g(n)),
big-Theta of n, as the set:

Input Size

R
un

ni
ng

 T
im

e)(nf

0n

)(ngc 2

)(ngc 1

Technically, f(n)  Q(g(n))
Old use, f(n) = Q(g(n))
Both can be used in this course

f(n) and g(n) are nonnegative, for large n

Example

 10n2 - 3n = Q(n2)

 What constants for n0, c1, and c2 will work?

 Make c1 a little smaller than the leading
coefficient, and c2 a little bigger.
 To compare orders of growth, look at the

leading term

 Exercise: Prove that n2/2-3n= Q(n2)

© André de Carvalho - ICMC/USP 38

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,

such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Example

 Is 3n3  Q(n4) ?

 How about 22n Q(2n) ?

© André de Carvalho - ICMC/USP 39

Q(g(n)) = {f(n) :  positive constants c1, c2, and n0,
such that n  n0, 0  c1g(n)  f(n)  c2g(n)}

Asymptotic Notation

 Simple Rule: Drop lower order terms and
constant factors

 50 n log n is ...

 7n - 3 is ...

 8n2 log n + 5n2 + n is ...

40© André de Carvalho - ICMC/USP

Asymptotic Notation

 Simple Rule: Drop lower order terms and
constant factors

 50 n log n is O(n log n)

 7n - 3 is O(n)

 8n2 log n + 5n2 + n is O(n2 log n)

41© André de Carvalho - ICMC/USP

Asymptotic Notation (2)

© André de Carvalho - ICMC/USP 42

O(g(n)) = {f(n) :  positive constants
c and n0, such that n  n0, we have
0  f(n)  cg(n) }

For a function g(n), we define
O(g(n)), big-O of n, as the set:

g(n) is an asymptotic upper bound for f(n)

Intuitively: Set of all functions whose
rate of growth is the same as or lower
than that of g(n).

f(n) = Q(g(n))  f(n) = O(g(n))
Q(g(n))  O(g(n))

)(nf
()c g n

0n Input Size

R
un

ni
ng

 T
im

e

CHOROCHRONOS Midter Review

Timos Sellis 8

Example

 Any linear function an + b is in O(n2) ?

 Why?

 Show that 3n3 =O(n4) (3n3  O(n4)) for
appropriate values of c and n0

© André de Carvalho - ICMC/USP 43

O(g(n)) = {f(n) :  positive constants c and n0,
such that n  n0, we have 0  f(n)  cg(n) }

Asymptotic Notation (3)

44© André de Carvalho - ICMC/USP

g(n) is an asymptotic lower bound for f(n)

Intuitively: Set of all functions
whose rate of growth is the same
as or higher than that of g(n)

f(n) = Q(g(n))  f(n) = W(g(n))
Q(g(n))  W(g(n))

W(g(n)) = {f(n) :  positive constants
c and n0, such that n  n0, we have
0  cg(n)  f(n)}

For function g(n), we define (g(n)),
big-Omega of n, as the set:

Input Size

R
un

ni
ng

 T
im

e)(nf

()c g n

0n

 f(n) = Q(g(n)) if and only if f(n) = O(g(n)) and
f(n) = (g(n))

 O(f(n)) is often misused instead of Q(f(n))

Relations Between Q, O, 

45© André de Carvalho - ICMC/USP

Input Size

R
un

ni
ng

 T
im

e

)(nf

0n

)(ngc 2

)(ngc 1

)(nf
()c g n

0n
Input Size

R
un

ni
ng

 T
im

e

Input Size

R
un

ni
ng

 T
im

e

)(nf

()c g n

0n

f(n) = Q(g(n)) f(n) = O(g(n)) f(n) = (g(n))

Asymptotic Notation (5)

 "Little-Oh" notation f(n)=o(g(n))
non-tight analogue of Big-Oh

 Used for comparisons of running times

 If f(n)=o(g(n)), it is said that g(n) dominates
f(n)

