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2. Light Propagation in Fibres and Related Optical Effects

2.1  The Wave nature of light. 
2.2  Rays and Modes representation. 
2.3  Mode Theory for fibres. 
2.4  The Cut-off wavelength and V-number. 
2.5  Singlemode and multimode fibre propagation.  
2.6  Mode Field Diameter (MFD) 
2.7  Phase velocity and group velocity.  
2.8  Absorption and Scattering losses 
2.9  Dispersion: Group delay and Material dispersion.  
2.10 Chromatic Dispersion (CD).  
2.11 Polarization effects and Birefringence. 
2.12 Polarization Dependence Loss (PDL)  
2.13 Polarization Mode Dispersion (PMD).  
2.14 Non-linear Optical Effects 

◗ Stimulated Raman Scattering 
◗ Stimulated Brillouin Scattering 
◗ Four-Wave Mixing 
◗ Self-Phase and Cross-Phase Modulation
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2. Light Propagation in Fibres and Related Optical Effects

2.1 Wave Nature of the Light

❧ Waves 
◗ Electromagnetic radiation consisting of propagating electric and 

magnetic fields (interference & diffraction) 

❧ Photons 
◗ Quanta of energy (photoelectric effect) 

The two views are related: the energy in a photon is proportional to the 
frequency of the wave.

DUAL NATURE
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2. Light Propagation in Fibres and Related Optical Effects

2.1 Wave Nature of the Light

Waves
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2. Light Propagation in Fibres and Related Optical Effects

2.1 Wave Nature of the Light

A Single Photon 
(“short” packet wave)

  Photon 
  
❧ Quanta of Energy: Photon  
 (photoelectric effect) 

E hν=

E → Energy of 1 photon in Joules (J) 
h → Planck’s constant: 6.626×10-34 J-s 
ν → frequency in Hz
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2. Light Propagation in Fibres and Related Optical Effects

2.1 Wave Nature of the Light

c → Speed of light = 2.9979 ×108 m/s;         λ → Wavelength in meters;         ν → Frequency in Hz 
n → Refractive index (vaccum=1.0000; standard air= 1.0003; silica fibre: 1.44 to 1.48)

c nλν=
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2. Light Propagation in Fibres and Related Optical Effects

2.1 Wave Nature of the Light
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2. Light Propagation in Fibres and Related Optical Effects

2.2 Rays and Modes representation.

About Reflection (Fresnel Equations): E ⊥ Plane-of-Incidence
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2. Light Propagation in Fibres and Related Optical Effects

2.2 Rays and Modes representation.

About Reflection (Fresnel Equations): E || Plane-of-Incidence
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2. Light Propagation in Fibres and Related Optical Effects

2.2 Rays and Modes representation.

Total Internal Reflection (case: ni > nt):θi ≥ θc 
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2. Light Propagation in Fibres and Related Optical Effects

2.2 Rays and Modes representation.

Total Internal Reflection (case: ni > nt):θi ≥ θc 
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2. Light Propagation in Fibres and Related Optical Effects

2.2 Rays and Modes representation.

About Reflection (case: ni > nt): Phase-shifts
tan t

p
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n
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Brewster Angle:

The component of electric field normal to plane-
of-incidence undergoes a phase shift of π 
radians upon reflection when the incident 
medium has a lower index than the transmitting 
medium.



© A.Lobo (2004) 13

2. Light Propagation in Fibres and Related Optical Effects

2.2 Rays and Modes representation.

1
1 2

2sin tan 1     ;  is an integer
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2. Light Propagation in Fibres and Related Optical Effects

2.2 Rays and Modes representation.

Formation of modes



© A.Lobo (2004) 15

2. Light Propagation in Fibres and Related Optical Effects

2.2 Rays and Modes representation.

At angles for which the condition of self-consistently (i.e., as a wave reflects twice it 
duplicates itself) is satisfied, the two waves interfere and create a pattern that does not 
change with z direction.

z
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2. Light Propagation in Fibres and Related Optical Effects

2.2 Rays and Modes representation.
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2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.
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2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.

Maxwell´s Equations
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2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.

Maxwell´s Equations (2)
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2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.
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2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.

2 2 2

2 2 2
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Waves in photonics are often monochromatic, with a frequency that stays the same 
across the material boundaries, that is: ( , ) ( ) j tE r t E r e ω=
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2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.

Coordinate System
Notação
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2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.
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does not change though either propagation or 
reflection at the cylindrical surface



© A.Lobo (2004) 24

Since the equations for Er  and Eθ are coupled, we first solve for Ez (Hz is a solution of the same 
Helmholtz equation and its solutions have the same form ). We find all other field components 
form Ez and Hz using Mawell’s equations. 

We look for solution of the form:

2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.

