CHOROCHRONOS Midter Review

SCCO0602 - Algoritmos e
Estruturas de Dados 1

il

Correctness

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor:

i Today

= Correctness of algorithms

= Growth of functions and asymptotic
notation

= Revision of some basic math
= Conclusion

© André de Carvalho - ICMC/USP 2

i Exercise

= Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array

© André de Carvalho - ICMC/USP 3

i Correctness of Algorithms

= An algorithm is correct if
= For any allowed input, it terminates and
produces the desired output
= Automatic proof of correctness is not
possible

= But there are practical techniques and rigorous
formalisms that help to reason about the
correctness of algorithms

© André de Carvalho - ICMC/USP 4

i Partial and Total Correctness

= Partial correctness

IF this point is reached, THEN this is the desired output

—
v soreso] - (o)

= Total correctness

IF this point is reached, AND this is the desired output

\ —
. N N
Any allowed input)) Output

© André de Carvalho - ICMC/USP 5

i Correctness

= Difficult to prove
= How to test for all possible inputs?

= Test algorithm with sample of possible
inputs
= Software testing

= Even more difficult is to prove total
correctness

© André de Carvalho - ICMC/USP 6

Timos Sellis

CHOROCHRONOS Midter Review

i Assertions

= To prove partial correctness
= Associate a number of assertions (statements about
the state of the execution) with specific checkpoints in
the algorithm
= E.g.:i=k, A[1], ...,Ak] form an increasing sequence (IS)
= Other important assertions:
= Preconditions

= Assertions that must be true before the execution of an
algorithm or a subroutine (INPUT)

= Postconditions

= Assertions that must be true after the execution of an
algorithm or a subroutine (OUTPUT)

© André de Carvalho - ICMC/USP 7

i Exercise

= Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array
= Precondition:

© André de Carvalho - ICMC/USP 8

i Exercise

= Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array
= Precondition:
= INPUT: an array of integers A[1..n], n> 0

© André de Carvalho - ICMC/USP 9

i Exercise

= Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array
= Precondition:
= INPUT: an array of integers A[1..n], n> 0
= Postcondition:
« OUTPUT: (my, m,), s. t. (such that) m, < m,and

For each /e [1..n1], m;< Al]] and, if A[{] # m then
my< Al
If there is no m, satisfying these conditions, then ...

© André de Carvalho - ICMC/USP 11

Timos Sellis

i Exercise

= Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array
= Precondition:
« INPUT: an array of integers A[1..n], n> 0
= Postcondition:

© André de Carvalho - ICMC/USP 10

i Exercise

= Write a pseudocode of an algorithm to find
the two smallest numbers in a sequence of
numbers given as an array
= Precondition:
» INPUT: an array of integers A[1..n], n> 0
= Postcondition:
« OUTPUT: (my, m), s. t. (such that) m, < m,and
For each /e [1..n], m;< Al{ and, if ALl = m, then

my< A
If there is no m), satisfying these conditions, then m,
= ml

© André de Carvalho - ICMC/USP 12

CHOROCHRONOS Midter Review

i Loop Invariants

= Used to evaluate partial correctness
= Invariants: assertions (statements) that are valid
any time they are reached

= Are valid many times during the execution of an
algorithm

= E.g., in loops, a property or condition is true before and after
each iteration

inta=>5; What is loop invariant
mth=0; " in this algorithm?
Sfor (a> 0){
a--;
bt+;
/
© André de Carvalho - ICMC/USP 13

i Loop Invariants

= Used to evaluate partial correctness
= Invariants: assertions (statements) that are valid
any time they are reached

= Are valid many times during the execution of an
algorithm

= E.g,, in loops, a property or condition is true before and after
each iteration

inta=>5; What is loop invariant
intb=0; i this algorithm?
Jor@=0f 4 +p=5
b+,
/
© André de Carvalho - ICMC/USP 14

i Loop Invariants

= Three facts about a loop invariant:
= Initialization
= It is true before the first loop iteration
= Maintenance