46© André de Carvalho - ICMC/USP

o(g(n)) = {f(n):  c > 0,  n0 > 0 such

that  n  n0, we have 0  f(n) < cg(n) }

O(g(n)) = {f(n) :  positive constants c and n0, such
that n  n0, we have 0  f(n)  cg(n) }

Big-Oh

Asymptotic Notation (6)

 "Little-omega" notation f(n)=w(g(n))
non-tight analogue of Big-Omega

47© André de Carvalho - ICMC/USP

o(g(n)) = {f(n):  c > 0,  n0 > 0 such

that  n  n0, we have 0  f(n) < cg(n) }

W(g(n)) = {f(n) :  positive constants c and n0, such
that n  n0, we have 0  cg(n)  f(n)}

Big-Omega

Asymptotic properties

 Analogy with real numbers

 f(n) = O(g(n)) @ a b

 f(n) = (g(n)) @ a  b

 f(n) = Q(g(n)) @ a =b

 f(n) = o(g(n)) @ a <b

 f(n) = w(g(n)) @ a >b

 Abuse of notation: f(n) = O(g(n)) actually
means f(n)  O(g(n))

48© André de Carvalho - ICMC/USP

CHOROCHRONOS Midter Review

Timos Sellis 9

Limits

 lim [f(n) / g(n)] = 0  f(n)  o(g(n))
n

 lim [f(n) / g(n)] <   f(n)  O(g(n))
n

 0 < lim [f(n) / g(n)] <   f(n)  Q(g(n))
n

 0 < lim [f(n) / g(n)]  f(n)  (g(n))
n

 lim [f(n) / g(n)] =   f(n)  w(g(n))
n

 lim [f(n) / g(n)] undefined  Not possible to say
n

49© André de Carvalho - ICMC/USP

Properties

 Symmetry

f(n) = Q(g(n)) iff g(n) = Q(f(n))

 Transitivity
f(n) = Q(g(n)) & g(n) = Q(h(n))  f(n) = Q(h(n))

f(n) = O(g(n)) & g(n) = O(h(n))  f(n) = O(h(n))

f(n) = (g(n)) & g(n) = (h(n))  f(n) = (h(n))

f(n) = o(g(n)) & g(n) = o (h(n))  f(n) = o (h(n))

f(n) = w(g(n)) & g(n) = w(h(n))  f(n) = w(h(n))

50© André de Carvalho - ICMC/USP

Properties

 Reflexivity

f(n) = Q(f(n))

f(n) = O(f(n))

f(n) = (f(n))

 Complementarity

f(n) = O(g(n)) iff g(n) = (f(n))

f(n) = o(g(n)) iff g(n) = w((f(n))

51© André de Carvalho - ICMC/USP 52

Brief
Mathematical
review

© André de Carvalho - ICMC/USP

Monotonicity

 f(n) is

 monotonically increasing if m  n  f(m) 
f(n)

 monotonically decreasing if m  n  f(m) 
f(n)

 strictly increasing if m < n  f(m) < f(n)

 strictly decreasing if m > n  f(m) > f(n)

53© André de Carvalho - ICMC/USP

Exponentials and Logarithms

 Properties of

logarithms:

logb(xy) = logbx + logby

logb (x/y) = logbx - logby

logbxa = alogbx

logba = logxa/logxb

 Properties of

exponentials:

a(b+c) = aba c

abc = (ab)c

ab /ac = a(b-c)

b = a log
a
b

bc = a c*log
a
b

© André de Carvalho - ICMC/USP 54

CHOROCHRONOS Midter Review

Timos Sellis 10

Bases of logarithms and exponentials

 The base of a logarithm can be changed
multiplying the logarithm by a constant

 E.g. log10 n * log210 = log2 n

 Base of logarithm is not important in
asymptotic notation

 Exponentials with different bases differ by
a exponential (not a constant)

 E.g. 2n = (2/3)n*3n

55© André de Carvalho - ICMC/USP

Summations

 Constant series

 Given integers a and n, a  n

 Arithmetic progression (linear series)

 Given an integer n

0

(1)
1 2 3 ...

