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Figure  8.0 (cover image)

Networks & Art: Facebook Users

Created by Paul Butler, a Toronto-based data 
scientist during a Facebook internship in 
2010, the image depicts the network connect-
ing the users of the social network company. 
It highlights the links within and across con-
tinents. The presence of dense local links in 
the U.S., Europe and India is just as revealing 
as the lack of links in some areas, like China, 
where the site is banned, and Africa, reflect-
ing a lack of Internet access.
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SECTION 8.1

Errors and failures can corrupt all human designs: The failure of a com-

ponent in your car’s engine may force you to call for a tow truck or a wiring 

error in your computer chip can make your computer useless. Many natu-

ral and social systems have, however, a remarkable ability to sustain their 

basic functions even when some of their components fail. Indeed, while 

there are countless protein misfolding errors and missed reactions in our 

cells, we rarely notice their consequences. Similarly, large organizations 

can function despite numerous absent employees. Understanding the ori-

gins of this robustness is important for many disciplines:

•  Robustness is a central question in biology and medicine, helping us 

understand why some mutations lead to diseases and others do not.

• It is of concern for social scientists and economists, who explore the 

stability of human societies and institutions in the face of such dis-

rupting forces as famine, war, and changes in social and economic 

order.

•  It is a key issue for ecologists and environmental scientists, who seek 

to predict the failure of an ecosystem when faced with the disruptive 

effects of human activity.

•  It is the ultimate goal in engineering, aiming to design communica-

tion systems, cars, or airplanes that can carry out their basic functions 

despite occasional component failures.

Networks play a key role in the robustness of biological, social and tech-

nological systems. Indeed, a cell's robustness is encoded in intricate regu-

latory, signaling and metabolic networks; the society’s resilience cannot 

be divorced from the interwoven social, professional, and communication 

web behind it; an ecosystem’s survivability cannot be understood without 

a careful analysis of the food web that sustains each species. Whenever 

nature seeks robustness, it resorts to networks.

INTRODUCTION

The cover of the 27 July 2000 issue of Nature, 
highlighting the paper entitled Attack and er-
ror tolerance of complex networks that began 
the scientific exploration of network robust-
ness [1].

Figure 8.1
Achilles’ Heel of Complex Networks

NETWORK ROBUSTNESS
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The purpose of this chapter is to understand the role networks play in 

ensuring the robustness of a complex system. We show that the structure 

of the underlying network plays an essential role in a system’s ability to 

survive random failures or deliberate attacks. We explore the role of net-

works in the emergence of cascading failures, a damaging phenomenon 

frequently encountered in real systems. Most important, we show that the 

laws governing the error and attack tolerance of complex networks and the 

emergence of cascading failures, are universal. Hence uncovering them 

helps us understand the robustness of a wide range of complex systems.

“Robust” comes from the latin Quercus Ro-
bur, meaning oak, the symbol of strength and 
longevity in the ancient world. The tree in the 
figure stands near the Hungarian village Diós-
viszló and is documented at www.dendroma-
nia.hu, a site that catalogs Hungary's oldest 
and largest trees.

Image courtesy of György Pósfai.

Figure 8.2
Robust, Robustness

NETWORK ROBUSTNESS
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PERCOLATION THEORY
SECTION 8.2

The removal of a single node has only limited impact on a network’s 

integrity (Figure 8.3a). The removal of several nodes, however, can break a 

network into several isolated components (Figure 8.3d). Obviously, the more 

nodes we remove, the higher are the chances that we damage a network, 

prompting us to ask: How many nodes do we have to delete to fragment a 

network into isolated components? For example, what fraction of Internet 

routers must break down so that the Internet turns into clusters of com-

puters that are unable to communicate with each other? To answer these 

questions, we must first familiarize ourselves with the mathematical un-

derpinnings of network robustness, offered by percolation theory.

Percolation

Percolation theory is a highly developed subfield of statistical physics 

and mathematics [2, 3, 4, 5]. A typical problem addressed by it is illus-

trated in Figure 8.4a,b, showing a square lattice, where we place pebbles 

with probability p at each intersection. Neighboring pebbles are con-

sidered connected, forming clusters of size two or more. Given that the 

position of each pebble is decided by chance, we ask:

•  What is the expected size of the largest cluster?

•  What is the average cluster size?

Obviously, the higher is p, the larger are the clusters. A key prediction 

of percolation theory is that the cluster size does not change gradu-

ally with p. Rather, for a wide range of p the lattice is populated with 

numerous tiny clusters (Figure 8.4a). If p approaches a critical value pc, 

these small clusters grow and coalesce, leading to the emergence of a 

large cluster at pc. We call this the percolating cluster as it reaches the 

end of the lattice. In other words, at pc we observe a phase transition 

from many small clusters to a percolating cluster that percolates the 

whole lattice (Figure 8.4b). 

To quantify the nature of this phase transition, we focus on three quan-

tities:

NETWORK ROBUSTNESS

The gradual fragmentation of a small network 
following the breakdown of its nodes. In each 
panel we remove a different node (highlight-
ed with a green circle), together with its links. 
While the removal of the first node has only 
limited impact on the network’s integrity, the 
removal of the second node isolates two small 
clusters from the rest of the network. Finally, 
the removal of the third node fragments the 
network, breaking it into five non-communi-
cating clusters of sizes s = 2, 2, 2, 5, 6.

Figure 8.3

The Impact of Node Removal

(b)

(d)

(a)

(c)
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•  Average Cluster Size: ⟨s⟩ 
According to percolation theory the average size of all finite clusters 

follows

In other words, the average cluster size diverges as we approach pc

(Figure 8.4c).

•   Order Parameter: P∞

The probability P∞ that a randomly chosen pebble belongs to the larg-

est cluster follows

Therefore as p decreases towards pc the probability that a pebble be-

longs to the largest cluster drops zero (Figure 8.4d).

•   Correlation Length: ξ  
The mean distance between two pebbles that belong to the same clus-

ter follows

A classical problem in percolation theory ex-
plores the random placement with probability 
p of pebbles on a square lattice.

(a) For small p most pebbles are isolated. In 
this case the largest cluster has only three 
nodes, highlighted in purple.

(b) For large p most (but not all) pebbles be-
long to a single cluster, colored purple. This is 
called the percolating cluster, as it spans the 
whole lattice (see also Figure 8.6).

(c) The average cluster size, ⟨s⟩, in function of 
p. As we approach pc from below, numerous 
small clusters coalesce and ⟨s⟩ diverges, fol-
lowing (8.1). The same divergence is observed 
above pc, where to calculate ⟨s⟩ we remove 
the percolating cluster from the average. The 
same exponent γp characterizes the diver-
gence on both sides of the critical point.

(d) A schematic illustration of the p−depen-
dence of the probability P∞ that a pebble be-
longs to the largest connected component. For 
p < pc all components are small, so P∞ is zero. 
Once p reaches pc a giant component emerges. 
Consequently beyond pc there is a finite prob-
ability that a node belongs to the largest com-
ponent, as predicted by (8.2).

Figure 8.4
Percolation

NETWORK ROBUSTNESS
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Therefore while for p < pc the distance between the pebbles in the 

same cluster is finite, at pc this distance diverges. This means that at 

pc the size of the largest cluster becomes infinite, allowing it to perco-

late the whole lattice.

The exponents γp, βp, and ν are called critical exponents, as they char-

acterize the system’s behavior near the critical point pc. Percolation 

theory predicts that these exponents are universal, meaning that they 

are independent of the nature of the lattice or the precise value of pc. 

Therefore, whether we place the pebbles on a triangular or a hexagonal 

lattice, the behavior of ⟨s⟩, P∞, and ξ is characterized by the same γp, βp, 

and ν exponents. 

Consider the following examples to better understand this universality:

•  The value of pc depends on the lattice type, hence it is not universal. 

For example, for a two-dimensional square lattice (Figure 8.4) we have 

pc ≈ 0.593, while for a two-dimensional triangular lattice pc = 1/2 (site 

percolation).

•  The value of pc also changes with the lattice dimension: for a square 

lattice pc ≈ 0.593 (d = 2); for a simple cubic lattice (d = 3) pc ≈ 0.3116. 

Therefore in d = 3 we need to cover a smaller fraction of the nodes 

with pebbles to reach the percolation transition.

•  In contrast with pc, the critical exponents do not depend on the lattice 

type, but only on the lattice dimension. In two dimensions, the case 

shown in Figure 8.4, we have γp = 43/18, βp = 5/36, and ν = 4/3, for any 

lattice. In three dimensions γp = 1.80, βp = 0.41, and ν = 0.88.  For any 

d > 6 we have γp = 1, βp = 1, ν = 1/2, hence for large d the exponents are 

independent of d as well [2].

 Inverse Percolation Transition and Robustness

The phenomena of primary interest in robustness is the impact of node 

failures on the integrity of a network. We can use percolation theory to 

describe this process. 

Let us view a square lattice as a network whose nodes are the intersections 

(Figure 8.5). We randomly remove an f fraction of nodes, asking how their 

absence impacts the integrity of the lattice. 

If f is small, the missing nodes do little damage to the network. Increasing 

f, however, can isolate chunks of nodes from the giant component. Finally, 

for sufficiently large f the giant component breaks into tiny disconnected 

components (Figure 8.5). 

This fragmentation process is not gradual, but it is characterized by a 

critical threshold fc: For any f < fc we continue to have a giant component. 

Once f exceeds fc, the giant component vanishes. This is illustrated by the 

f-dependence of P∞, representing the probability that a node is part of the 

NETWORK ROBUSTNESS
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giant component (Figure 8.5): P∞ is nonzero under fc, but it drops to zero as 

we approach fc. The critical exponents characterizing this breakdown, γp, 
βp, ν, are the same as those encountered in (8.1)-(8.3). Indeed, the two pro-

cesses can be mapped into each other by choosing f = 1 − p. 

What, however, if the underlying network is not as regular as a square lat-

tice? As we will see in the coming sections, the answer depends on the pre-

cise network topology. Yet, for random networks the answer continues to 

be provided by percolation theory: Random networks under random node 

failures share the same scaling exponents as infinite-dimensional perco-

lation. Hence the critical exponents for a random network are γp = 1, βp = 1 

and ν = 1/2, corresponding to the d > 6 percolation exponents encountered 

earlier. The critical exponents for a scale-free network are provided in AD-
VANCED TOPICS 8.A.

In summary, the breakdown of a network under random node removal 

is not a gradual process. Rather, removing a small fraction of nodes has  

only limited impact on a network’s integrity. But once the fraction of re-

moved nodes reaches a critical threshold, the network abruptly breaks into 

disconnected components. In other words, random node failures induce a 

phase transition from a connected to a fragmented network. We can use 

the tools of percolation theory to characterize this transition in both reg-

ular and in random networks. For scale-free networks key aspects of the 

described phenomena change, however, as we discuss in the next section.

NETWORK ROBUSTNESS

The consequences of node removal are ac-
curately captured by the inverse of the per-
colation process discussed in Figure 8.4. We 
start from a square lattice, that we view as a 
network whose nodes are the intersections. 
We randomly select and remove an f fraction 
of nodes and measure the size of the largest 
component formed by the remaining nodes. 
This size is accurately captured by P∞, which 
is the probability that a randomly selected 
node belongs to the largest component. The 
observed networks are shown on the bottom 
panels. Under each panel we list the charac-
teristics of the corresponding phases.

Figure 8.5
Network Breakdown as Inverse Percolation

There is a giant 
component. 
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P∞ ~ |f −f c | β
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P ∞

f > fc  :
The lattice breaks into 
many tiny components.

f = f c :
The giant component 
vanishes. 
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BOX 8.1
From Forest Fires to Percolation Theory

 

We can use the spread of a fire in a forest to illustrate the basic con-

cepts of percolation theory. Let us assume that each pebble in Figure 
8.4a,b is a tree and that the lattice describes a forest. If a tree catch-

es fire, it ignites the neighboring trees; these, in turn ignite their 

neighbors. The fire continues to spread until no burning tree has a 

non-burning neighbor. We must therefore ask: If we randomly ignite 

a tree, what fraction of the forest burns down? And how long it takes 

the fire to burn out? 

The answer depends on the tree density, controlled by the parameter 

p. For small p the forest consists of many small islands of trees (p = 

0.55, Figure 8.6a), hence igniting any tree will at most burn down one 

of these small islands. Consequently, the fire will die out quickly. For 

large p most trees belong to a single large cluster, hence the fire rapid-

ly sweeps through the dense forest (p = 0.62, Figure 8.6c). 