« If it is true before a loop iteration, then it remains
true before the next iteration

= Termination

= When the loop finishes, the invariant gives a useful
property to show the correctness of the algorithm

© André de Carvalho - ICMC/USP 15

i Binary Search

= Very simple search algorithm

Search for 47

0 4 7 10 14 23 45 47 53

https:/brilliant.org/wiki/binary-search/
© André de Carvalho - ICMC/USP 16

i Example: Binary Search (1)

lefte1
= We want to make sure | righten

i i H do
that_ if NIL is return gis el (leftiright) /2)
notin A if A[j]l=q then return j
H 1 if AlJ th htej-1
= Invariant: at the start e ieftiﬂiq en righte]
of each while loop, while left<=right

g > Ali] for all i return NIL

e/l1..left-1] and g < A[i]
for all i € [right+1..n]

© André de Carvalho - ICMC/USP 17

Timos Sellis

i Example: Binary Search (1)

lefte1l
= We want to make sure | right<n

i i i do T TTT—
that_lf NIL is return gis 5 (reterrignt) /2]
notin A if Afjl=q-then, retirn j

- 1 if A th igh -1
= Invariant: at the start | Syoe 1% 21110 ehen wighees

of each while loop, g > |while lett<=right
Afi] for all i e[1..left-1] [*ete=n MIE

and g < Afi] for all i /

e[right+1..n]

Floor

© André de Carvalho - ICMC/USP 18

CHOROCHRONOS Midter Review

* Example: Binary Search (1)

lefte1
= We want to make sure | righten

that if NIL is return gis |d°
notin A

= Invariant: at the start | Syse 1513179 then miantei
of each while loop, g > |vhile left<=right
Afi] for all i e[1..left-1] == ML

jel (left+right) /2]
if A[j]=g then return j

and g < A[i] for all i
e[right+1..n]

= Initialization: /eft = 1, right = n, the invariant holds

= Because there are no elements in A neither to the left of /eft nor
to the right of right

© André de Carvalho - ICMC/USP 19

* Example: Binary Search (2)

lefte1
= We want to make sure | righten

that if NIL is return gis |9°
notin A if A[j]=qg then return j
« Invariant: at the start | Sy%e 1L.11 79 then meneai
N else left=j+
of each while loop, g > |while lett<=right
Afi] for all i e[1..left-1] |*eFern NI

jel (left+right) /2]

and g < A[i] for all i
e[right+1..n]

= Maintenance: if g < A[j], then q <A[/] for each / e[}..n]

= Because the array is sorted, the algorithm assigns j-1 to right (the
second part of the invariant holds)

= The first part of the invariant could similarly be shown to hold

© André de Carvalho - ICMC/USP 20

* Example: Binary Search (3)

lefte1
= We want to make sure | righten

that if NIL is return gis |d°
notin A

= Invariant: at the start | Syse 15.1J179 then miantei
of each while loop, g > |while left<=right
Afi] for all i e[1..left-1] === ML

jel (left+right) /2]
if A[j]=g then return j

and g < A[i] for all i
e[right+1..n]

= Termination: the loop terminates when /eft > right
= The invariant states that g is smaller than all elements of Ato the
left of /eft and larger than all elements of Ato the right of right
= This covers all elements of 4, i.e. gis either smaller or larger

that any element of 4
© André de Carvalho - ICMC/USP 21

Insertion Sort

T

= One of the simplest sorting algorithms
= Is not the simplest
= People use it to sort cards in their hands

= E.g. Suppose you have the following cards in
your hand:

= And received the card

© André de Carvalho - ICMC/USP 22

* Example: Insertion Sort

To insert 12, it is necessary
to make room for this card
by moving first 36 and
then 24