( , , ) ( ) ( ) ( )zE r z R r Z zφ φ= ⋅Φ ⋅

2 2 2
2 2 2

2 2 2 ( ) 0R R Zr r r knr
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2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.

We can simplify these solutions noting that: 

• Often we have only forward going waves, thus a =0. 
• The Neumann function Nν(κr) goes to minus infinity at r =0, so it is unphysical (h =0). 
Therefore Jν(κr) is the proper solution in the core.



© A.Lobo (2004) 26

2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.
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• Due to predominant propagation of the field along the z axis an oscillatory characteristic is 
assumed for the z dependence
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the φ dependence of the eigenmodes
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2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.
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2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.

After some maths….  
We get this “small” CHARACTERISTIC EQUATION for an optical fibre
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The characteristic equation is used with:

to find values for κ, γ, β and neff
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2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.

About the Effective Index (neff)

A plane wave propagates with a phase term ejnkz, where k=2π/λo  is the free-space wave-vector. 

We can define an effective index for a guided wave that has a phase factor  ejβz with:

2 eff

o

nπ
β

λ
≡

Then;

2 12 2

o o

n nπ π
β

λ λ
< < 2 1effn n n< <

The effective index is an “average” index seen by the guided mode.
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2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.

Meridional Modes (ν = 0)
For modes that correspond to bouncing 
meridional rays, there is no φ dependence. 
The characteristic equation simplifies 
greatly. Modes are of two types – TE0µ 
(Ez=0) and TM0µ (Hz=0) with µ=1,2, …. 
The values κ, γ can be found graphically

Curves of the characteristic equation of the 
TE0µ and TM0µ modes
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2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.

Skew Modes (ν ≠ 0)

Modes have both Ez≠0 and Hz≠0 and thus are 
called “hybrid” modes. The hybrid modes are 
labeled EHνµ and HEνµ depending on whether Ez 
or Hz is dominant. 
The values κ, γ can be found graphically

Curves of the characteristic equation of the 
HE1µ modes
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2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.

Field Distributions in Optical Fibers (1)
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This Bessel function (J1)  has a zero at the origin and one maximum in the core
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2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.

Field Distributions in Optical Fibers (2)

1 21 1 21
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HE21 Mode

This Bessel function (J1)  has a zero at the origin and one maximum in the core
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2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.

Linearly Polarized (LP) Modes

When the refractive index of the core n1 ≈ n2 , the characteristic equation (CE) can be 
simplified. This is called the “weakly guiding approximation”. The CE can be written 
in the unified form as:

1 1

( ) ( )
( ) ( )

m m

m m

J a K a
J a K a

κ γ

κ κ γ γ− −

=

1  for TM and TE modes
1  for EH modes       
1  for HE modes       

m ν

ν

→#
$

= + →%
$ − →'

LP modes can be constructed from sums of EH and HE modes that have the same propagation constant.
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2. Light Propagation in Fibres and Related Optical Effects

2.3 Mode Theory for fibres.

Linearly Polarized (LP) Modes
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2. Light Propagation in Fibres and Related Optical Effects

2.4 The Cut-off wavelength and V-number.

( ) ( )2 22V a aκ γ= +

2 2 2
1 2 1 2o oV k a n n k an= − = Δ

2 2 2
1

2 2 2
2

o

o

u a a k n
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This is a dimensionless number that determines how many modes a fibre  can support

2 22
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( / )ok nw
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Normalized Propagation Constant*

2 2
1 2

2
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a
n n

V
π

λ = −

Cut-off Wavelength

* D. Gloge, “Weakly guiding fibers”, Applied Optics 10, 2252-2258 (1971)
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2. Light Propagation in Fibres and Related Optical Effects

2.4 The Cut-off wavelength and V-number.

min

1

2.405

3.7cutoff

V V

anλ λ

< =

> = Δ

Singlemode Condition

( )
( ) 10log

( )
straight

loop

P
R

P
λ

λ
λ

" #
= $ %$ %

& '

See recommendation ITU-T G.650
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2. Light Propagation in Fibres and Related Optical Effects

2.5 Singlemode and multimode fibre propagation. 
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2. Light Propagation in Fibres and Related Optical Effects

2.5 Singlemode and multimode fibre propagation. 

2

2
VM =

2 2
1 2NA n n= − 2 2 2 2

1 2sin n nπ θ πθ πΩ = ≈ = −

Numerical Aperture Solid Angle

Total number of Modes in the fibre 
(Step-index Fibre)
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2. Light Propagation in Fibres and Related Optical Effects

2.5 Singlemode and multimode fibre propagation. 

In the weakly guiding approximation, the big steps in this figure become perfectly vertival 
(eg. TE01, TM01 and HE21 have the same V at cutoff. Groups of modes with the same cutoff 
also have the same propagation constant.