The simulations indicate that there is a critical pc at which it takes ex-

tremely long time for the fire to end. This pc is the critical threshold 

of the percolation problem. Indeed, at p = pc the giant component just 

emerges through the union of many small clusters (Figure 8.6b). Hence 

the fire has to follow a long winding path to reach all trees in the loose-

ly connected clusters, which can be rather time consuming.

The emergence of the giant component 
as we change the occupation probability 
p. Each panel corresponds to a different p 
in the vicinity of pc shown for a lattice of 
250x250 sites. The largest cluster is colored 
black. For p < pc the largest cluster is tiny, 
as seen in (a). If this is a forest and the peb-
bles are trees, any fire can at most consume 
only a small fraction of the trees, burning 
out quickly. Once p reaches pc≈0.593, shown 
on (b), the largest cluster percolates the 
whole lattice and the fire can reach many 
trees, burning slowly through the forest. In-
creasing p beyond pc connects more pebbles 
(trees) to the largest component, as seen for 
p = 0.62 on (c). Hence, the fire can sweep 
through the forest, burning out quickly 
again.

Figure 8.6

Forest Fire

p
=

0
.6

2
p

=
0

.5
93

p
=

0
.5
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(b)

(a)

(c)



10

ROBUSTNESS OF
SCALE-FREE NETWORKS

SECTION 8.3

Percolation theory focuses mainly on regular lattices, whose nodes 

have identical degrees, or on random networks, whose nodes have compa-

rable degrees. What happens, however, if the network is scale-free? How do 

the hubs affect the percolation transition?  

To answer these questions, let us start from the router level map of the 

Internet and randomly select and remove nodes one-by-one. According to 

percolation theory once the number of removed nodes reaches a critical 

value fc, the Internet should fragment into many isolated subgraphs (Figure 
8.5). The simulations indicate otherwise: The Internet refuses to break apart 

even under rather extensive node failures. Instead the size of the largest 

component decreases gradually, vanishing only in the vicinity of f = 1 (Fig-
ure 8.7a). This means that the network behind the Internet shows an unusu-

al robustness to random node failures: we must remove all of its nodes to 

destroy its giant component. This conclusion disagrees with percolation on 

lattices, which predicts that a network must fall apart after the removal of 

a finite fraction of its nodes.

The behavior observed above is not unique to the Internet. To show this 

we repeated the above measurement for a scale-free network with degree 

exponent γ = 2.5, observing an identical pattern (Figure 8.7b): Under ran-

dom node removal the giant component fails to collapse at some finite fc, 

but  vanishes only gradually near f = 1 (Online Resource 8.1). This hints that 

the Internet's observed robustness is rooted in its scale-free topology. The 

goal of this section is to uncover and quantify the origin of this remarkable 

robustness.

NETWORK ROBUSTNESS

Figure 8.7
Robustness of Scale-free Networks

(a) The fraction of Internet routers that belong 
to the giant component after an f fraction of 
routers are randomly removed. The ratio 
P∞( f)/P∞(0) provides the relative size of the gi-
ant component. The simulations use the rout-
er level Internet topology of Table 4.1.

(b) The fraction of nodes that belong to the 
giant component after an f fraction of nodes 
are removed from a scale-free network with γ 
= 2.5, N = 10,000 and kmin = 1.

The plots indicate that the Internet and in 
general a scale-free network do not fall apart 
after the removal of a finite fraction of nodes. 
We need to remove almost all nodes (i.e. fc=1) 
to fragment these networks.
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Molloy-Reed Criterion

To understand the origin of the anomalously high fc characterizing the 

Internet and scale-free networks, we calculate fc for a network with an 

arbitrary degree distribution. To do so we rely on a simple observation: 

For a network to have a giant component, most nodes that belong to it 

must be connected to at least two other nodes (Figure 8.8). This leads to 

the Molloy-Reed criterion (ADVANCED TOPICS 8.B), stating that a randomly 

wired network has a giant component if [6]

Networks with κ < 2 lack a giant component, being fragmented into 

many disconnected components. The Molloy-Reed criterion (8.4) links 

the network’s integrity, as expressed by the presence or the absence of a 

giant component, to ⟨k⟩ and ⟨k2⟩. It is valid for any degree distribution pk.

To illustrate the predictive power of (8.4), let us apply it to a random net-

work. As in this case ⟨k2⟩ = ⟨k⟩(1 + ⟨k⟩), a random network has a giant 

component if

or

This prediction coincides with the necessary condition (3.10) for the ex-

istence of a giant component.

Critical Threshold

To understand the mathematical origin of the robustness observed in 

Figure 8.7, we ask at what threshold will a scale-free network loose its gi-

ant component. By applying the Molloy-Reed criteria to a network with 

an arbitrary degree distribution, we find that the critical threshold fol-

lows [7] (ADVANCED TOPICS 8.C)

The most remarkable prediction of (8.7) is that the critical threshold fc 
depends only on ⟨k⟩ and ⟨k2⟩, quantities that are uniquely determined 

by the degree distribution pk. 

Let us illustrate the utility of (8.7) by calculating the breakdown thresh-

old of a random network. Using ⟨k2⟩ = ⟨k⟩(⟨k⟩ + 1), we obtain (ADVANCED 
TOPICS 8.D)

Hence, the denser is a random network, the higher is its fc, i.e. the more 

(8.4)

(8.5)

(8.6)

Online Resource 8.1
Scale-free Network Under Node Failures

NETWORK ROBUSTNESS

κ = 〈k2 〉
〈k〉

> 2.

κ = 〈k2 〉
〈k〉

= 〈k〉(1+ 〈k〉)
〈k〉

= 1+ 〈k〉 > 2

〈k〉 >1 .

(8.7)fc = 1−
1

〈k2 〉
〈k〉

−1
.

(8.8)fc
ER = 1− 1

〈k〉
.

To illustrate the robustness of a scale-free net-
work we start from the network we construct-
ed in Online Resource 4.1, i.e. a scale-free net-
work generated by the Barabási-Albert model. 
Next we randomly select and remove nodes 
one-by-one. As the movie illustrates, despite 
the fact that we remove a significant fraction 
of the nodes, the network refuses to break 
apart. Visualization by Dashun Wang.

>

>

Figure 8.8

Molloy-Reed Criterion

Each individual must hold the hand of two 
other individuals to form a chain. Similarly, 
to have a giant component in a network, on 
average each of its nodes should have at least 
two neighbors. The Molloy-Reed criterion (8.4) 
exploits this property, allowing us to calculate 
the critical point at which a network breaks 
apart. See ADVANCED TOPICS 8.B for the deriva-
tion.
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nodes we need to remove to break it apart. Furthermore (8.8) predicts 

that fc  is always finite, hence a random network must break apart after 

the removal of a finite fraction of nodes. 

Equation (8.7) helps us understand the roots of the enhanced robustness 

observed in Figure 8.7. Indeed, for scale-free networks with γ < 3 the sec-

ond moment ⟨k2⟩ diverges in the N → ∞ limit. If  we insert ⟨k2⟩ → ∞ into 

(8.7), we find that fc converges to fc = 1. This means that to fragment a 
scale-free network we must remove all of its nodes. In other words, the 

random removal of a finite fraction of its nodes does not break apart a 

large scale-free network. 

To better understand this result we express ⟨k⟩ and ⟨k2⟩ in terms of the 

parameters characterizing a scale-free network: the degree exponent γ 

and the minimal and maximal degrees, kmin and kmax, obtaining 

Equation (8.9) predicts that (Figure 8.9):

•  For γ > 3 the critical threshold fc depends only on γ and kmin, hence fc 

is independent of the network size N. In this regime a scale-free net-

work behaves like a random network: it falls apart once a finite frac-

tion of its nodes are removed. 

•  For γ < 3 the kmax diverges for large N, following (4.18). Therefore in 

the N → ∞ limit (8.9) predicts  fc → 1. In other words, to fragment an 

infinite scale-free network we must remove all of its nodes.

Equations (8.6)-(8.9) are the key results of this chapter, predicting that 

scale-free networks can withstand an arbitrary level of random failures 

without breaking apart. The hubs are responsible for this remarkable 

robustness. Indeed, random node failures by definition are blind to de-

gree, affecting with the same probability a small or a large degree node. 

Yet, in a scale-free network we have far more small degree nodes than 

hubs. Therefore, random node removal will predominantly remove one 

of the numerous small nodes as the chances of selecting randomly one 

of the few large hubs is negligible. These small nodes contribute little to 

a network’s integrity, hence their removal does little damage.

Returning to the airport analogy of Figure 4.6, if we close a randomly se-

lected airport, we will most likely shut down one of the numerous small 

airports. Its absence will be hardly noticed elsewhere in the world: you 

can still travel from New York to Tokyo, or from Los Angeles to Rio de 

Janeiro.

Figure 8.9

Robustness and Degree Exponent

NETWORK ROBUSTNESS
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The probability that a node belongs to the gi-
ant component after the removal of an f frac-
tion of nodes from a scale-free network with 
degree exponent γ. For γ = 4 we observe a finite 
critical point fc≃2/3, as predicted by (8.9). For γ 
< 3, however, fc → 1. The networks were gener-
ated with the configuration model using kmin = 
2 and N = 10, 000.
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Robustness of Finite Networks

Equation (8.9) predicts that for a scale-free network fc converges to one 

only if kmax → ∞, which corresponds to the N → ∞ limit. While many net-

works of practical interest are very large, they are still finite, prompt-

ing us to ask if the observed anomaly is relevant for finite networks. To 

address this we insert (4.18) into (8.9), obtaining that fc depends on the 

network size N as (ADVANCED TOPICS 8.C)

where C collects all terms that do not depend on N. Equation (8.10) indi-

cates that the larger a network, the closer is its critical threshold to fc = 1. 

To see how close fc can get to the theoretical limit fc = 1, we calculate fc 

for the Internet. The router level map of the Internet has ⟨k2⟩/⟨k⟩ = 37.91 

(Table 4.1). Inserting this ratio into (8.7) we obtain fc = 0.972. Therefore, 

we need to remove 97% of the routers to fragment the Internet into dis-

connected components. The probability that by chance 186,861 routers 

fail simultaneously, representing 97% of the N = 192,244 routers on the 

Internet, is effectively zero. This is the reason why the topology of the 

Internet is so robust to random failures.

In general a network displays enhanced robustness if its breakdown 

threshold deviates from the random network prediction (8.8), i.e. if

Enhanced robustness has several ramifications:

•  The inequality (8.11) is satisfied for most networks for which ⟨k2⟩ devi-

ates from ⟨k⟩(⟨k⟩ + 1). According to Figure 4.8, for virtually all reference 

networks ⟨k2⟩ exceeds the random expectation. Hence the robustness 

predicted by (8.7) affects most networks of practical interest. This is 

illustrated in Table 8.1, that shows that for most reference networks 

(8.11) holds.

•  Equation (8.7) predicts that the degree distribution of a network does 

not need to follow a strict power law to display enhanced robustness. 

All we need is a larger ⟨k2⟩ than expected for a random network of 

similar size.

• The scale-free property changes not only fc, but also the critical expo-

nents γp, βp and ν in the vicinity of fc. Their dependence on the degree 

exponent γ is discussed in ADVANCED TOPICS 8.A.

•	Enhanced robustness is not limited to node removal, but emerges un-

der link removal as well (Figure 8.10).

,
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(8.11)fc > fc
ER

.

fc ≈1−
C

N
3−γ
γ −1

(8.10)
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What happens if we randomly remove the 
links rather than the nodes? The calculations 
predict that the critical threshold fc is the 
same for random link and node removal [7, 
8]. To illustrate this, we compare the impact 
of random node and link removal on a ran-
dom network with ⟨k⟩ = 2. The plot indicates 
that the network falls apart at the same crit-
ical threshold fc ≃ 0.5. The difference is in the 
shape of the two curves. Indeed, the remov-
al of an f fraction of nodes leaves us with a 
smaller giant component than the removal of 
an f fraction of links. This is not unexpected: 
on average each node removes ⟨k⟩ links. Hence 
the removal of an f fraction of nodes is equiv-
alent with the removal of an f⟨k⟩ fraction of 
links, which clearly makes more damage than 
the removal of an f fraction of links.