© André de Carvalho - ICMC/USP 23

Timos Sellis

* Example: Insertion Sort

s &
4

© André de Carvalho - ICMC/USP 24

CHOROCHRONOS Midter Review

* Example: Insertion Sort

© André de Carvalho - ICMC/USP

25

i Example: Insertion Sort

© André de Carvalho - ICMC/USP 26

* Insertion Sort

Input array
5 2 4 6 1 3

at each iteration, the array is divided in two sub-arrays:

left sub-array

5
2 \‘5

right sub-array
6 1 3

Sorted Unsorted

© André de Carvalho - ICMC/USP

27

i Insertion Sort

© André de Carvalho - ICMC/USP 28

* Insertion Sort

6 53 187 24

wikimedia. ikipedi

ps:
on-sort-example-300px. gif

© André de Carvalho - ICMC/USP

29

Timos Sellis

i Example: Insertion Sort (1)

for j=2 to length(R)
do key=A[]]
i=9-1
while i>0 and A[i]>key

= Invariant: at the start
of each for loop, the
elements in A(1...j-1]

are in sorted order do A[i+1]=A[i]
P
A[i+1]:=key
© André de Carvalho - ICMC/USP 30

CHOROCHRONOS Midter Review

i Example: Insertion Sort (2)

= Invariant: at the start |for 1=2 to length(n)

do key=A[]]
of each for loop, the °
elements in A(1...j-1] while i>0 and A[i]>key

are in sorted order do A[i+11=A[i]

-
A[i+1]:=key

= Initialization: j = 2, the invariant trivially holds because
A[1] is a sorted array

© André de Carvalho - ICMC/USP 31

i Example: Insertion Sort (3)

= Invariant: at the start |for 1=2 to length(a)

do key=A[7]
of each for loop, the °
elements in Af1...j-1] while i>0 and A[i]>key
are in sorted order do Alivl]=A[i]

F
A[i+l] :=key

= Maintenance: the while loop moves elements A[j-1],
AlJ-2], ..., ALJ-K] one position to the right without
changing their order

= Then the former A[j] element is inserted into 4-th position so that
Alk-11 < ALKl < ALk+1]
w A[1...j-1] sorted + A[j] - A[1...]] sorted

© André de Carvalho - ICMC/USP 32

i Example: Insertion Sort (4)

= Invariant: at the start |for 1=2 to length(n)

do key=A[]]
of each for loop, the °
elements in A(1...j-1] while i>0 and A[i]>key
are in sorted order do A[i+1]=A[i]

-
A[i+1]:=key

= Termination: the loop terminates, when j=n+1. Then
the invariant states: "A/1...n] consists of elements
originally in A[1...n] but in sorted order”

© André de Carvalho - ICMC/USP 33

i Asymptotic analysis

= Goal:
= Simplify analysis of running time by ignoring "details” that
may be affected by specific implementation and hardware
= Like “rounding” for numbers: 1,000,001 ~ 1,000,000
= “Rounding” for functions: 3/2 ~ 2

= Captures the essence:
= How the running time of an algorithm increases with the
size of the input in the /limit
= Algorithms asymptotically more efficient are the best for all
but small inputs

= Written using asymptotic notation

© André de Carvalho - ICMC/USP 34

i Asymptotic notation

=« For®e, 00, 0 0
= Defined for functions over the natural numbers.
= E.g.: {n) = 0(A).
= Describes how A7) grows in comparison to 77
= Define a set of functions
= In practice used to compare two function sizes

= Describe different rate-of-growth relations
between a defining function and a defined set of
functions

© André de Carvalho - ICMC/USP 35

i Asymptotic notation (1)

For function g(n), we define ®(g(n)),
big-Theta of n, as the set:

B(g(n)) = {f(n) : 3 positive constants
¢y, 3, and n,_such that Vi 2 n,, we)
have 0 < ¢,g(n) < fin) <c,g(n) } NI