Singlemode 
Condition
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2. Light Propagation in Fibres and Related Optical Effects

2.5 Singlemode and multimode fibre propagation. 
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2. Light Propagation in Fibres and Related Optical Effects

2.5 Singlemode and multimode fibre propagation. 

HE11  mode 

Solid lines – E field 
Dashed lines – H field

With permission of C.D. Cantrell and D.M. Hollenbeck, “Fiberoptic Mode Functions: A Tutorial”, Erick 
Jonsson School of Eng. and Computer Science, Univ. Texas at Dallas, Course EE6314.
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2. Light Propagation in Fibres and Related Optical Effects

2.5 Singlemode and multimode fibre propagation. 

Solid lines – E field 
Dashed lines – H field

HE21  mode 

With permission of C.D. Cantrell and D.M. Hollenbeck, “Fiberoptic Mode Functions: A Tutorial”, Erick 
Jonsson School of Eng. and Computer Science, Univ. Texas at Dallas, Course EE6314.
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2. Light Propagation in Fibres and Related Optical Effects

2.5 Singlemode and multimode fibre propagation. 

Solid lines – E field 
Dashed lines – H field

TM01  mode TE01  mode 

With permission of C.D. Cantrell and D.M. Hollenbeck, “Fiberoptic Mode Functions: A Tutorial”, Erick 
Jonsson School of Eng. and Computer Science, Univ. Texas at Dallas, Course EE6314.
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2. Light Propagation in Fibres and Related Optical Effects

2.5 Singlemode and multimode fibre propagation. 
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2. Light Propagation in Fibres and Related Optical Effects

2.5 Singlemode and multimode fibre propagation. 

Optical Power in the Mode LPml
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2. Light Propagation in Fibres and Related Optical Effects

2.6 Mode Field Diameter (MFD).

Gaussian Beam (1)
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2. Light Propagation in Fibres and Related Optical Effects

2.6 Mode Field Diameter (MFD).

Gaussian Beam (2)
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Rayleigh Range:
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z w z

w
λ

π
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 H. Kolgelnik and T. Li, “Laser beams and resonators”, Applied Optics 5, 1550-1566 (1966)
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2. Light Propagation in Fibres and Related Optical Effects

2.6 Mode Field Diameter (MFD).

Petermann I Integral (Near-Field):

 M. Artiglia et al, “Mode Field Diameter Measurements in Single-Mode Optical Fibers”, Journal of Lightwave Technology, Vol. 7, No. 8. 
(1989)
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Petermann II Integral* (Far-Field):
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∫*TIA/EIA FOTP-191, ITU-T G.650E
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2. Light Propagation in Fibres and Related Optical Effects

2.6 Mode Field Diameter (MFD).

Near-Field Profiles

100X

40X

J. L. Guttman, “Mode-Field Diameter and “Spot Size” Measurements of Lensed and Tapered Specialty Fibers”, NIST Symposium on 
Optical Fiber Measurements, September 24-26, 2002
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2. Light Propagation in Fibres and Related Optical Effects

2.6 Mode Field Diameter (MFD).

Far-Field Profiles

J. L. Guttman, “Mode-Field Diameter and “Spot Size” Measurements of Lensed and Tapered Specialty Fibers”, NIST Symposium on 
Optical Fiber Measurements, September 24-26, 2002

a.) Fiber #1 b.) Fiber #2
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2. Light Propagation in Fibres and Related Optical Effects

2.6 Mode Field Diameter (MFD).

Petermann II Integral* (Far-Field):

1/ 2

3

2 ( )sin cos

( )sin cos
II

I d
MFD

I d

θ

θ
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θ

θ θ θ θ
λ

π
θ θ θ θ

−
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% &
⋅( )

( )= ⋅
( )
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∫

∫(*TIA/EIA FOTP-191, ITU-T G.650E)

• Errors [1,2] 
• Obliquity Factor and Aperture Field 

•Elliptical Fiber [3] 
• Radial Symmetry for Hankel Transform   

• Field Within Fiber vs Field at Focus 

[1] M. Young, “Mode-field Diameter of single-mode optical fiber by far-field scanning”, Applied Optics, Vol. 37, No. 24, August 1998  
[2] R. C. Wittmann and M. Young, “Are the Formulas for Mode-Field Diameter Correct?”, NIST SOFM 1998 
[3] M. Artiglia et al, “Mode Field Diameter Measurements in Single-Mode Optical Fibers”, Journal of Lightwave Technology, Vol. 7, No. 8. 
August 1989
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2. Light Propagation in Fibres and Related Optical Effects

2.6 Mode Field Diameter (MFD).

1.5 6

1.619 2.8790.65w a
V V

! "= + +# $% &
D. Marcuse, Bell Systems Tech. Journal 56, 703-718 (1977)

Marcuse Model:



© A.Lobo (2004) 54

2. Light Propagation in Fibres and Related Optical Effects

2.6 Mode Field Diameter (MFD).

1.5 6

1.619 2.8790.65w a
V V

! "= + +# $% &

For the best fit between a Gaussian function and the Bessel function in the core we can use 
the Marcuse Model:

Satisfying this condition gives about 96% overlap between the Gaussian and the Bessel 
function mode profiles. At the cut-off condition (V ≈ 2.405) we obtain: 

1.1w a≈
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2. Light Propagation in Fibres and Related Optical Effects

2.6 Mode Field Diameter (MFD).

1.5 6

1.237 1.4290.761w a
V V

! "= + +# $% &

Other MFD models

1.5 6

1.289 1.0410.759w a
V V

! "= + +# $% &

1.5 6

1.66 0.9870.616w a
V V

! "= + +# $% &

( )1.5

1
   for V>1

ln
w a

V
=Snyder and Sammut Model

Myslinski Model

Desurvire Model

Whitley Model

Several models have been developed to obtain better agreement with experimentally 
observed data (particularly gain factors → Erbium doped fibres)
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2. Light Propagation in Fibres and Related Optical Effects

2.7 Absorption and Scattering losses.

3
8 2

4

8
3R T B Fn p k Tπ

γ β
λ

=

SCATTERING
NON-LINEAR

LINEAR • Rayleigh (diameter physical anomalies < λ/10) 
• Mie  (diameter physical anomalies > λ/10)

• Brillouin (acoustic phonon → SBS)  

• Raman (optical phonon → SRS)

n – refractive index of the material, βT – isothermal compressibility, p – photoelastic coefficient, 
TF – Solidification temperature, kB – Boltzman constant, L - the fibre length.

Rayleigh Scattering Coefficient

RL
RayleighF e γ−=

Transmission Loss factor
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2. Light Propagation in Fibres and Related Optical Effects

2.7 Absorption and Scattering losses.

ABSORPTION

INTRINSIC

INDUCED  Curvature (micro and macrobending)

EXTRINSIC

Interaction of free electrons and the λ within 
the fibre material.

Impurities atoms in glass material (metal ions)

4.582
3 [ ][ / ] 1.108 10

UV
m

UV dB km Ce e
λ

λ µλα −= = ×

48.48
11 [ ][ / ] 4 10 m

IR dB km eλ µα −= ×

Urbach’s rule (empirical relationship) Macrobending (critical radius)
2
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2 2
1 2

3
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nR
n n
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=

−

3

2 2
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20 0.9962.748SMF
cutoff
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2. Light Propagation in Fibres and Related Optical Effects

2.7 Absorption and Scattering losses.
ATTENUATION

z
dz

P P+dP

1 (0)
( ) (0) ln    [1/km or 1/m]

( )
LdP PL P L P e

dz L P L
αα α− # $

= − ⇒ = ⇒ = & '
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(0) (0)
10log 10log 10 log 4.343
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L LP Pe e L e

P L P L
α α α α

" #
" #= ⇔ = = =% & ' (
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10 (0)
[ / ] log
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α

α α

" #
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=

scattering absorption bendingα α α α= + +
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2. Light Propagation in Fibres and Related Optical Effects

2.7 Absorption and Scattering losses.
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2. Light Propagation in Fibres and Related Optical Effects

2.7 Absorption and Scattering losses.

Theoretically expected minimum attenuation

Governed by:  
1. Rayleigh scattering at short λ 
2. Multi-phonon absorption at long λ
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2. Light Propagation in Fibres and Related Optical Effects

2.7 Absorption and Scattering losses.

Fibre λ (nm) α (dB/km) 
MMF-GI 850 2.5

SMF 1300 0.5
SMF 1550 ≤0.25

F-POF (Fluorinated) 800 to 1340 60

ZBLAN 1550 0.02
SMFF  

(Fluoride glass)
2300 0.005 

Typical minimum attenuation values for several fibres
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2. Light Propagation in Fibres and Related Optical Effects

2.8 Phase velocity and group velocity. 

phv
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=

1
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2. Light Propagation in Fibres and Related Optical Effects

2.9 Dispersion: Group delay and Material dispersion. 

1
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L d L dL L
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= = = ⋅ =
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Dispersion Parameter

Origin of the Dispersion:  Frequency dependence of the mode index n(ω)
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2. Light Propagation in Fibres and Related Optical Effects

2.9 Dispersion: Group delay and Material dispersion. 

2
1

22 2

2d c d nD
d c d
β π λ

β
λ λ λ

= = − − ⋅!Dispersion Parameter:

Group Velocity Dispersion (GVD): 1
2 2

1 1 g

g g

dvd d
d d v v d
β

β
ω ω ω

# $
= = = − ⋅' (' (

) *(Contains the information about the variation of the 
group velocity with wavelength)
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δ δω β δω δλ δλ
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= = ⋅ = = ⋅( ) ( )( ) ( )