Figure 8.10

Robustness and Link Removal
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The table shows the estimated fc for random 
node failures (second column) and attacks 
(fourth column) for ten reference networks. 
The procedure for determining fc is described 
in ADVANCED TOPICS 8.E. The third column 
(randomized network) offers fc for a network 
whose N and L coincides with the original 
network, but whose nodes are connected ran-
domly to each other (randomized network, 
fc

ER, determined by (8.8)). For most networks 
fc for random failures exceeds fc

ER
 for the cor-

responding randomized network, indicating 
that these networks display enhanced robust-
ness, as they satisfy (8.11). Three networks lack 
this property: the power grid, a consequence 
of the fact that its degree distribution is ex-
ponential (Figure 8.31a), and the actor and the 
citation networks, which have a very high ⟨k⟩, 
diminishing the role of the high ⟨k2⟩ in (8.7).

Table 8.1

Breakdown Thresholds
Under Random Failures and Attacks

NETWORK RANDOM FAILURES RANDOM FAILURES
(RANDOMIZED NETWORK)(REAL NETWORK) (REAL NETWORK)

ATTACK

Internet

WWW

Power Grid

Mobile-Phone Call

Email

Science Collaboration

Actor Network 0.98

Citation Network

E. Coli Metabolism

Yeast Protein Interactions

In summary, in this section we encountered a fundamental property 

of real networks: their robustness to random failures. Equation (8.7) 
predicts that the breakdown threshold of a network depends on ⟨k⟩ and 

⟨k2⟩, which in turn are uniquely determined by the network's degree dis-

tribution. Therefore random networks have a finite threshold, but for 

scale-free networks with γ < 3 the breakdown threshold converges to 

one. In other words, we need to remove all nodes to break a scale-free 

network apart, indicating that these networks show an extreme robust-

ness to random failures. 

The origin of this extreme robustness is the large ⟨k2⟩ term. Given that 

for most real networks ⟨k2⟩ is larger than the random expectation, en-

hanced robustness is a generic property of many networks. This ro-

bustness is rooted in the fact that random failures affect mainly the 

numerous small nodes, which play only a limited role in maintaning a 

network’s integrity.
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ATTACK TOLERANCE
SECTION 8.4

The important role the hubs play in holding together a scale-free net-

work motivates our next question: What if we do not remove the nodes 

randomly, but go after the hubs? That is, we first remove the highest de-

gree node, followed by the node with the next highest degree and so on. The 

likelihood that nodes would break in this particular order under normal 

conditions is essentially zero. Instead this process mimics an attack on the 

network, as it assumes a detailed knowledge of the network topology, an 

ability to target the hubs, and a desire to deliberately cripple the network 

[1]. 

The removal of a single hub is unlikely to fragment a network, as the 

remaining hubs can still hold the network together. After the removal of a 

few hubs, however, large chunks of nodes start falling off  (Online Resource 
8.2). If the attack continues, it can rapidly break the network into tiny clus-

ters.

The impact of hub removal is quite evident in the case of a scale-free 

network (Figure 8.11): the critical point, which is absent under random fail-

ures, reemerges under attacks. Not only reemerges, but it has a remarkably 

low value. Therefore the removal of a small fraction of the hubs is suffi-

cient to break a scale-free network into tiny clusters. The goal of this sec-

tion is to quantify this attack vulnerability.

Critical Threshold Under Attack

An attack on a scale-free network has two consequences (Figure 8.11):

•  The critical threshold fc is smaller than fc = 1, indicating that under 

attacks a scale-free network can be fragmented by the removal of a 

finite fraction of its hubs.

•  The observed fc is remarkably low, indicating that we need to remove 

only a tiny fraction of the hubs to cripple the network.

To quantify this process we need to analytically calculate fc for a net-

NETWORK ROBUSTNESS

Figure 8.11

Scale-free Network Under Attack
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The probability that a node belongs to the larg-
est connected component in a scale-free net-
work under attack (purple) and under random 
failures (green). For an attack we remove the 
nodes in a decreasing order of their degree: 
we start with the biggest hub, followed by the 
next biggest and so on. In the case of failures 
the order in which we choose the nodes is ran-
dom, independent of the node’s degree. The 
plot illustrates a scale-free network’s extreme 
fragility to attacks: fc is small, implying that 
the removal of only a few hubs can disinte-
grate the network. The initial network has de-
gree exponent γ = 2.5, kmin = 2 and N = 10,000.
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work under attack. To do this we rely on the fact that hub removal 

changes the network in two ways [9]:

•  It changes the maximum degree of the network from kmax to k'max as all 

nodes with degree larger than  k'max have been removed.

•  The degree distribution of the network changes from pk to  p'k', as 

nodes connected to the removed hubs will loose links, altering the de-

grees of the remaining nodes.

By combining these two changes we can map the attack problem into 

the robustness problem discussed in the previous section. In other words, 

we can view an attack as random node removal from a network with ad-

justed k'max and p'k'. The calculations predict that the critical threshold fcfor 

attacks on a scale-free network is the solution of the equation [9, 10] (AD-
VANCED TOPICS 8.F)

Figure 8.12 shows the numerical solution of (8.12) in function of the de-

gree exponent γ, allowing us to draw several conclusions:

•  While fc for failures decreases monotonically with γ, fc for attacks can 

have a non-monotonic behavior: it increases for small γ and decreas-

es for large γ.

•  fc for attacks is always smaller than fc for random failures.

•  For large γ a scale-free network behaves like a random network. As a 

random network lacks hubs, the impact of an attack is similar to the 

impact of random node removal. Consequently the failure and the 

attack thresholds converge to each other for large γ. Indeed, if γ → 

∞ then pk → δ(k − kmin), meaning that all nodes have the same degree 

kmin. Therefore random failures and targeted attacks become indistin-

guishable in the γ → ∞ limit, obtaining 

				       	    		      		       (8.13)

•	 As Figure 8.13 shows, a random network has a finite percolation thresh-

old under both random failures and attacks, as predicted by Figure 8.12 

and (8.13) for large γ.

The airport analogy helps us understand the fragility of scale-free net-

works to attacks: The closing of two large airports, like Chicago’s O’Hare 

Airport or the Atlanta International Airport, for only a few hours would 

be headline news, altering travel throughout the U.S. Should some se-

ries of events lead to the simultaneous closure of the Atlanta, Chicago, 

Denver, and New York airports, the biggest hubs, air travel within the 

North American continent would come to a halt within hours.

Online Resource 8.2

Scale-free Networks Under Attack

NETWORK ROBUSTNESS

(8.12)fc
2−γ
1−γ = 2 + 2 −γ

3−γ
kmin ( fc

3−γ
1−γ −1).

The dependence of the breakdown threshold, 
fc, on the degree exponent γ for scale-free net-
works with kmin = 2, 3. The curves are predicted 
by (8.12) for attacks (purple) and by (8.7) for 
random failures (green). 

Figure 8.12

Critical Threshold Under Attack
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During an attack we aim to inflict maximum 
damage on a network. We can do this by re-
moving first the highest degree node, fol-
lowed by the next highest degree, and so on. 
As the movie illustrates, it is sufficient to 
remove only a few hubs to break a scale-free 
network into disconnected components. Com-
pare this with the network’s refusal to break 
apart under random node failures, shown in 
Online Resource 8.1. Visualization by Dashun 
Wang.

>

fc →1− 1
(kmin −1)
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ATTACK TOLERANCE

In summary, while random node failures do not fragment a scale-free 

network, an attack that targets the hubs can easily destroy such a network. 

This fragility is bad news for the Internet, as it indicates that it is inherent-

ly vulnerable to deliberate attacks. It can be good news in medicine, as the 

vulnerability of bacteria to the removal of their hub proteins offers ave-

nues to design drugs that kill unwanted bacteria.

NETWORK ROBUSTNESS

The fraction of nodes that belong to the giant 
component in a random network if an f frac-
tion of nodes are randomly removed (green) 
and in decreasing order of their degree (pur-
ple). Both curves indicate the existence of a fi-
nite threshold, in contrast with scale-free net-
works, for which fc→ 1 under random failures. 
The simulations were performed for random 
networks with N = 10,000 and ⟨k⟩ = 3.

Figure 8.13

Attacks and Failures in Random Networks
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BOX 8.2
PAUL BARAN AND THE INTERNET

 

In 1959 RAND, a Californian think-tank, has assigned Paul Baran, a 

young engineer at that time, to develop a communication system that 

can survive a Soviet nuclear attack. As a nuclear strike handicaps all 

equipment within the range of the detonation, Baran had to design 

a system whose users outside this range do not loose contact with 

one another. He described the communication network of his time 

as a “hierarchical structure of a set of stars connected in the form of 

a larger star,” offering an early description of what we call today a 

scale-free network [11]. He concluded that this topology is too central-

ized to be viable under attack. He also discarded the hub-and-spoke 

topology shown in Figure 8.14a, noting that the “centralized network is 

obviously vulnerable as destruction of a single central node destroys 

communication between the end stations.” 

Baran decided that the ideal survivable architecture was a distributed 

mesh-like network (Figure 8.14c). This network is sufficiently redun-

dant, so that even if some of its nodes fail, alternative paths can con-

nect the remaining nodes. Baran’s ideas were ignored by the military, 

so when the Internet was born a decade later, it relied on distributed 

protocols that allowed each node to decide where to link. This decen-

tralized philosophy paved the way to the emergence of a scale-free 

Internet, rather than the uniform mesh-like topology envisioned by 

Baran. 

Possible configurations of communication 
networks, as envisioned by Paul Baran in 
1959. After [11].

Figure 8.14
Baran’s Network
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CASCADING FAILURES
SECTION 8.5

Throughout this chapter we assumed that each node failure is a ran-

dom event, hence the nodes of a network fail independently of each other. 

In reality, in a network the activity of each node depends on the activity of 

its neighboring nodes. Consequently the failure of a node can induce the 

failure of the nodes connected to it. Let us consider a few examples:

•  Blackouts (Power Grid)

After the failure of a node or a link the electric currents are instan-

taneously reorganized on the rest of the power grid. For example, on 

August 10, 1996, a hot day in Oregon, a line carrying 1,300 megawatts 

sagged close to a tree and snapped. Because electricity cannot be 

stored, the current it carried was automatically shifted to two lower 

voltage lines. As these were not designed to carry the excess current, 

they too failed. Seconds later the excess current lead to the malfunc-

tion of thirteen generators, eventually causing a blackout in eleven 

U.S. states and two Canadian provinces [12].

•  Denial of Service Attacks (Internet)

If a router fails to transmit the packets received by it, the Internet 

protocols will alert the neighboring routers to avoid the troubled 

equipment by re-routing the packets using alternative routes. Conse-

quently a failed router increases traffic on other routers, potentially 

inducing a series of denial of service attacks throughout the Internet 

[13].

•  Financial Crises

Cascading failures are common in economic systems. For example, 

the drop in the house prices in 2008 in the U.S. has spread along the 

links of the financial network, inducing a cascade of failed banks, 

companies and even nations [14, 15, 16]. It eventually caused the 

worst global financial meltdown since the 1930s Great Depression.

While they cover different domains, these examples have several com-

mon characteristics. First, the initial failure had only limited impact on 

NETWORK ROBUSTNESS

The domino effect is the fall of a series of dom-
inos induced by the fall of the first domino. 
The term is often used to refer to a sequence 
of events induced by a local change, that prop-
agates through the whole system. Hence the 
domino effect represents perhaps the sim-
plest illustration of cascading failures, the 
topic of this section.

Figure 8.15

Domino Effect
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One of the largest blackouts in North America 
took place on August 14, 2003, just before 4:10 
p.m. Its cause was a software bug in the alarm 
system at a control room of the First Energy 
Corporation in Ohio. Missing the alarm, the 
operators were unaware of the need to redis-
tribute the power after an overloaded trans-
mission line hit a tree. Consequently a normal-
ly manageable local failure began a cascading 
failure that shut down more than 508 gener-
ating units at 265 power plants, leaving an es-
timated 10 million people without electricity 
in Ontario and 45 million in eight U.S. states. 
The figure highlights the states affected by 
the August 14, 2003 blackout. For a satelite 
image of the blackout, see Figure 1.1.

Figure 8.16

Northeast Blackout of 2003

NETWORK ROBUSTNESS CASCADING FAILURES

the network structure. Second, the initial failure did not stay localized, 

but it spread along the links of the network, inducing additional failures. 

Eventually, multiple nodes lost their ability to carry out their normal func-

tions. Consequently each of these systems experienced cascading failures, 

a dangerous phenomena in most networks [17]. In this section we discuss 

the empirical patterns governing such cascading failures. The modeling of 

these events is the topic of the next section.

EMPIRICAL RESULTS
Cascading failures are well documented in the case of the power grid, 

information systems and tectonic motion, offering detailed statistics 

about their frequency and magnitude. 