Mo mput Size

Running Time

- z
Yy

Intuitively: Set of all functions that

have the same rate of growth as g(n).

g(n) is an asymptotically tight bound for f(n)

© André de Carvalho - ICMC/USP 36

Timos Sellis

CHOROCHRONOS Midter Review

* Asymptotic notation (1)

For function g(n), we define ®(g(n)),
big-Theta of n, as the set:

B(g(n)) = {f(n) : 3 positive constants
¢y, ¢, and n, such that Va2 n), we
have 0 < c,g(n) < fin) < c,g(n) }

Running Time

Mo Input Size

Technically, f(n) € ®(g(n))
Old use, f(n)=0O(g(n))

Both can be used in this course

f(n) and g(n) are nonnegative, for large n

© André de Carvalho - ICMC/USP 37

i Example

O(g(n)) = {f(n) : 3 positive constants c,, ¢,, and n,,
such that Vn > n, 0 < ¢,g(n) £ fin) < c,g(n)}

= 10%2-3n = @(/72)
= What constants for 7, ¢, and ¢ will work?

= Make ¢ a little smaller than the leading
coefficient, and ¢, a little bigger.

= 70 compare orders of growth, look at the
leading term

= Exercise: Prove that 2/2-3n= O(r?)

© André de Carvalho - ICMC/USP 38

* Example

B(g(n)) = {f(n) : I positive constants c¢,, c,, and n,,
such that Vn 2 nj, 0 < c,g(n) < f(n) < c,g(n)}

wIs3P e O()?
= How about 227e ©(2") ?

© André de Carvalho - ICMC/USP 39

i Asymptotic Notation

= Simple Rule: Drop lower order terms and
constant factors
= 50 nlog nis ...
= 7n-3is...
=« 8 log n+ 57+ nis ...

© André de Carvalho - ICMC/USP 40

* Asymptotic Notation

= Simple Rule: Drop lower order terms and
constant factors
= 50 nlog nis O(nlog n)
= 7n-3is O(n)
= 87 log n+ 5% + nis O(r# log n)

© André de Carvalho - ICMC/USP 41

i Asymptotic Notation (2)

For a function g(n), we define
O(g(n)), big-O of n, as the set:

O(g(n)) = {f(n) : I positive constants
c and n,_such that Vn 2 n,, we have
0< fin)<cg(n)}

Running Time

Intuitively: Set of all functions whose
rate of growth is the same as or lower

than that of g(n).

g(n) is an asymptotic upper bound for f(n)
Sfn) = O(g(n) = fln) = 0(g(n))
B(g(n) = O(g(n)

© André de Carvalho - ICMC/USP 42

CHOROCHRONOS Midter Review

* Example

O(g(n)) = {f(n) : 3 positive constants c and n,,
such that Vn > nj, we have 0 < f(n) <cg(n) }

= Any linear function an + bis in O(r?) ?
= Why?

= Show that 3/2=0(r"*) (3P O(r)) for
appropriate values of cand n,

© André de Carvalho - ICMC/USP 43

i Asymptotic Notation (3)

For function g(n), we define o(g(n)),
big-Omega of n, as the set:

Q(g(n)) = {f(n) : 3 positive constants
c and n,_such that Vn 2 n,, we have
0 < cg(n) < fln)}

Running Time

M Input Size

Intuitively: Set of all functions

whose rate of growth is the same

as or higher than that of g(n)

g(n) is an asymptotic lower bound for f{n)
Sfn) = Og(n) = fin) = Q(g(n))
O(g(n) =Q(g(m)

© André de Carvalho - ICMC/USP 44

* Relations Between ©, O, O

= f(n) =0®(g(n))if and only if f(n) = O(g(n)) and
ftn) =Q(g(n))
O(f(n)) s often misused instead of ©(#(n))

F(m)
——c-gln)

Running Time

Running Time

Running Time

1, .
A Input Size ® Input Size

fn) = O(g(n) fin) = Olg(n) Sn) =Q(2(n)