* + * +

If a pulse with spectral width (Δδ) input to a fibre with length L, the output pulse 
broadening is:

Limitation on the bit rate:
2

1
  or  1t B t BL BLD

B
δ δ β δω δλ< = ⋅ ⋅ <
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2. Light Propagation in Fibres and Related Optical Effects

2.9 Dispersion: Group delay and Material dispersion. 

2
1
2

1 g
mat

dn d nD
c d c d

λ

λ λ
= ⋅ = − ⋅

Material Dispersion

0gdn
dλ

=

Zero-dispersion wavelength = 1276 nm

Negative Dmat
Positive Dmat
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2. Light Propagation in Fibres and Related Optical Effects

2.10 Chromatic Dispersion (CD)

2 2
2

2 2
1 2

( / )ok n
b

n n
β −

=
−

Normalized propagation constant*:
2

1 2

( / )ok n
b

n n
β −

≅
−

for small Δ 

2 (1 )o o effk n b k nβ = + Δ =

* See D. Gloge, “Weakly guiding fibers”, Applied Optics 10, 2252-2258 (1971) 

D. Gloge, “Dispersion in weakly guiding fibers”, Applied Optics 10, 2442-2445 (1971).

2
1
2

1 g
mat

dn d nD
c d c d

λ

λ λ
= ⋅ = − ⋅

2
2

2

( )
wg

n d VbD V
c dVλ

Δ
= −

mat wgD D D= +



© A.Lobo (2004) 67

2. Light Propagation in Fibres and Related Optical Effects

2.10 Chromatic Dispersion (CD)

2
2

2

( )
wg

n d VbD V
c dVλ

Δ
= −

Waveguide Dispersion
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2. Light Propagation in Fibres and Related Optical Effects

2.10 Chromatic Dispersion (CD)

Anomalous dispersionNormal dispersion

λD ≈ 1320 nm
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2. Light Propagation in Fibres and Related Optical Effects

2.10 Chromatic Dispersion (CD)

Anomalous Dispersion 
(D > 0)

Normal Dispersion 
(D < 0)
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2. Light Propagation in Fibres and Related Optical Effects

2.10 Chromatic Dispersion (CD)

P.K. Bachman et.al., “Dispersion-flattened single-mode fibres prepared with PCVD: Performance, limitations, design and optimization”, J. 
Lightwave Technology 4, 858-863 (1986)
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0( ) ( )oD Sλ λ λ= −

4
0( ) 1

4
oSD

λ λ
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λ

" #$ %= −' () *
+ ,' (- .

2. Light Propagation in Fibres and Related Optical Effects

2.10 Chromatic Dispersion (CD)

Typical values for S0 are 0.092 ps/(km·nm2) 
for SMF, and between 0.06 and 0.08 ps/
(km·nm2) for DSF

1( ) gdD
L d

τ
λ

λ
= ⋅

Slope (ps/km·nm2)

(See recommendation ITU-T G.652)



© A.Lobo (2004) 72

2. Light Propagation in Fibres and Related Optical Effects

2.10 Chromatic Dispersion (CD)
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2. Light Propagation in Fibres and Related Optical Effects

2.11 Polarization effects and Birefringence.

0 cos( )x x x xE e E t zω β φ= − +
! !

0 cos( )y y y yE e E t zω β φ= − +
! !

TOTAL x yE E E= +
! ! !

nkn
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π
==β
2

x

y

POLARIZATION
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2. Light Propagation in Fibres and Related Optical Effects

2.11 Polarization effects and Birefringence.

-4 -2 2 4
h,(V/m)

-3

-2

-1

1

2

3

v,(V/m)

0 0cos( ) cos( )TOTAL x x y yE e E t z e E t zω β ω β π= − + − +
! ! !

LINEAR  POLARIZATION
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2. Light Propagation in Fibres and Related Optical Effects

2.11 Polarization effects and Birefringence.

time
h

v

time
h

v
-1 -0.5 0.5 1

h,(V/m)

-1

-0.5

0.5

1

v,(V/m)
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CIRCULAR  POLARIZATION
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2. Light Propagation in Fibres and Related Optical Effects

2.11 Polarization effects and Birefringence.

time
h

v

time
h

v
-2 -1 1 2

h,(V/m)

-4

-2

2

4

v,(V/m)ELLIPTICAL  POLARIZATION

0 1 0 2sin( ) cos( )TOTAL x x y yE e E t z e E t zω β φ ω β φ= − + + − +
! ! !
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2. Light Propagation in Fibres and Related Optical Effects

2.11 Polarization effects and Birefringence.

Birefringence effect of polarized light in the fibre

Birefringence

Beat Length

( )

or equivalently,
2

( )

x y

x y

B n n

n n
π

β
λ

= −

Δ = − 2
BL B

π λ

β
= =
Δ

π/2 2π0 π/4 3π/4 π 5π/4 3π/2 7π/4
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2. Light Propagation in Fibres and Related Optical Effects