•  Blackouts

A blackout can be caused by power station failures, damage to elec-

tric transmission lines, a short circuit, and so on. When the operating 

limits of a component is exceeded, it is automatically disconnected to 

protect it. Such failure redistributes the power previously carried by 

the failed component to other components, altering the power flow, 

the frequency, the voltage and the phase of the current, and the op-

eration of the control, monitoring and alarm systems. These changes 

can in turn disconnect other components as well, starting an ava-

lanche of failures.

A frequently recorded measure of blackout size is the energy un-

served. Figure 8.17a shows the probability distribution p(s) of energy 

unserved in all North American blackouts between 1984 and 1998. 

Electrical engineers approximate the obtained distribution with the 

power law [18],

where the avalanche exponent α is listed in Table 8. 2 for several coun-

tries. The power law nature of this distribution indicates that most 

blackouts are rather small, affecting only a few consumers. These 

coexists, however, with occasional major blackouts, when millions of 

consumers lose power (Figure 8.16).

•  Information Cascades

Modern communication systems, from email to Facebook or Twitter, 

facilitate the cascade-like spreading of information along the links of 

the social network. As the events pertaining to the spreading process 

often leave digital traces, these platforms allow researchers to detect 

the underlying cascades. 

The micro-blogging service Twitter has been particularly studied in 

this context. On Twitter the network of who follows whom can be 

reconstructed by crawling the service's follower graph. As users fre-

quently share web-content using URL shorteners, one can also track 

each spreading/sharing process. A study tracking 74 million such 

events over two months followed the diffusion of each URL from a 

(8.14)p(s) ~ s−α,
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(a) The distribution of energy loss for all 
North American blackouts between 1984 and 
1998, as documented by the North American 
Electrical Reliability Council. The distribution 
is typically fitted to (8.14). The reported expo-
nents for different countries are listed in Ta-
ble 8.2. After [18].

(b) The distribution of cascade sizes on Twit-
ter. While most tweets go unnoticed, a tiny 
fraction of tweets are shared thousands of 
times. Overall the retweet numbers are well 
approximated with (8.14) with α ≃ 1.75. After 
[19].

(c) The cumulative distribution of earthquake 
amplitudes recorded between 1977 and 2000. 
The dashed lines indicate the power law fit 
(8.14) used by seismologists to characterize 
the distribution. The earthquake magnitude 
shown on the horizontal axis is the logarithm 
of s, which is the amplitude of the observed 
seismic waves. After [20].

Figure 8.17

Cascade Size Distributions
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particular seed node through its reposts until the end of a cascade 

(Figure 8.18). As Figure 8.17b indicates, the size distribution of the ob-

served cascades follows the power-law (8.14) with an avalanche expo-

nent α ≈ 1.75 [19]. The power law indicates that the vast majority of 

posted URLs do not spread at all, a conclusion supported by the fact 

that the average cascade size is only ⟨s⟩ = 1.14. Yet, a small fraction of 

URLs are reposted thousands of times.

•  Earthquakes

Geological fault surfaces are irregular and sticky, prohibiting their 

smooth slide against each other. Once a fault has locked, the contin-

ued relative motion of the tectonic plates accumulate an increasing 

amount of strain energy around the fault surface. When the stress 

becomes sufficient to break through the asperity, a sudden slide re-

leases the stored energy, causing an earthquake. Earthquakes can be 

also induced by the natural rupture of geological faults, by volcanic 

activity, landslides, mine blasts and even nuclear tests. 

Each year around 500,000 earthquakes are detected with instrumen-

tation. Only about 100,000 of these are sufficiently strong to be felt 

by humans. Seismologists approximate the distribution of earth-

quake amplitudes with the power law (8.14) with α ≈ 1.67 (Figure 8.17c) 
[20].

Earthquakes are rarely considered a manifestly network phenome-

non, given the difficulty of mapping out the precise network of inter-

dependencies that causes them. Yet, the resulting cascading failures 

bear many similarities to network-based cascading events, suggest-

ing common mechanisms.

The power-law distribution (8.14) followed by blackouts, informa-

tion cascades and earthquakes indicates that most cascading fail-

ures are relatively small. These small cascades capture the loss of 

electricity in a few houses, tweets of little interest to most users, 

or earthquakes so small that one needs sensitive instruments to 

detect them. Equation (8.14) predicts that these numerous small 

events coexist with a few exceptionally large events. Examples 

of such major cascades include the 2003 power outage in North 

America (Figure 8.16), the tweet Iran Election Crisis: 10 Incredible 
YouTube Videos http://bit.ly/vPDLo that was shared 1,399 times 

[21], or the January 2010 earthquake in Haiti, with over 200,000 

victims. Interestingly, the avalanche exponents reported by elec-

trical engineers, media researches and seismologists are surpris-

ingly close to each other, being between 1.6 and 2 (Table 8.2).

Cascading failures are documented in many other environments:

•  The consequences of bad weather or mechanical failures can cas-

cade through airline schedules, delaying multiple flights and 
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Examples of information cascades on Twitter. 
Nodes denote Twitter accounts, the top node 
corresponding to the account that first posted 
a certain shortened URL. The links correspond 
to those who retweeted it. These cascades 
capture the heterogeneity of information av-
alanches: most URLs are not retweeted at all, 
appearing as single nodes in the figure. Some, 
however, start major retweet avalanches, like 
the one seen at the bottom panel. After [19].

Figure 8.18
Information Cascades

stranding thousands of passengers (BOX 8.3) [22].

•  The  disappearance of a species can cascade through the food web 

of an ecosystem, inducing the extinction of numerous species and 

altering the habitat of others [23, 24, 25, 26].

• The shortage of a particular component can cripple supply chains. 

For example, the 2011 floods in Thailand have resulted in a chron-

ic shortage of car components that disrupted the production chain 

of more than 1,000 automotive factories worldwide. Therefore the 

damage was not limited to the flooded factories, but resulted in 

worldwide insurance claims reaching $20 billion [27].

In summary, cascading effects are observed in systems of rather dif-

ferent nature. Their size distribution is well approximated with the power 

law (8.14), implying that most cascades are too small to be noticed; a few, 

however, are huge, having a global impact. The goal of the next section is 

to understand the origin of these phenomena and to build models that can 

reproduce its salient features.

SOURCE EXPONENT CASCADE

Power grid (North America)

Power grid (Sweden)

Power grid (Norway)

Power grid (New Zealand)

Power grid (China)

Twitter Cascades

Earthquakes Seismic Wave

The reported avalanche exponents of the pow-
er law distribution (8.14) for energy loss in 
various countries [18], twitter cascades [19] 
and earthquake sizes [20]. The third column 
indicates the nature of the measured cascade 
size s, corresponding to power or energy not 
served, the number of retweets generated by a 
typical tweet and the amplitude of the seismic 
wave.

Table 8.2

Avalanche Exponents in Real Systems.
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BOX 8.3
CASCADING FLIGHT CONGESTIONS

Flight delays in the U.S. have an economic impact of over $40 billion 

per year [28], caused by the need for enhanced operations, passenger 

loss of time, decreased productivity and missed business and leisure 

opportunities. A flight delay is the time difference between the expect-

ed and actual departure/arrival times of a flight. Airline schedules 

include a buffer period between consecutive flights to accommodate 

short delays. When a delay exceeds this buffer, subsequent flights that 

use the same aircraft, crew or gate, are also delayed. Consequently a 

delay can propagate in a cascade-like fashion through the airline net-

work. 

While most flights in 2010 were on time, 37.5% arrived or departed 

late [22]. The delay distribution follows (8.14), implying that while most 

flights were delayed by just a few minutes, a few were hours behind 

schedule. These long delays induce correlated delay patterns, a signa-

ture of cascading congestions in the air transportation system (Figure 
8.19).

U.S. aviation map showing congested air-
ports as purple nodes, while those with nor-
mal traffic as green nodes. The lines corre-
spond to the direct flights between them on 
March 12, 2010. The clustering of the con-
gested airports indicate that the dealys are 
not independent of each other, but cascade 
through the airport network. After [22].

Figure 8.19

Clusters of Congested Airports



24

MODELING CASCADING
FAILURES

SECTION 8.6

The emergence of a cascading event depends on many variables, from 

the structure of the network on which the cascade propagates, to the na-

ture of the propagation process and the breakdown criteria of each indi-

vidual component. The empirical results indicate that despite the diversity 

of these variables, the size distribution of the observed avalanches is uni-

versal, being independent of the particularities of the system. The purpose 

of this section is to understand the mechanisms governing cascading phe-

nomena and to explain the power-law nature of the avalanche size distri-

bution.

Numerous models have been proposed to capture the dynamics of cas-

cading events [18, 29, 30, 31, 32, 33, 34, 35]. While these models differ in the 

degree of fidelity they employ to capture specific phenomena, they indi-

cate that systems that develop cascades share three key ingredients:

(i)  The system is characterized by some flow over a network, like the 

flow of electric current in the power grid or the flow of information 

in communication systems.

(ii)  Each component has a local breakdown rule that determines when it 

contributes to a cascade, either by failing (power grid, earthquakes)

or by choosing to pass on a piece of information (Twitter).

(iii) Each system has a mechanism to redistribute the traffic to  other 

nodes upon the failure or the activation of a component.

Next, we discuss two models that predict the characteristics of cascad-

ing failures at different levels of abstraction.

NETWORK ROBUSTNESS
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FAILURE PROPAGATION MODEL
Introduced to model the spread of ideas and opinions [30], the failure 

propagation model is frequently used to describe cascading failures as 

well [35]. The model is defined as follows: 

Consider a network with an arbitrary degree distribution, where each 

node contains an agent. An agent i can be in the state 0 (active or healthy) 

or 1 (inactive or failed), and is characterized by a breakdown threshold 

φi = φ for all i.

All agents are initially in the healthy state 0. At time t = 0 one agent 

switches to state 1, corresponding to an initial component failure or to 

the release of a new piece of information. In each subsequent time step 

we randomly pick an agent and update its state following a threshold 

rule:

•  If the selected agent i is in state 0, it inspects the state of its ki neigh-

bors. The agent i adopts state 1 (i.e. it also fails) if at least a φ fraction 

of its ki neighbors are in state 1, otherwise it retains its original state 0.

•  If the selected agent i is in state 1, it does not change its state.

In other words, a healthy node i changes its state if a φ fraction of its 

neighbors have failed. Depending on the local network topology, an ini-

tial perturbation can die out immediately, failing to induce the failure 

of any other node. It can also lead to the failure of multiple nodes, as il-

lustrated in Figure 8.20a,b. The simulations document three regimes with 

distinct avalanche characteristics (Figure 8.20c):

•  Subcritical Regime

If ⟨k⟩ is high, changing the state of a node is unlikely to move other 

nodes over their threshold, as the healthy nodes have many healthy 

neighbors.  In this regime cascades die out quickly and their sizes fol-

low an exponential distribution. Hence the system is unable to sup-

port large global cascades (blue symbols, Figure 8.20c,d).

•  Supercritical Regime

If ⟨k⟩ is small, flipping a single node can put several of its neighbors 

over the threshold, triggering a global cascade. In this regime pertur-

bations induce major breakdowns (purple symbols, Figure 8.20c,d).

•   Critical Regime

At the boundary of the subcritical and supercritical regime the ava-

lanches have widely different sizes. Numerical simulations indicate 

that in this regime the avalanche sizes s follow (8.14) (green and or-

ange  symbols, Figure 8.21d) with α = 3/2 if the underlying network is 

random. 
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Figure 8.20
Failure Propagation Model

(a,b) The development of a cascade in a small 
network in which each node has the same 
breakdown threshold φ = 0.4. Initially all 
nodes are in state 0, shown as green circles. 
After node A changes its state to 1 (purple), 
its neighbors B and E will have a fraction 
f = 1/2 > 0.4 of their neighbors in state 1. 
Consequently they also fail, changing their 
state to 1, as shown in (b). In the next time 
step C and D will also fail, as both have f > 
0.4. Consequently the cascade sweeps the 
whole network, reaching a size s = 5. One 
can check that if we initially flip node B, it 
will not induce an avalanche.

(c) The phase diagram of the failure propaga-
tion model in terms of the threshold func-
tion φ and the average degree ⟨k⟩ of the net-
work on which the avalanche propagates. 
The continuous line encloses the region of 
the (⟨k⟩, φ) plane in which the cascades can 
propagate in a random graph.