© André de Carvalho - ICMC/USP 45

i Asymptotic Notation (5)

= "Little-Oh" notation 7(n)=o(g(n))
non-tight analogue of Big-Oh
o(g(n)) = {f(n): Y ¢>0,3 ny> 0 such
that V n > n,, we have 0 < fin) <cg(n) }
= Used for comparisons of running times

= If f{n)=0(g(n)), it is said that g(n) dominates
f(n)

0(g(n)) = {f(n) : I positive constants c and n,, such
that Vrn 2 ny, we have 0 < f(n) <cg(n) }

Big-Oh

© André de Carvalho - ICMC/USP 46

* Asymptotic Notation (6)

= "Little-omega" notation /n)=w(g(n))
non-tight analogue of Big-Omega

o(g(n)) = {f(n): V ¢>0,3 ny> 0 such
that V n > ny, we have 0 < fin) <cg(n) }

Big-Omega | Q(g(n)) = {f(n) : 3 positive constants ¢ and r, such
that Vn > nj, we have 0 < cg(n) < f(n)}

© André de Carvalho - ICMC/USP 47

i Asymptotic properties

= Analogy with real numbers

= f(n) =0(g(n) = asb
= f(n) =Q(g(n)) = a>b
= f(n) =0(g(n)) = a=»b
« f(n) =0(g(n) = a<b
= f(n) =w(g(n) = a>b

= Abuse of notation: A’n) = O(g(n)) actually
means f(n) € O(g(n))

© André de Carvalho - ICMC/USP 48

CHOROCHRONOS Midter Review

* Limits
= lim [An) [gm)] =0 = An) e o{g(n))
lim [Rn) | g(m)] < o = fn) e Agn))
= 0 <lm[An)/ gn)] <o = An) e 6(gn)
= 0<ImIAN [L) = An) e AL
lim [Rn) | g(m)] = o = An) e o(g(n))
/ﬁw[’(n) / g(n)] undefined = Not possible to say

© André de Carvalho - ICMC/USP 49

i Properties

= Symmetry
fn) =6(g(n) iff L) =6(An))

= Transitivity
fn) =6(g(n) & g(n) =(An) = Kn) =06(An)
) = ALm) & gn) = AMn)) = Kn) = AAn))
fn) =Q(g(n) & g(n) =Q(An) = An) =Q(An))
n) = Agn) &gn) = o(An)) = An) =o(An))
fn) = agn) & gn) = {KN)) = K1) = (A1)

© André de Carvalho - ICMC/USP 50

* Properties

= Reflexivity
fn) =6(An)
fn) = AAn)
fn) =Q(An))

= Complementarity
n) = Agn) iff gn) =(An))
fn) = Agn) iff gn) = (An))

© André de Carvalho - ICMC/USP 51

c S

Brief
Mathematical
review

© André de Carvalho - ICMC/USP 52

* Monotonicity

= n)is
= monotonically increasing if m< n= fm) <
fn)
= monotonically decreasing if m> n= m) >
fn)
= strictly increasing if m< n = f{m) < fn)
= strictly decreasing if m> n= f{m) > fn)

© André de Carvalho - ICMC/USP 53

Timos Sellis

i Exponentials and Logarithms

= Properties of = Properties of

logarithms: exponentials:
logp(xy) = logyx + log,y a(b+c) = gba ¢
logy, (x/y) = logyX - l0gpy abc = (ab)
logyxa = alogyx ab /ac = a0
logya = log,a/log,b b = alog;b
be = g c*log,b
© André de Carvalho - ICMC/USP 54

CHOROCHRONOS Midter Review

* Bases of logarithms and exponentials

= The base of a logarithm can be changed
multiplying the logarithm by a constant
= E.g. log;;, 7 * log,10 = log, n
= Base of logarithm is not important in

asymptotic notation

= Exponentials with different bases differ by
a exponential (not a constant)
« E.g. 27 = (2/3)™3"