2.11 Polarization effects and Birefringence.

Jones Calculus* - applicable only to polarized waves 
(*) E. Hecht, “Optics”, 4Ed. Addison Wesley, Chapter 8, 2002.
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Dividing both terms by:
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2. Light Propagation in Fibres and Related Optical Effects

2.11 Polarization effects and Birefringence.

Jones Matrix
from E. Hecht, “Optics”, 4Ed. Addison Wesley, Chapter 8, 2002.
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2. Light Propagation in Fibres and Related Optical Effects

2.11 Polarization effects and Birefringence.

[from D.Derickson, “Fiber Optic Test and Measurement” Prentice Hall, Ch. 6 (1998)]

Measurement of the Jones Matrix of an optical element
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2. Light Propagation in Fibres and Related Optical Effects

2.11 Polarization effects and Birefringence.

Stokes Parameters – applicable to both totally or partially polarized light. 
The elements describe the optical power in particular 
reference polarization states.

0
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2 45º 45º
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total
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RC LC
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+ −
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2. Light Propagation in Fibres and Related Optical Effects

2.11 Polarization effects and Birefringence.

Normalized Stokes Parameters
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1

20
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1 1
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2. Light Propagation in Fibres and Related Optical Effects

2.11 Polarization effects and Birefringence.

Poincaré Sphere – graphical tool in real, 3D space that allows convenient description of polarized 
signals and of polarization transformations caused by propagation through 
devices.
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2. Light Propagation in Fibres and Related Optical Effects

2.11 Polarization effects and Birefringence.

Measurement of retardance θ of a near λ/4-wave retarder 
[from D.Derickson, “Fiber Optic Test and Measurement” Prentice Hall, Ch. 6 (1998)] 
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2. Light Propagation in Fibres and Related Optical Effects

2.11 Polarization effects and Birefringence.

Twisting of a singlemode fibre [from Agilent HP8509C Application Note]
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2. Light Propagation in Fibres and Related Optical Effects

2.11 Polarization effects and Birefringence.

Muller Matrix – applicable to any degree of polarization.

00 01 02 030 0
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30 31 32 333 3
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2. Light Propagation in Fibres and Related Optical Effects

2.11 Polarization effects and Birefringence.

Two polarization modes Ex , Ey  of a singlemode fibre

© R. Ulrich, TU Hamburg-Harburg
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2. Light Propagation in Fibres and Related Optical Effects

2.11 Polarization effects and Birefringence.
From K.T.V.Grattan & B.T. Meggitt, 
“Optical Fiber Sensor Technology”, 
Chapman & Hall (1995)
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2. Light Propagation in Fibres and Related Optical Effects

2.11 Polarization effects and Birefringence.
From K.T.V.Grattan & B.T. Meggitt, 
“Optical Fiber Sensor Technology”, 
Chapman & Hall (1995)
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2. Light Propagation in Fibres and Related Optical Effects

2.12 Polarization Dependence Loss (PDL) .

Device Under Test 
(DUT)

Constant Power 
100% Polarized

Time

Pmáx

Pmin

max

min

10 logdB
PPDL
P

! "
= # $

% &

PDL measures the peak-to-peak difference in transmission for light with 
various states of polarization.



© A.Lobo (2004) 91

2. Light Propagation in Fibres and Related Optical Effects

2.13 Polarization Mode Dispersion (PMD). 

PMD is a fundamental property of singlemode optical fibre and components in which signal 
energy at a given wavelength is resolved into two orthogonal polarization modes of slightly 
different propagation velocity. The resulting difference in propagation time between 
polarization modes is called the differential group delay (Δτ).

g
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v d

n d nL
c c d
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ω

ω

ω

Δ
Δ = =
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Δ Δ% &= + ⋅( )
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dL L
d

φ β
φ β τ

ω ω

Δ
= Δ → = = Δ

Δ

Also, Frequency-domain manifestation
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2. Light Propagation in Fibres and Related Optical Effects

2.13 Polarization Mode Dispersion (PMD). 

PMD is characterized by the PMD-vector, Ω(ω), in Stokes space, around which an output 
state of polarization (SOP), s , rotates when the carrier frequency is changed.

' dSS S
dω

= =Ω×

!
! !!

τΔ = Ω
!