(d) Cascade size distributions for N = 10,000 
and φ = 0.18, ⟨k⟩ = 1.05 (green), ⟨k⟩ = 3.0 (pur-
ple), ⟨k⟩ = 5.76 (orange) and ⟨k⟩ = 10.0 (blue). 
At the lower critical point we observe a pow-
er law p(s) with exponent α = 3/2 . In the su-
percritical regime we have only a few small 
avalanches, as most cascades are global. In 
the upper critical and subcritical regime we 
see only small avalanches. After [30].

(a)

(c)

(d)

(b)
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BRANCHING MODEL
Given the complexity of the failure propogation model, it is hard to an-

alytically predict the scaling behavior of the obtained avalanches. To 

understand the power-law nature of p(s) and to calculate the avalanche 

exponent α, we turn to the branching model. This is the simplest model 

that still captures the basic features of a cascading event.

The model builds on the observation that each cascading failure follows 

a branching process. Indeed, let us call the node whose initial failure 

triggers the avalanche the root of the tree. The branches of the tree are 

the nodes whose failure was triggered by this initial failure. For exam-

ple, in Figures 8.20a,b, the breakdown of node A starts the avalanche, 

hence A is the root of the tree. The failure of A leads to the failure of B 

and E, representing the two branches of the tree. Subsequently E induc-

es the failure of D and B leads to the failure of C (Figure 8.21a).

The branching model captures the essential features of avalanche prop-

agation (Figure 8.21). The model starts with a single active node. In the 

next time step each active node produces k offsprings, where k is select-

ed from a pk distribution. If a node selects k = 0, that branch dies out 

(Figure 8.21b). If it selects k > 0, it will have k new active sites. The size 

of an avalanche corresponds to the size of the tree when all active sites 

died out (Figure 8.21c).

MODELING CASCADING FAILURESNETWORK ROBUSTNESS

(a) The branching process mirroring the prop-
agation of the failure shown in Figure 
8.20a,b. The perturbation starts from node 
A, whose failure flips B and E, which in turn 
flip C and D, respectively.

(b) An elementary branching process. Each ac-
tive link (green) can become inactive with 
probability p0 = 1/2 (top) or give birth to two 
new active links with probability p2 = 1/2 
(bottom).

(c) To analytically calculate p(s) we map the 
branching process into a diffusion prob-
lem. For this we show the number of active 
sites, x(t), in function of time t. A nonze-
ro x(t) means that the avalanche persists. 
When x(t) becomes zero, we loose all active 
sites and the avalanche ends. In the exam-
ple shown in the image this happens at t = 5, 
hence the size of the avalanche is tmax + 1 = 6. 

An exact mapping between the branching 
model and a one dimensional random walk 
helps us calculate the avalanche exponent. 
Consider a branching process starting from 
a stub with one active end. When the active 
site becomes inactive, it decreases the num-
ber of its active sites, i.e. x → x − 1. When the 
active site branches, creates two active sites, 
i.e. x → x + 1. This maps the avalanche size s 
to the time it takes for the walk that starts at 
x = 1 to reach x = 0 for the first time. This is a 
much studied process in random walk theo-
ry, predicting that the return time distribu-
tion follows a power law with exponent 3/2 
[32]. For branching process corresponding 
to scale-free pk, the avalanche exponent de-
pends on γ, as shown in Figure 8.22.

(d,e,f) Typical avalanches generated by the branch-
ing model in the subcritical (d), supercriti-
cal (e) and critical regime (f). The green node 
in each cascade marks the root of the tree, 
representing the first perturbation. In (d) 
and (f) we show multiple trees, while in (e) 
we show only one, as each tree (avalanche)
grows indefinitely.

Figure 8.21
Branching Model
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The branching model predicts the same phases as those observed in the 

cascading failures model. The phases are now determined only by ⟨k⟩, 

hence by the pk distribution:

•  Subcritical Regime: ⟨k⟩ < 1

For ⟨k⟩ < 1 on average each branch has less then one offspring. Conse-

quently each tree will terminate quickly (Figure 8.21d). In this regime 

the avalanche sizes follow an exponential distribution.

•  Supercritical Regime: ⟨k⟩ > 1
For ⟨k⟩ > 1 on average each branch has more than one offspring. Conse-

quently the tree will continue to grow indefinitely (Figure 8.21e). Hence  

in this regime all avalanches are global.

•  Critical Regime: ⟨k⟩ = 1
For ⟨k⟩ = 1 on average each branch has exactly one offspring. Conse-

quently some trees are large and others die out shortly (Figure 8.21e). 
Numerical simulations indicate that in this regime the avalanche size 

distribution follows the power law (8.14).

The branching model can be solved analytically, allowing us to deter-

mine the avalanche size distribution for an arbitrary pk. If pk is exponen-

tially bounded, e.g. it has an exponential tail, the calculations predict α = 

3/2. If, however, pk is scale-free, then the avalanche exponent depends on 

the power-law exponent γ, following (Figure 8.22) [32, 33]

This prediction allows us to revisit Table 8.2, finding that the empirically 

observed avalanche exponents are all between 1.5 and 2, as predicted by 

(8.15). 

In summary, we discussed two models that capture the dynamics of 

cascading failures: the failure propagation model and the branching mod-

el. In the literature we may also encounter the overload model, which is 

designed to capture power grid failures [18], or the sandpile model, that 

captures the behavior of cascading failures in the critical regime [31, 32]. 

Other models can also account for the fact that nodes and links have dif-

ferent capacities to carry traffic [34]. These models differ in their realism 

and the number and the nature of their tuning parameters. Yet, they all 

predict the existence of a critical state, in which the avalanche sizes follow 

a power law. The avalanche exponent α is uniquely determined by the de-

gree exponent of the network on which the avalanche propagates. The fact 

that models with rather different propagation dynamics and failure mech-

anisms predict the same scaling law and avalanche exponent suggests that 

the underlying phenomena is universal, i.e. it is model independent.

The dependence of the avalanche exponent α 
on the degree exponent γ of the network on 
which the avalanche propagates, according 
to (8.15). The plot indicates that between 2 < 
γ < 3 the avalanche exponent depends on the 
degree exponent. Beyond γ = 3, however, the 
avalanches behave as they would be spreading 
on a random network, in which case we have 
α =3/2.

Figure 8.22

The Avalanche Exponent
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(8.15)α =
3 / 2, γ ≥ 3
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SECTION 8.7

Can we enhance a network’s robustness? In this section we show that 

the insights we gained about the factors that influence robustness allows 

us to design networks that can simultaneously resist random failures and 

attacks. We also discuss how to stop a cascading failure, allowing us to en-

hance a system’s dynamical robustness. Finally, we apply the developed 

tools to the power grid, linking its robustness to its reliability.

Designing Robust Networks
Designing networks that are simultaneously robust to attacks and ran-

dom failures appears to be a conflicting desire [36, 37, 38, 39]. For ex-

ample, the hub-and-spoke network of Figure 8.23a is robust to random 

failures, as only the failure of its central node can break the network 

into isolated components. Therefore, the probability that a random fail-

ure will fragment the network is 1/N, which is negligible for large N. At 

the same time this network is vulnerable to attacks, as the removal of 

a single node, its central hub, breaks the network into isolated nodes.

We can enhance this network’s attack tolerance by connecting its pe-

ripheral nodes (Figure 8.23b), so that the removal of the hub does not 

fragment the network. There is a price, however, for this enhanced ro-

bustness: it requires us to double the number of links. If we define the 

cost to build and maintain a network to be proportional to its average 

degree ⟨k⟩, the cost of the network of Figure 8.23b is 24/7, double of the 

cost 12/7 of the network of Figure 8.23a. The increased cost prompts us to 

refine our question: Can we maximize the robustness of a network to 

both random failures and targeted attacks without changing the cost?

A network’s robustness against random failures is captured by its 

percolation threshold  fc, which is the fraction of the nodes we must 

remove for the network to fall apart. To enhance a network's robust-

ness we must increase fc. According to (8.7) fc depends only on ⟨k⟩ and 

⟨k2⟩. Consequently the degree distribution which maximizes  fc needs to 

maximize ⟨k2⟩ if we wish to keep the cost ⟨k⟩ fixed. This is achieved by a 

bimodal distribution, corresponding to a network with only two kinds 

NETWORK ROBUSTNESS

(a) A hub-and-spoke network is robust to ran-
dom failures but has a low tolerance to an 
attack that removes its central hub. 

(b) By connecting some of the small degree 
nodes, the reinforced network has a high-
er tolerance to targeted attacks. This in-
creases the cost measured by ⟨k⟩, which is 
higher for the reinforced network. 

(c)  Random, fc
rand, targeted  fc

targ and total fc
tot 

percolation thresholds for scale-free net-
works in function of the degree exponent 
γ for a network with kmin = 3.

Figure 8.23
Enhancing Robustness

0

0.5

1

1.5

0 5 10 15 20

RANDOM
TARGETED

TOTAL

k = 12 / 7 k = 24 / 7

fc

γ

(a)

(c)

(b)



29 BUILDING ROBUSTNESS

of nodes, with degrees kmin and kmax (Figure 8.23a,b).

If we wish to simultaneously optimize the network topology against 

both random failures and attacks, we search for topologies that maxi-

mize the sum (Figure 8.24c)

A combination of analytical arguments and numerical simulations in-

dicate that this too is best achieved by the bimodal degree distribution 

[36, 37, 38, 39]

describing a network in which an r fraction of nodes have degree kmax  

and the remaining (1 − r) fraction have degree kmin. 

As we show in ADVANCED TOPICS 8.G, the maximum of fc
tot is obtained 

when r = 1/N, i.e. when there is a single node with degree kmax and the 

remaining nodes have degree kmin. In this case the value of kmax depends 

on the system size as 

In other words, a network that is robust to both random failures and 

attacks has a single hub with degree (8.18), and the rest of the nodes have 

the same degree kmin. This  hub-and-spoke topology is obviously robust 

against random failures as the chance of removing the central hub is 

1/N, tiny for large N. 

The obtained network may appear to be vulnerable to an attack that re-

moves its hub, but it is not necessarily so. Indeed, the network’s giant 

component is held together by both the central hub as well as by the 

many nodes with degree kmin, that for kmin > 1 form a giant component 

on their own. Hence while the removal of the kmax hub causes a major 

one-time loss, the remaining low degree nodes are robust against sub-

sequent targeted removal (Figure 8.24c).

NETWORK ROBUSTNESS

(8.16)

(8.17)

(8.18)

fc
tot = fc

rand + fc
targ .

pk = (1− r)δ (k − kmin )+ rδ (k − kmax )

kmax = AN
2/3

The figure illustrates the optimal network to-
pologies predicted by (8.16) and (8.17), consist-
ing of a single hub of size (8.18) and the rest 
of the nodes have the same degree kmin deter-
mined by ⟨k⟩. The left panels show the network 
topology for N = 300; the right panels show 
the failure/attack curves for N = 10,000.

(a) For small ⟨k⟩ the hub holds the network 
together. Once we remove this central hub 
the network breaks apart. Hence the attack 
and error curves are well separated, indi-
cating that the network is robust to ran-
dom failures but fragile to attacks.

(b) For larger ⟨k⟩ a giant component emerges, 
that exists even without the central hub. 
Hence while the hub enhances the system’s 
robustness to random failures, it is no lon-
ger essential for the network. In this case 
both the attack fc

targ and error fc
rand are large.

(c) For even larger ⟨k⟩ the error and the at-
tack curves are indistinguishable, indicat-
ing that the network's response to attacks 
and random failures is indistinguishable. 
In this case the network is well connected 
even without its central hub.

Figure 8.24
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BOX 8.4
HALTING CASCADING FAILURES

Can we avoid cascading failures? The first instinct is to reinforce the 

network by adding new links. The problem with reinforcement is that 

in most real systems the time needed to establish a new link is much 

larger than the timescale of a cascading failure. For example, thanks 

to regulatory, financial and legal barriers, building a new transmis-

sion line on the power grid can take up to two decades. In contrast, a 

cascading failure can sweep the power grid in a few seconds. 

In a counterintuitive fashion, the impact of cascading failures can be 

reduced through selective node and link removal [40]. To do so we note 

that each cascading failure has two parts:

(i)  Initial failure is the breakdown of the first node or link, repre-

senting the source of the subsequent cascade.

(ii) Propagation is when the initial failure induces the failure of ad-

ditional nodes and starts cascading through the network. 

Typically the time interval between (i) and (ii) is much shorter than 

the time scale over which the network could be reinforced. Yet, sim-

ulations indicate that the size of a cascade can be reduced if we in-

tentionally remove additional nodes right after the initial failure (i), 

but before the failure could propagate. Even though the intentional 

removal of a node or a link causes further damage to the network, the 

removal of a well chosen component can suppress the cascade propa-

gation [40]. Simulations indicate that to limit the size of the cascades 

we must remove nodes with small loads and links with large excess 

load in the vicinity of the initial failure. The mechanism is similar to 

the method used by firefighters, who set a controlled fire in the fire-

line to consume the fuel in the path of a wildfire. 