2

n

i

n n
i n




     

56





n

ai

an 11

© André de Carvalho - ICMC/USP

Summations

57

Arithmetic
Progression (n even)

© André de Carvalho - ICMC/USP

Summations

 Quadratic Series

 Given an integer n  0

 Cubic Series

 Given an integer n  0

58







n

i

nnn
ni

1

2222

6

)12)(1(
21 







n

i

nn
ni

1

22
3333

4

)1(
21 

© André de Carvalho - ICMC/USP

Summations

 Geometric progression (series)

 Given an integer n and a real number 0< a  1

 Geometric progressions exhibit exponential
growth behaviour

 For |a| < 1

59




 


0 1

1

i

i

a
a











n

i

n
ni

a

a
aaaa

0

1
2

1

1
1 

© André de Carvalho - ICMC/USP

Summations

 Linear-Geometric Series

 Given an integer n  0 and a real c  1

 Harmonic Series

 Given a nth harmonic number, nI+

60

n
Hn

1

3

1

2

1
1   




n

i

n
i1

1)ln(
1











n

i

nn
ni

c

cnccn
ncccic

1
2

21
2

)1(

)1(
2 

© André de Carvalho - ICMC/USP

Popular with architects,
mainly in the Baroque
period, to define
Harmonic relations
between interior and
exterior architecture
of churches and palaces

CHOROCHRONOS Midter Review

Timos Sellis 11

Summations

 The running time of insertion sort is
determined by a nested loop

 Nested loops correspond to summations

for j2 to length(A)
keyA[j]
ij-1
while i>0 and A[i]>key

A[i+1]A[i]
ii-1

A[i+1]key

for j2 to length(A)
keyA[j]
ij-1
while i>0 and A[i]>key

A[i+1]A[i]
ii-1

A[i+1]key

2

2
(1) ()

n

j
j O n


 

61© André de Carvalho - ICMC/USP

Proof by Induction

 Correctness estimation and time complexity
estimation can be proved by mathematical
induction

 Important mathematical tool for proofs

 Allow simple proofs

© André de Carvalho - ICMC/USP 62

Proof by Induction (1)

 We want to show that property P is true for all
integers n  n0

 Basis: prove that P is true for n0

 Inductive step: prove that if P is true for all k
such that n0  k  n – 1 then P is also true for n

 Example

 Basis

0

(1)
() for 1

2

n

i

n n
S n i n




  

1

0

1(1 1)
(1)

2i

S i



 

63© André de Carvalho - ICMC/USP

Proof by Induction (2)

0

1

0 0

2

(1)
() for 1 k 1

2

() (1)

(1 1) (2)
(1)

2 2

(1)

2

k

i

n n

i i

k k
S k i n

S n i i n S n n

n n n n
n n

n n





 


    

      

   
    






 

 Inductive Step

64© André de Carvalho - ICMC/USP

Next Week

 Divide-and-conquer

 Merge sort

 Writing recurrences to describe the running
time of divide-and-conquer algorithms

65© André de Carvalho - ICMC/USP

Acknowledgement

 A large part of this material were adapted from
 Simonas Šaltenis, Algorithms and Data Structures,

Aalborg University, Denmark

 Mary Wootters, Design and Analysis of Algorithms,
Stanford University, USA

 George Bebis, Analysis of Algorithms
CS 477/677, University of Nevada, Reno

 David A. Plaisted, Information Comp 550-001,
University of North Carolina at Chapel Hill

© André de Carvalho - ICMC/USP 66

CHOROCHRONOS Midter Review

Timos Sellis 12

Questions

67© André de Carvalho - ICMC/USP