And the differential group delay (DGD) is:
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2. Light Propagation in Fibres and Related Optical Effects

2.13 Polarization Mode Dispersion (PMD). 

CASE 1 -  Ideal fibre section (βx = βy) 
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2. Light Propagation in Fibres and Related Optical Effects

2.13 Polarization Mode Dispersion (PMD). 

CASE 2 -  linearly birefringent fibre section (βx ≠ βy) 
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2. Light Propagation in Fibres and Related Optical Effects

2.13 Polarization Mode Dispersion (PMD). 

CASE 3 -  Birefringence axes aligned: PM fibre
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2. Light Propagation in Fibres and Related Optical Effects

2.13 Polarization Mode Dispersion (PMD). 

CASE 4 - Random orientation of birefringence axes aligned: standard 
long-length fibre

[ ] [ ] [ ] [ ] [ ] [ ]2 2 1 1total n nJ R J R J R J= ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅ ⋅
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2. Light Propagation in Fibres and Related Optical Effects

2.13 Polarization Mode Dispersion (PMD). 

• Frequency domain  scenario: PMD vector and  principal states of polarization (PSP)

1,20   if   outout
out

dS
S PSP

dω
= =

!
!

• Time domain scenario: Pulse splitting
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2. Light Propagation in Fibres and Related Optical Effects

2.13 Polarization Mode Dispersion (PMD). 

• Frequency domain scenario : frequency dependence of PSP

0( ) ( ) ....ωω ω ωΩ =Ω +Ω Δ +
! ! !

0

d
dω

ω ω
ω

=

Ω
Ω =

!
!

1st order approximation is valid 
within “PSP-bandwidth”: 

1
PSPω

τ
Δ ≅

Δ
• Time domain scenario: multi-path pulse transmission

[See J.L. Santos, Ph.D. Thesis, Chap.7, 
Univ. Porto, (1992)] 
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2. Light Propagation in Fibres and Related Optical Effects

2.13 Polarization Mode Dispersion (PMD). 

2

2
2

2
3

2 e
τ

ατ

π α

Δ
−Δ

⋅

with  8τ α πΔ =

Probability of finding DGD at value Δτ 
is given by the Maxwellian density 
distribution
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2. Light Propagation in Fibres and Related Optical Effects

2.13 Polarization Mode Dispersion (PMD). 

Consequences of PMD
❧ DGD (Δτ) causes: 

◗ Pulse broadening 
◗ Reduction of eye openings / increase in BER 
◗ Additional power penalty 
◗ Increase of outage probability 

❧ Instantaneous Δτ 
◗ Is a random variable 
◗ It varies due to environment (temnperature, strain) 
◗ It can surpass its mean value by far

2
PMD Lτ τΔ = Δ ∝
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2. Light Propagation in Fibres and Related Optical Effects

2.14 Non-linear Optical Effects.

❧ Self-Phase Modulation (SPM) – pulses distiort as they propagate. 

❧ Cross-Phase Modulation (XPM) – pulses interfere with one another 

❧ Modulation Instability (MI) – CW beams break into pulses 

❧ Solitons – a nonlinear way of transmitting pulses 

❧ Four-Wave Mixing (FWM) 
❧ Optical Kerr Effect – electric field imposed induces linear birefringence 
❧ Stimulated Brillouin Scattering (SBS) – inelastic scattering from 

acoustic phonons 
❧ Stimulated Raman Scattering (SRS) – inelastic scattering from 

molecular resonances 
❧ Supercontinuum Generation (SG) – “white light” generation

Parametric 
Process 

(light induced modulation)

Non-Parametric 
Process

Observed effect
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2. Light Propagation in Fibres and Related Optical Effects

2.14 Non-linear Optical Effects.

Nonlinear optics is a result of anharmonic excitation of the medium. The induced 
polarization is given by:

( )0 1 2 3 ...P E EE EEEε χ χ χ= ⋅ + ⋅ + ⋅ +
! ! ! ! ! ! !

where χ1, χ2,  χ3 are 1st, 2nd, 3rd order susceptibilities. χ2 vanishes in centro-symmetric 
materials like glass, so the lowest-oder nonlinear term is χ3. 

One manifestation of this is the nonlinear refractive index: 

where n2K is the nonlinear Kerr coefficient and is directly related to χ3. In most glasses, n2 is 
positive, so the refractive index of the material increases at higher intensities. The value of 
n2K for SiO2 is ~3.2×10-20 m2W-1.

2
0 2Kn n n E= +
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2. Light Propagation in Fibres and Related Optical Effects

2.14 Non-linear Optical Effects.

❧ Nonlinear Coefficient (γ) – measure of the strength of the nonlinar response of 
a particular fibre at frequency ω0 with effective area Aeff and n2k known.

2 0K

eff

n
cA
ω

γ =

❧ Effective Length (Leff) – effective nonlinear length of a fibre with physical length 
L and loss given by α.

1 L

eff
eL

α

α

−−
=

❧ Nonlinear Length (LNL) – the fibre length required for nonlinear effects to 
become important, for a given peak pump power. Explicity, the length for development 
of a phase shift of unity. 0

1
NLL Pγ
=

❧ Dispersion Length (Ld) – length over which the pulse length τ0 is significantly 
dispersed in a fibre with β2.