A dramatic manifestation of this approach is provided by the Lazarus 
effect, the ability to revive a previously "dead" bacteria, i.e. one that is 

unable to grow and multiply. This can be achieved through the knock-

out of a few well selected genes (Figure 8.25) [41]. Therefore, in a coun-

terintuitive fashion, controlled damage can be beneficial to a network.
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The growth rate of a bacteria is deter-
mined by its ability to generate biomass, 
the molecules it needs to build its cell 
wall, DNA and other cellular compo-
nents. If some key genes are missing, 
the bacteria is unable to generate the 
necessary biomass. Unable to multiply, 
it will eventually die. Genes in whose ab-
sence the biomass flux is zero are called 
essential. 

The plot shows the biomass flux for E. 
Coli, a bacteria frequently studied by bi-
ologists. The original mutant is missing 
an essential gene, hence its biomass flux 
is zero, as shown on the vertical axis. 
Consequently, it cannot multiply. Yet, as 
the figure illustrates, by removing five 
additional genes we can turn on the bio-
mass flux. Therefore, counterintuitively, 
we can revive a dead organism through 
the removal of further genes, a phenom-
ena called the Lazarus effect [41].

Lazarus Effect

Figure 8.25
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CASE STUDY: ESTIMATING ROBUSTNESS
The European power grid is an ensemble of more than twenty national 

power grids consisting of over 3,000 generators and substations (nodes) 

and 200,000 km of transmission lines (Figure 8.26a-d). The network's de-

gree distribution can be approximated with (Figure 8.26e) [42, 43]

indicating that its topology is characterized by a single parameter, ⟨k⟩. 

Such exponential pk emerges in growing networks that lack preferen-

tial attachment (SECTION 5.5). 

By knowing ⟨k⟩ for each national power grid, we can predict the respec-

tive network's critical threshold fc
targ for attacks. As Figure 8.26f shows, 

for national power grids with ⟨k⟩ > 1.5 there is a reasonable agreement 

between the observed and the predicted fc
targ (Group 1). However, for 

power grids with ⟨k⟩ < 1.5 (Group 2) the predicted fc
targ underestimates 

the real fc
targ, indicating that these national networks are more robust 

to attacks than expected based on their degree distribution. As we show 

next, this enhanced robustness correlates with the reliability of the re-

spective national networks.

To test the relationship between robustness and reliability, we use sev-

eral quantities, collected and reported for each power failure: (1) energy 

not supplied; (2) total loss of power; (3) average interruption time, mea-

sured in minutes per year. The measurements indicate that Group 1 net-

works, for which the real and the theoretical fc
targ agree, represent two 

thirds of the full network size and carry almost as much power and energy 

as the Group 2 networks. Yet, Group 1 accumulates more than five times 

the average interruption time, more than two times the recorded power 

losses and almost four times the undelivered energy compared to Group 

2 [42]. Hence, the national power grids in Group 1 are significantly more 

fragile than the power grids in Group 2. This result offers direct evidence 

that networks that are topologically more robust are also more reliable. At 

the same time this finding is rather counterintuitive: One would expect 

the denser networks to be more robust. We find, however, that the sparser 

power grids display enhanced robustness.

In summary, a better understanding of the network topology is essen-

tial to improve the robustness of complex systems. We can enhance ro-

bustness by either designing network topologies that are simultaneously 

robust to both random failures and attacks, or by interventions that limit 

the spread of cascading failures.

These results may suggest that we should redesign the topology of the 

Internet and the power grid to enhance their robustness [44]. Given the op-

portunity to do so, this could indeed be achieved. Yet, these infrastructural 

networks were built incrementally over decades, following the self-orga-

nized growth process described in the previous chapters. Given the enor-

mous cost of each node and link, it is unlikely that we would ever be given 

a chance to rebuild them. 

NETWORK ROBUSTNESS

(8.19)pk =
e−k /〈k 〉

〈k〉
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Following [27], we translate the problem of intentional
attack to an equivalent random failure problem. The
removal of a fraction f of nodes with the highest de-
gree is then equivalent to the random removal of those
links connecting the remaining nodes to those already re-
moved. Thus, the probability that a specific link leads to
a deleted node will be given by:

p̃ =
K̃

K

kP (k)
k

dk (13)

the average degree of the undamaged graph. It
cult to show that this gives:

p̃ =
K̃
γ

+ 1 e− K̃/ γ (14)

Using equation (12) it is straightforward to see that:

p̃ = (ln pc − 1)pc (15)

where we assume thatK is large enough to ignore the
K/ γ ). Thus, an equivalent network with

maximal degreeK̃ has been built after a random removal
nodes due to the fact that the absence of correlations

implies a random failure of links. In order to obtain the
degree distribution of the damaged graph, such a fail-
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Following [27], we translate the problem of intentional
attack to an equivalent random failure problem. The
removal of a fraction f of nodes with the highest de-
gree is then equivalent to the random removal of those
links connecting the remaining nodes to those already re-
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(a) The power grid is a complex infrastruc-
ture consisting of (1) power generators, (2) 
switching units, (3) the high voltage trans-
mission grid, (4) transformers, (5) low volt-
age lines, (6) consumers, like households or 
businesses. When we study the network be-
hind the power grid, many of these details 
are ignored. 

(b,c,d) The Italian power grid with the details of 
production and consumption. Once we 
strip these details from the network, we ob-
tain the spatial network shown in (c). Once 
the spatial information is also removed, we 
arrive to the network (d), which is the typi-
cal object of study at the network level.

(e) The complementary cumulative degree 
distribution Pk of the European power grid. 
The plot shows the data for the full network 
(UCTE) and separately for Italy, and the 
joint network of UK and Ireland, indicating 
that the national grid’s Pk also follows (8.19).

(f) The phase space (fc
targ,〈k〉) of exponential un-

correlated networks under attack, where 
fc

targ
 is the fraction of hubs we must remove 

to fragment the network. The continuous 
curve corresponds to the critical bound-
ary for attacks, below which the network 
retains its giant component. The plot also 
shows the estimated fc

targ(⟨k⟩) for attacks 
for the thirty-three national power grids 
within EU, each shown as a separate cir-
cle. The plot indicates the presence of two 
classes of power grids. For countries with 
⟨k⟩ > 1.5 (Group 1), the analytical prediction 
for fc

targ
 agrees with the numerically ob-

served values. For countries with ⟨k⟩ < 1.5 
(Group 2) the analytical prediction under-
estimates the numerically observed values. 
Therefore, Group 2 national grids show 
enhanced robustness to attacks, meaning 
that they are more robust than expected 
for a random network with the same de-
gree sequence. After [42].

Figure 8.26

The Power Grid
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SUMMARY: 
ACHILLES' HEEL

SECTION 8.8

The masterminds of the September 11, 2001 did not choose their tar-

gets at random: the World Trade Center in New York, the Pentagon, and 

the White House (an intended target) in Washington DC are the hubs of 

America’s economic, military, and political power [45]. Yet, while causing a 

human tragedy far greater than any other event America has experienced 

since the Vietnam war, the attacks failed to topple the network. They did 

offer, however, an excuse to start new wars, like the Iraq and the Afghan 

wars, triggering a series of cascading events whose impact was far more 

devastating than the 9/11 terrorist attacks themselves. Yet, all networks, 

ranging from the economic to the military and the political web, survived. 

Hence, we can view 9/11 as a tale of robustness and network resilience (BOX 
8.5). The roots of this robustness were uncovered in this chapter: Real net-

works have a whole hierarchy of hubs. Taking out any one of them is not 

sufficient to topple the underlying network.

The remarkable robustness of real networks represents good news for 

most complex systems. Indeed, there are uncountable errors in our cells, 

from misfolding proteins to the late arrival of a transcription factor. Yet, 

the robustness of the underlying cellular network allows our cells to carry 

on their normal functions. Network robustness also explains why we rarely 

notice the effect of router errors on the Internet or why the disappearance 

of a species does not result in an immediate environmental catastrophe.

This topological robustness has its price, however: fragility against at-

tacks. As we showed in this chapter, the simultaneous removal of several 

hubs will break any network. This is bad news for the Internet, as it allows 

crackers to design strategies that can harm this vital communication sys-

tem. It is bad news for economic systems, as it indicates that hub removal 

can cripple the whole economy, as vividly illustrated by the 2009 finan-

cial meltdown. Yet, it is good news for drug design, as it suggests that an 

accurate map of cellular networks can help us develop drugs that can kill 

unwanted bacteria or cancer cells.

The message of this chapter is simple: Network topology, robustness, 

NETWORK ROBUSTNESS

BOX 8.5
ROBUSTNESS, RESILIENCE, REDUNDANCY

Redundancy and resilience are con-
cepts deeply linked to robustness. It 
is useful to clarify the differences 
between them.

Robustness
A system is robust if it can maintain 
its basic functions in the presence 
of internal and external errors. In a 
network context robustness refers 
to the system's ability to carry out 
its basic functions even when some 
of its nodes and links may be miss-
ing.

Resilience
A system is resilient if it can adapt 
to internal and external errors by 
changing its mode of operation, 
without losing its ability to func-
tion. Hence resilience is a dynami-
cal property that requires a shift in 
the system's core activities.

Redundancy
Redundancy implies the presence 
of parallel components and func-
tions that, if needed, can replace a 
missing component or funciton. 
Networks show considerable redun-
dancy in their ability to navigate 
information between two nodes, 
thanks to the multiple independent 
paths between most node pairs. 
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and fragility cannot be separated from one other. Rather, each complex 

system has its own Achilles’ Heel: the networks behind them are simulta-

neously robust to random failures but vulnerable to attacks. 

When considering robustness, we cannot ignore the fact that most sys-

tems have numerous controls and feedback loops that help them survive in 

the face of errors and failures. Internet protocols were designed to ‘route 

around the trouble’, guiding the traffic away from routers that malfunc-

tion; cells have numerous mechanisms to dismantle faulty proteins and 

to shut down malfunctioning genes. This chapter documented a new con-

tribution to robustness: the structure of the underlying network offers a 

system an enhanced failure tolerance. 

The robustness of scale-free networks prompts us to ask: Could this en-

hanced robustness be the reason why many real networks are scale-free? 

Perhaps real systems have developed a scale-free architecture to satisfy 

their need for robustness. If this hypothesis is correct we should be able to 

set robustness as an optimization criteria and obtain a scale-free network. 

Yet, as we showed in SECTION 8.7, a network with maximal robustness has 

a hub-and-spoke topology. Its degree distribution is bimodal, rather than 

a power law. This suggests that robustness is not the principle that drives 

the development of real networks. Rather, networks are scale-free thanks 

to growth and preferential attachment. It so happens that scale-free net-

works also have enhanced robustness. Yet, they are not the most robust 

networks we could design.

NETWORK ROBUSTNESS

Mathematicians Simon Broadbent 
and John Hammersey introduce 
percolation and formalize many 
of its mathematical concepts [5]. 
The theory rose to prominence in 
the 1960s and 70s, finding 
applications from oil exploration 
to superconductivity.

Paul Baran explores the 
vulnerability of communication 
networks to Soviet nuclear 
attacks, concluding that they 
are too centralized to be viable 
under attack. Proposes 
instead a mesh-like network 
architecture (BOX 8.2). 

Albert, Jeong and Barabási 
study the error and attack 
tolerance of complex 
networks, discovering their 
joint robustness to failures 
and fragility to attacks.

Shlomo Havlin and his collaborators 
establish a formal link between 
network robustness and percolation 
theory, showing that the percolation 
threshold of a scale-free network is 
determined by the first two moments 
of the degree distribution.
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The systematic study of network robustness 
started with a paper published in Nature 
(Figure 8.1) by Réka Albert, Hawoong Jeong 
and Albert-László Barabási [1], reporting the 
robustness of scale-free networks to random 
failures and their fragility to attacks. Yet, the 
analytical understanding of network robust-
ness relies on percolation theory. In this con-
text, particularly important were the contri-
butions of Shlomo Havlin and collaborators, 
who established the formal link between ro-
bustness and percolation theory and showed 
that the percolation threshold of a scale-free 
network is determined by the moments of 
the degree distribution. A statistical physicist 
from Israel, Havlin had multiple contribu-
tions to the study of networks, from discov-
ering the self-similar nature of real networks 
[46] to exploring the robustness of layered 
networks [47].