© André de Carvalho - ICMC/USP 55

i Summations

= Constant series
= Given integers @aand n, a< n

il:n—a+l

= Arithmetic progression (linear series)
= Given an integer n

Zi:l+2+3+...+n:M

i=0

© André de Carvalho - ICMC/USP 56

* Summations

Arithmetic
Progression (n even)

3 3
2 2
1 1
O 2 w2 Y 23 n
© André de Carvalho - ICMC/USP 57

i Summations

= Quadratic Series
= Given an integer n> 0
z 22402y 2 _n(n+D)(2n+1)
;z R
= Cubic Series
= Given an integer n> 0

iﬁ =P+2°+ 40’ _rrl)’
= 4
i=1

© André de Carvalho - ICMC/USP 58

* Summations

= Geometric progression (series)
= Given an integer nand a real number 0< a = 1

n a!!+l_1
Za’ =l+a+a’*+-+a" =
= a-1

= Geometric progressions exhibit exponential
growth behaviour

= For|agl <1
s
St
i=0 l-a

© André de Carvalho - ICMC/USP 59

Timos Sellis

i Summations

= Linear-Geometric Series
= Given an integer n>0and areal c= 1

n n+l n+2
i —(n+1)c" +nc" +c
Zlc’zc+2€z+~-~+nc"— (n+1)

- (c—1)?
= Harmonic Series
= Given a " harmonic number, 7€I* Popular with architects,

11 1 B mainly in the Baroque
H =l4+—4—+-t— Szl:m(”)_'_l period, to define
n ;
23 =

Harmonic relations
between interior and
exterior architecture

of churches and palaces

© André de Carvalho - ICMC/USP 60

10

CHOROCHRONOS Midter Review

* Summations

= The running time of insertion sort is
determined by a nested loop

for j«2 to length(A)
key<A[]]
ieg-1
while i>0 and A[i]>key
Ali+1]<«A[i]
i¢-i-1
Ali+l]«key

= Nested loops correspond to summations
2L G-D=00)

© André de Carvalho - ICMC/USP 61

i Proof by Induction

= Correctness estimation and time complexity
estimation can be proved by mathematical
induction

= Important mathematical tool for proofs
= Allow simple proofs

© André de Carvalho - ICMC/USP 62

* Proof by Induction (1)

= We want to show that property Pis true for all
integers n>

= Basis: prove that Pis true for n,

= Inductive step: prove that if Pis true for all &
such that n, < k< n— 1 then Pis also true for n

= Example S(n):ii:@ forn>1

i=0

= Basis S(l):zl:i:L;l)

© André de Carvalho - ICMC/USP 63

i Proof by Induction (2)

= Inductive Step

forl<k<n-1

S(k)=ii

i=0

Ck(k+1)
2

n=1

S(n):z”:i:Zi+n:S(n—l)+n:

i=0 i=0
2
:(n—l)(n 1+1)+n:(n n+2n)
2 2

7n(n+1)
T2

© André de Carvalho - ICMC/USP 64

* Next Week

= Divide-and-conquer
= Merge sort

= Writing recurrences to describe the running
time of divide-and-conquer algorithms

© André de Carvalho - ICMC/USP 65

Timos Sellis

i Acknowledgement

= A large part of this material were adapted from

= Simonas Saltenis, Algorithms and Data Structures,
Aalborg University, Denmark

= Mary Wootters, Design and Analysis of Algorithms,
Stanford University, USA

= George Bebis, Analysis of Algorithms
CS 477/677, University of Nevada, Reno

= David A. Plaisted, Information Comp 550-001,
University of North Carolina at Chapel Hill

© André de Carvalho - ICMC/USP 66

11

CHOROCHRONOS Midter Review

* Questions

© André de Carvalho - ICMC/USP

67

Timos Sellis

12