2
0

2
dL

τ

β
=

DEFINITIONS
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2. Light Propagation in Fibres and Related Optical Effects

2.14 Non-linear Optical Effects.

λo

Rayleigh radiation (λo) Brillouin radiation (λo±0.08 nm)

Raman radiation (λo

±80 nm )

Scattering spectra of an optical fibre

Wavelength

Energy

Incident radiation (λo=1550 nm)

2 s
B

o

nVn l=Anti-Stokes Stokes

Electrostriction Raman shift ≈ -13 THz @ 1.55 µm 
Brillouin shift ≈ -11 GHz  @ 1.55 µm
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2. Light Propagation in Fibres and Related Optical Effects

2.14 Non-linear Optical Effects.

2.14.1 Stimulated Raman Scattering (SRS)

(Spontaneous) Raman Scattering: a very 
small amount of light in any molecular is 
inelastic scattered. A lower-frequency 
photon is produced, and the extra energy 
goes into exciting a molecular vibrationsl 
or rotational mode. 

Stimulated Raman Scattering (SRS): the 
lower-frequency radiation beats with the 
pump beam to provide a field beating at 
the Raman frequency. This drives the 
Raman oscillations directly, so that the 
shifted radiation experiences gain at the 
expense of the pump beam.

0
PzS

SRS S S S
dI g I I e I
dz

α α−= −

The growth of the Stokes wave along the 
fibre in both spontaneous and stimulated 
emission may be expressed in the form:

Raman gain
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2. Light Propagation in Fibres and Related Optical Effects

2.14 Non-linear Optical Effects.

2.14.1 Stimulated Raman Scattering (SRS)

16 effSRS
th

SRS eff

kA
P

g L
≅

17 W km  @ 1.55 
µm

SRS
th effP L⋅ ≈ ⋅

Relative polarization factor 
(1 ≤ k ≤ 2)
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2. Light Propagation in Fibres and Related Optical Effects

2.14 Non-linear Optical Effects.

2.14.2 Stimulated Brillouin Scattering (SBS)

SBS Characteristics: 
❧ Low power threshold 
❧ Backward propagating Stokes wave 
❧ Small Stokes shift (low phonon energy) 
❧ Acoustic phonon lifetime is long (10ns), 
so gain bandwidth is narrow. 
❧ Need narrow linewidth pump source for 
efficient excitation.

21 1 pump effSBS
th

B SBS eff

A
P

g L
ν

ν

Δ# $
≅ +& 'Δ( )

0.03 W km  @ 1.55 
µm

SBS
th effP L⋅ ≈ ⋅

Electrostriction 
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2. Light Propagation in Fibres and Related Optical Effects

2.14 Non-linear Optical Effects.

2.14.3 Four-Wave Mixing (FWM)

2
6

3
4 2 2

31024( ) eff L
ij FWM i j

eff

L
P L PP e

n c A
αχπ

η
λ

−
' (' (

= ⋅* +* + * +, - , -
see A.R. Chraplyvy, Journal Lightwave Technology 8, 1548-1557 (1990).
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2. Light Propagation in Fibres and Related Optical Effects

2.14 Non-linear Optical Effects.

2.14.4 Self-Phase (SPM) and Cross-Phase Modulation (XPM)

Kerr nonlinearity
Linear regime

2

effSPM
th

K eff

A
P

n L
λ

π
≅

1.5 W km  @ 1.55 
µm

SPM
th effP L⋅ ≈ ⋅

( )22SPM K
dn E
dt

νΔ ∝
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2. Light Propagation in Fibres and Related Optical Effects

2.14 Non-linear Optical Effects.

2.14.4 Self-Phase (SPM) and Cross-Phase Modulation (XPM)

( )20 2
2

0 2

2
2

K

K

nL L n n E
n n n E

π
φ π

φλ
λ

$= %
⇒ = +'

%= + (

( )

0 0

2
0 2

' '

2' K

d
dt

L dn E
dt

φ
ω ω ω ω ω

π
ω ω

λ

= + ⇔ = + ⇒

⇒ = +

( )

( )

2
0

2
0

0 ' ( )

0 ' ( )

K

K

d E t
dt
d E t
dt

ω ω ω

ω ω ω

> ⇒ = −

< ⇒ = +

Pulse is  
CHIRPED
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2. Light Propagation in Fibres and Related Optical Effects

2.14 Non-linear Optical Effects.

Limitations over WDM 
Limitations on the channel power 
imposed by four nonlinear effects 
(assumed λ=1.55 µm and fibre loss 
of 0.2 dB/km) 

see A.R. Chraplyvy, Journal Lightwave Technology 8, 1548-1557 (1990).
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2. Light Propagation in Fibres and Related Optical Effects

2.14 Non-linear Optical Effects.

Soliton Propagation
2

0 2

3.11

FWHM

P
T

β

γ
!

Fundamental soliton 
peak power