Figure 8.27
From Percolation to Robustness: A Brief History
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BOX 8.6
AT A GLANCE: NETWORK ROBUSTNESS

Malloy-Reed criteria:

A giant component exists if

Random failures:

Random Network:

Enhanced robustness:

Attacks:

Cascading failures:

k2

k
> 2

fc = 1−
1

〈k2 〉
〈k〉

−1

fc
ER = 1− 1

〈k〉

fc > fc
ER

fc
2−γ
1−γ = 2 + 2 −γ

3−γ
kmin ( fc

3−γ
1−γ −1)

p(s) ∼ s−α

α =
3 / 2 γ > 3
γ

γ −1
2 < γ < 3

⎧

⎨
⎪

⎩
⎪
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HOMEWORK
SECTION 8.9

NETWORK ROBUSTNESS

8.1. Random Failure: Beyond Scale-Free Networks

Calculate the critical threshold fc for networks with

(a) Power law with exponential cutoff.

(b) Lognormal distribution.

(c) Delta distribution (all nodes have the same degree).

Assume that the networks are uncorrelated and infinite. Refer to Table 
4.2 for the functional form of the distribution and the corresponding first 

and second moments. Discuss the consequences of the obtained results for 

network robustness.

8.2. Critical Threshold in Correlated Networks

Generate three networks with 104 nodes, that are assortative, disassor-

tative and neutral and have a power-law degree distribution with degree 

exponent γ = 2.2. Use the Xalvi-Brunet & Sokolov algorithm described in 

SECTION 7.5 to generate the networks. With the help of a computer, study 

the robustness of the three networks against random failures, and com-

pare their P∞(f)/P∞(0) ratio. Which network is the most robust? Can you ex-

plain why?

8.3. Failure of Real Networks

Determine the number of nodes that need to fail to break the networks 

listed in Table 4.1. Assume that each network is uncorrelated.

8.4. Conspiracy in Social Networks

In a Big Brother society, the thought police wants to follow a "divide and 

conquer" strategy by fragmenting the social network into isolated compo-

nents. You belong to the resistance and want to foil their plans. There are 

rumours that the police wants to detain individuals that have many friends 

and individuals whose friends tend to know each other. The resistance puts 

you in charge to decide which individuals to protect: those whose friend-

ship circle is highly interconnected or those with many friends. To decide 
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you simulate two different attacks on your network, by removing (i) the 

nodes that have the highest clustering coefficient and (ii) the nodes that 

have the largest degree. Study the size of the giant component in function 

of the fraction of removed nodes for the two attacks on the following net-

works:

(a) A network with N = 104 nodes generated with the configuration 

model (SECTION 4.8) and power-law degree distribution with  γ = 

2.5.

(b) A network with N = 104 nodes generated with the hierarchical 

model described in Figure 9.16 and ADVANCED TOPIC 9.B.

Which is the most sensitive topological information, clustering coef-

ficient or degree, which, if protected, limits the damage best? Would it be 

better if all individuals' information (clustering coefficient, degree, etc.) 

could be kept secret? Why?

8.5. Avalanches in Networks

Generate a random network with the Erdős-Rényi G(N,p) model and a 

scale-free network with the configuration model, with N = 103 nodes and 

average degree 〈k〉 = 2. Assume that on each node there is a bucket which 

can hold as many sand grains as the node degree. Simulate then the fol-

lowing process:

(a) At each time step add a grain to a randomly chosen node i.

(b) If the number of grains at node i reaches or exceeds its bucket 

size, then it becomes unstable and all the grains at the node top-

ple to the buckets of its adjacent nodes.

(c) If this toppling causes any of the adjacent nodes' buckets to be 

unstable, subsequent topplings follow on those nodes, until there 

is no unstable bucket left. We call this sequence of toppings an 

avalanche, its size s being equal to the number of nodes that 

turned unstable following an initial perturbation (adding one 

grain).

Repeat (a)-(c) 104 times. Assume that at each time step a fraction 10–4 

of sand grains is lost in the transfer, so that the network buckets do not 

become saturated with sand. Study the avalanche distribution P(s).
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SECTION 8.10

To understand how a scale-free network breaks apart as we approach 

the threshold (8.7), we need to determine the corresponding critical ex-

ponents γp, βp and ν. The calculations indicate that the scale-free prop-

erty alters the value of these exponents, leading to systematic devia-

tions from the exponents that characterize random networks (SECTION 
8.2). 

Let us start with the probability P∞ that a randomly selected node be-

longs to the giant component. According to (8.2) this follows a power law 

near pc (or fc in the case of node removal). The calculations predict that 

for a scale-free network the exponent βp depends on the degree expo-

nent γ as [7, 48, 49, 50, 51]

Hence, while for a random network (corresponding to γ > 4) we have βp 

= 1, for most scale-free networks of practical interest βp > 1. Therefore, 

the giant component collapses faster in the vicinity of the critical point 

in a scale-free network than in a random network. 

The exponent characterizing the average component size near pc  fol-

lows [48]

The negative γp for γ < 3 may appear surprising. Note, however, that for 

γ < 3 we always have a giant component. Hence, the divergence (8.1) can-

not be observed in this regime. 

ADVANCED TOPICS 8.A
PERCOLATION IN 
SCALE-FREE NETWORKS

NETWORK ROBUSTNESS

(8.20)=

1
3

2 < < 3,

1
3

3p < < 4,

1 > 4.

(8.21)γ p =
1 γ > 3
−1 2 < γ < 3.

⎧
⎨
⎪

⎩⎪
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For a randomly connected network with arbitrary degree distribution 

the size distribution of the finite clusters follows [48, 50, 51]

Here, ns is the number of clusters of size s and s* is the crossover cluster 

size. At criticality

The critical exponents are

Once again, the random network values τ = 5/2 and σ = 1/2 are recov-

ered for γ > 4. 

In summary, the exponents describing the breakdown of a scale-free 

network depend on the degree exponent γ. This is true even in the range 3 

< γ < 4, where the percolation transition occurs at a finite threshold fc. The 

mean-field behavior predicted for percolation in infinite dimensions, cap-

turing the response of a random network to random failures, is recovered 

only for γ > 4.

NETWORK ROBUSTNESS

(8.23)s* ~ p − pc
−σ

(8.22)ns ∼ s
−τe− s/s

*

.

=

5
2

> 4

2 3
2

2 < < 4,

σ =

3−γ
γ − 2

2 < γ < 3

γ − 3
γ − 2

3< γ < 4

1
2

γ > 4.

⎧

⎨

⎪
⎪
⎪

⎩

⎪
⎪
⎪

(8.24)

(8.25)
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SECTION 8.11

The purpose of this section is to derive the Molloy-Reed criterion, which 

allows us to calculate the percolation threshold of an arbitrary network 

[6]. For a giant component to exist each node that belongs to it must be 

connected to at least two other nodes on average (Figure 8.8). Therefore, the 

average degree ki of a randomly chosen node i that is part of the giant com-

ponent should be at least 2. Denote with P(ki ∣ i ↔ j) the conditional proba-

bility that a node in a network with degree ki is connected to a node j that 

is part of the giant component. This conditional probability allows us to 

determine the expected degree of node i as [51]

In other words, ⟨ki ∣ i ↔ j⟩ should be equal or exceed two, the condition 

for node  i to be part of the giant component. We can write the probability 

appearing in the sum (8.26) as

where we used Bayes’ theorem in the last term. For a network with degree 

distribution pk, in the absence of degree correlations, we can write

which express the fact that we can choose between N − 1 nodes to link to, 

each with probability 1/(N − 1) and that we can try this ki times. We can now 

return to (8.26), obtaining

With that we arrive at the Molloy-Reed criterion (8.4), providing the con-

dition to have a giant component as

ADVANCED TOPICS 8.B
MOLLOY-REED CRITERION

NETWORK ROBUSTNESS

(8.26)

(8.27)

(8.28)

(8.29)

〈ki∣i↔ j〉 = ∑
ki

kiP(ki∣i↔ j) = 2

P(ki∣i↔ j) = P(ki ,i↔ j)
P(i↔ j)

= P(i↔ j∣ki )p(ki )
P(i↔ j)

P(i↔ j) = 2L
N(N −1)

= 〈k〉
N −1

P(i↔ j∣ki ) =
ki

N −1

∑
ki

kiP(ki∣i↔ j) =
ki
∑ki

P(i↔ j∣ki )p(ki )
P(i↔ j)

=
ki
∑ki

ki p(ki )
〈k〉

=
∑
ki

ki
2p(ki )

〈k〉

κ = 〈k2 〉
〈k〉

> 2 (8.30)

.

,

,

.

,
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SECTION 8.12

The purpose of this section is to derive (8.7), that provides the critical 

threshold for random node removal [7, 51]. The random removal of an f 
fraction of nodes has two consequences:

•   It alters the degree of some nodes, as nodes that were previously con-

nected to the removed nodes will lose some links [k → k'  ≤ k].

•  Consequently, it changes the degree distribution, as the neighbors of 

the missing nodes will have an altered degree [pk → p'k']. 

To be specific, after we randomly remove an f fraction of nodes, a node 

with degree k becomes a node with degree  k' with probability

The first f -dependent term in (8.31) accounts for the fact that the select-

ed node lost (k − k')   links, each with probability f; the next term accounts 

for the fact that node removal leaves k' links untouched, each with proba-

bility (1 − f).

The probability that we have a degree-k node in the original network 

is pk; the probability that we have a new node with degree k' in the new 

network is

Let us assume that we know ⟨k⟩ and ⟨k2⟩ for the original degree distribu-

tion pk. Our goal is to calculate  ⟨k'⟩, ⟨k'2⟩ for the new degree distribution p'k', 

obtained after we randomly removed an f fraction of the nodes. For this 

we write

ADVANCED TOPICS 8.C
CRITICAL THRESHOLD
UNDER RANDOM FAILURES

NETWORK ROBUSTNESS

(8.31)

(8.32)p 'k ' = pk
k=k '

∞

∑ k
k '

⎛
⎝⎜

⎞
⎠⎟
f k− ′k (1− f ) ′k .

k
k '

⎛
⎝⎜

⎞
⎠⎟
f k− ′k (1− f ) ′k k ' ≤ k .
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The sum above is performed over the triangle shown in Figure 8.28. We 

can check that we are performing the same sum if we change the order of 

summation together with the limits of the sums as

Hence we obtain

This connects ⟨k'⟩ to the original ⟨k⟩ after the random removal of an f 
fraction of nodes. 

We perform a similar calculation for ⟨k'2⟩:

Again, we change the order of the sums (Figure 8.28), obtaining

NETWORK ROBUSTNESS

(8.33)

(8.34)

(8.35)

(8.36)

(8.37)

In (8.34) we change the integration order, i.e. 
the order of the two sums. We can do so be-
cause both sums are defined over the triangle 
shown in purple in the figure.

Figure 8.28

The Integration Domain
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⎞
⎠⎟
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k '=0

k

∑
k=0

∞
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f k−k ' (1− f )k '
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k=0

∞
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k
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f k−k ' (1− f )k '−2
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∞
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⎛
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⎞
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∞
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Hence we obtain

which connects ⟨k'2⟩ to the original ⟨k2⟩ after the random removal of an f 
fraction of nodes. Let us put the results (8.35) and (8.38) together:

According to the Molloy-Reed criterion (8.4) the breakdown threshold is 

given by

Inserting (8.38) and (8.40) into (8.41) we obtain our final result (8.7), 

providing the breakdown threshold of networks with arbitrary pk under 

random node removal.

NETWORK ROBUSTNESS

(8.39)

(8.40)

(8.41)

(8.42)

〈 ′k 〉 f = (1− f )〈k〉

〈 ′k 〉 f = (1− f )2 〈k2 〉 + f (1− f )〈k〉

κ =
〈k '2 〉 f
〈k '〉 f

= 2

fc = 1−
1

〈k2 〉
〈k〉

−1

(8.38)

k '2
f
= k '(k '−1)+ k ' f

= k '(k '−1) f + k ' f

= (1− f )2 k(k −1) + (1− f ) k

= (1− f )2 k2 − k( ) + 1− f( ) k

= (1− f )2 k2 − 1− f( )2 k + 1− f( ) k

= (1− f )2 k2 − − f 2 + 2 f −1+1− f( ) k
= (1− f )2 k2 + f 1− f( ) k .

,

.

= (1− f )2 k(k −1) .

.
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SECTION 8.13

In this section we derive the dependence (8.10) of the breakdown thresh-

old of a scale-free network on the network size N. We start by calculating 

the mth moment of a power-law distribution

Using (4. 18)

we obtain

To calculate fc we need to determine the ratio

which for large N (and hence for large kmax) depends on γ as

The breakdown threshold is given by (8.7)

where κ is given by (8.46). Inserting (8.43) into (8.42) and (8.47), we obtain

which is (8.10).

ADVANCED TOPICS 8.D
BREAKDOWN OF A FINITE
SCALE-FREE NETWORK

NETWORK ROBUSTNESS

(8.43)

(8.44)

(8.45)

(8.46)

〈km 〉 = (γ −1)kmin
γ −1 ∫

kmin

kmax

km−γ dk=
(γ −1)

(m −γ +1)
kmin
γ −1[km−γ +1]kmin

kmax

kmax = kminN
1

γ −1

〈km 〉 = (γ −1)
(m −γ +1)

kmin
γ −1[kmax

m−γ +1 − kmin
m−γ +1]

κ = 〈k2 〉
〈k〉

= (2 −γ )
(3−γ )

kmax
3−γ − kmin

3−γ

kmax
2−γ − kmin

2−γ

(8.47)κ = 〈k2 〉
〈k〉

= 2 −γ
3−γ

kmin γ > 3
kmax
3−γ kmin

γ −2 3> γ > 2
kmax 2 > γ >1

⎧

⎨
⎪⎪

⎩
⎪
⎪

,

(8.48)fc = 1−
1

κ −1
,

(8.49)fc ≈1−
C

N
3−γ
γ −1

,

.

.
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SECTION 8.14

In this section we explore the attack and error curves for the ten refer-

ence networks discussed in Tables 4.1 and (8.2). The corresponding curves 

are shown in Figure 8.29. Their inspection reveals several patterns, confirm-

ing the results discussed in this chapter:

• For all networks the error and attack curves separate, confirming 

the Achilles’ Heel property (SECTION 8.8): Real networks are robust to 

random failures but are fragile to attacks.

• The separation between the error and attack curves depends on the 

average degree and the degree heterogeneity of each network. For 

example, for the citation and the actor networks fc for the attacks is 

in the vicinity of 0.5 and 0.75, respectively, rather large values. This 

is because these networks are rather dense, with ⟨k⟩ = 20.8 for cita-

tion network and ⟨k⟩ = 83.7 for the actor network. Hence these net-

works can survive the removal of a very high fraction of their hubs.

ADVANCED TOPICS 8.E
ATTACK AND ERROR
TOLERANCE OF REAL NETWORKS

NETWORK ROBUSTNESS
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The error (green) and attack (purple) curves 
for the ten reference networks listed in Table 
4.1. The green vertical line corresponds to the 
estimated fc

rand for errors, while the purple ver-
tical line corresponds to  fc

targ for attacks. The 
estimated fc corresponds to the point where 
the giant component first drops below 1% of 
its original size. In most systems this proce-
dure offers a good approximation for fc. The 
only exception is the metabolic network, for 
which fc

targ < 0.25, but a small cluster persists, 
pushing the reported  fc

targ to  fc
targ ≃ 0.5. 

Figure 8.29
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NETWORK ROBUSTNESS

POWER GRID

f f f f

f f f f

f

f

P∞

P∞

1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

INTERNET
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

MOBILE PHONE CALLS SCIENTIFIC COLLABORATION
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

ACTOR
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

EMAIL
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

PROTEIN
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

METABOLIC
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

WWW
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

CITATION
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

P∞

P∞

P∞

P∞

P∞

P∞

P∞

P∞

POWER GRID

f f f f

f f f f

f

f

P∞

P∞

1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

INTERNET
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

MOBILE PHONE CALLS SCIENTIFIC COLLABORATION
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

ACTOR
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

EMAIL
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

PROTEIN
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

METABOLIC
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

WWW
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

CITATION
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

P∞

P∞

P∞

P∞

P∞

P∞

P∞

P∞

POWER GRID

f f f f

f f f f

f

f

P∞

P∞

1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

INTERNET
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

MOBILE PHONE CALLS SCIENTIFIC COLLABORATION
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

ACTOR
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

EMAIL
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

PROTEIN
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

METABOLIC
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

WWW
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

CITATION
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

P∞

P∞

P∞

P∞

P∞

P∞

P∞

P∞

POWER GRID

f f f f

f f f f

f

f

P∞

P∞

1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

INTERNET
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

MOBILE PHONE CALLS SCIENTIFIC COLLABORATION
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

ACTOR
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

EMAIL
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

PROTEIN
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

METABOLIC
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

WWW
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

CITATION
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

P∞

P∞

P∞

P∞

P∞

P∞

P∞

P∞

POWER GRID

f f f f

f f f f

f

f

P∞

P∞

1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

INTERNET
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

MOBILE PHONE CALLS SCIENTIFIC COLLABORATION
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

ACTOR
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

EMAIL
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

PROTEIN
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

METABOLIC
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

WWW
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

CITATION
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

P∞

P∞

P∞

P∞

P∞

P∞

P∞

P∞

POWER GRID

f f f f

f f f f

f

f

P∞

P∞

1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

INTERNET
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

MOBILE PHONE CALLS SCIENTIFIC COLLABORATION
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

ACTOR
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

EMAIL
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

PROTEIN
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

METABOLIC
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

WWW
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

CITATION
1

0.75

0.5

0.25

0
0    0.25          0.5          0.75           1

P∞

P∞

P∞

P∞

P∞

P∞

P∞

P∞

(b)

(d)

(f)

(h)

(j)

(a)

(c)

(e)

(g)

(i)



47

SECTION 8.15

The goal of this section is to derive (8.12), providing the attack threshold 

of a scale-free network. We aim to calculate fc for an uncorrelated scale-

free network, generated by the configuration model with pk = c ⋅ k−γ where 

k = kmin ,…, kmax and c ≈ (γ − 1)/(k min  
−γ+1 − k max

−γ+1 ).

The removal of an f fraction of nodes in a decreasing order of their de-

gree (hub removal) has two effects [9, 51]:

(i)  The maximum degree of the network changes from kmax to k'max.

(ii) The links connected to the removed hubs are also removed, chang-

ing the degree distribution of the remaining network.

The resulting network is still uncorrelated, therefore we can use the 

Molloy-Reed criteria to determine the existence of a giant component. 

We start by considering the impact of (i). The new upper cutoff, k'max, is 

given by

If we assume that kmax ≫ k'max and kmax ≫ kmin (true for large scale-free 

networks with natural cutoff), we can ignore the kmax terms, obtaining

which leads to

Equation (8.52) provides the new maximum degree of the network after 

we remove an f fraction of the hubs.
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(8.50)

(8.51)

(8.52)

f = ∫
kmax
′

kmax

pkdk =
γ −1
γ −1

kmax
′ −γ +1 − kmax

−γ +1

kmin
−γ +1 − kmax

−γ +1

f = kmax
′

kmin

⎛
⎝⎜

⎞
⎠⎟

−γ +1

k 'max = kmin f
1
1−γ

.

,

.
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Next we turn to (ii), accounting for the fact that hub removal changes 

the degree distribution pk →  p'k . In the absence of degree correlations we 

assume that the links of the removed hubs connect to randomly selected 

stubs. Consequently, we calculate the fraction of links removed ‘random-

ly’, f, as a consequence of removing an f fraction of the hubs:

Ignoring the kmax  term again and using                              we obtain

Using (8.51) we obtain

For γ → 2 we have f → 1, which means that the removal of a tiny fraction 

of the hubs removes all links, potentially destroying the network. This is 

consistent with the finding of CHAPTER 4 that for γ = 2 the hubs dominate 

the network. 

In general the degree distribution of the remaining network is

Note that we obtained the degree distribution (8.32) in ADVANCED TOPICS 
8.C. This means that now we can proceed with the calculation method de-

veloped there for random node removal. To be specific, we calculate κ for a 

scale-free network with kmin and k'max using (8.45):

Substituting into this (8.52) we have

After simple transformations we obtain

NETWORK ROBUSTNESS

˜

(8.53)

(8.54)

(8.55)

(8.56)

(8.57)

(8.58)

(8.59)

˜

f =
∫
k 'max

kmax

kpkdk

〈k〉
= 1
〈k〉

c ∫
k 'max

kmax

k−γ +1dk

= 1
〈k〉

1−γ
2 −γ

′kmax
−γ +2 − kmax

−γ +2

kmin
−γ +1 − kmax

−γ +2

〈k〉 ≈ γ −1
γ − 2

kmin

f̃ = kmax

kmin

+2

.

f̃ = f
2
1

.

pk =
k=kmin

kmax

k
k

f
k k

(1 f̃˜ )k pk .

κ = 2 −γ
3−γ

′kmax
3−γ − kmin

3−γ

′kmax
2−γ − kmin

2−γ

κ = 2 −γ
3−γ

kmin
3−γ f (3−γ )/(1−γ ) − kmin

3−γ

kmin
2−γ f (2−γ )/(1−γ ) − kmin

2−γ = 2 −γ
3−γ

kmin
f (3−γ )/(1−γ ) −1
f (2−γ )/(1−γ ) −1

.

.

fc
2−γ
1−γ = 2 + 2 −γ

3−γ
kmin fc

3−γ
1−γ −1

⎛

⎝⎜
⎞

⎠⎟

.



49

SECTION 8.17

In this section we derive the bimodal degree distribution that simulta-

neously optimizes a network’s topology against attacks and failures, as dis-

cussed in SECTION 8.7 [37]. Let us assume, as we did in (8.17), that the degree 

distribution is bimodal, consisting of two delta functions:

We start by calculating the total threshold, f tot, as a function of r and 

kmax for a fixed ⟨k⟩. To obtain analytical expressions for fc
rand and fc

targ we 

calculate the moments of the bimodal distribution (8.62),

Inserting these into (8.7) we obtain

To determine the threshold for targeted attack, we must consider the fact 

that we have only two types of nodes, i.e. an r fraction of nodes have degree 

kmax and the remaining (1 − r) fraction have degree kmin. Hence hub removal 

can either remove all hubs (case (i)), or only some fraction of them (case 

(ii)):

(i)  fc
targ > r . In this case all hubs have been removed, hence the nodes 

left after the targeted attack have degree kmin. We therefore obtain

ADVANCED TOPICS 8.G
THE OPTIMAL DEGREE
DISTRIBUTION
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(8.62)

(8.63)

(8.64)

(8.65)

pk = (1− r)δ (k − kmin )+ rδ (k − kmax )

〈k〉 = (1− r)kmin + rkmax

〈k2 〉 = (1− r)kmin
2 + rkmax

2 = (〈k〉 − rkmax )
2

1− r
+ rkmax

2

fc
rand = 〈k〉2 − 2r〈k〉kmax − 2(1− r)〈k〉+ rkmax

2

〈k〉2 − 2r〈k〉kmax − (1− r)〈k〉+ rkmax
2

fc
targ = r + 1− r

〈k〉 − rkmax
〈k〉 〈k〉 − rkmax − 2(1− r)

〈k〉 − rkmax − (1− r)
− rkmax

⎧
⎨
⎩

⎫
⎬
⎭

.

.

.

,

.
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(ii)  fc
targ  < r. In this case the removed nodes are all from the high-degree 

group, leaving behind some kmax nodes. Hence we obtain

With the thresholds (8.64) - (8.66) we can now evaluate the total threshold 

fc
tot  (8.16). To obtain an expression for the optimal value of kmax as a function 

of r we determine the value of k for which  fc
tot is maximal. Using (8.64) and 

(8.66), we find that for small r the optimal value of kmax can be approximated 

by

Using this result and (8.16), for small r we have

Thus fc
tot approaches the theoretical maximum when  r approaches zero. 

For a network of N nodes the maximum value of fc
tot is obtained when r = 

1/N, being the smallest value consistent with having at least one node of 

degree kmax. Given this r the equation determining the optimal kmax, repre-

senting the size of the central hubs, is [37]

where A is defined in (8.67).

NETWORK ROBUSTNESS

(8.66)fc
targ = 〈k〉2 − 2r〈k〉kmax + rkmax

2 − 2(1− r)〈k〉
kmax (kmax −1)(1− r)

.

(8.67)kmax ~
2〈k〉2 (〈k〉 −1)2

2〈k〉 −1
⎧
⎨
⎩

⎫
⎬
⎭

1/3

r−2/3 = Ar−2/3 .

(8.68)fc
tot = 2 − 1

〈k〉 −1
− 3〈k〉
A2

r1/3 +O(r2/3) .

(8.69)kmax = AN
2/3

,
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