
HELMINTOS

NEMATÓIDES INTESTINAIS

Savioli & Albonico, 2004

Nature Reviews | Microbiology

STHs= soil transmitted helminths

Ascaris lumbricoides, Trichuris Trichiura, Ancylostoma duodenale and Necator americanus

Infecção por Nematóides Intestinais no Mundo

- 0,8 bilhões infecções por Ascaris
- 0,6 bilhões infecções por ancilostomídeos
- 0,6 bilhões infecções por Trichuris
- (~1/4 da população mundial)

Table 1. Characteristics and impact of soil-transmitted helminths

Disease	Causative agents	Size (mm)	Infections	DALYs	Death
			(millions)	(millions)	(annual)
Ascariasis	A. lumbricoides	150-450	807-1221	1.8-10.5	60,000
Trichuriasis	T. trichiura	30-50	604-795	1.8-6.4	10,000
Hookworm	N. americanus	7-13	576-740	1.5-22.1	65,000
infection	A. duodonale	8-13			

Abbreviations: mm, millimetre; DALYs, disability-affected life years

Verminoses no Estado de São Paulo:

Geralmente afetam entre 5 e 10% da população

Alguns locais 25%

Dados MS/OMS, 2013

Taxonomia dos helmintos (vermes)

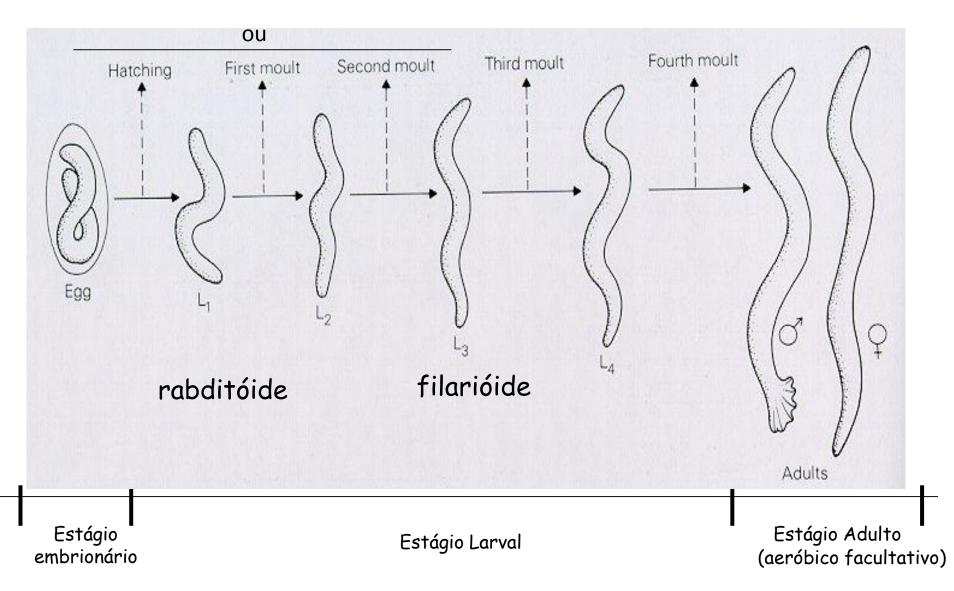
REINO ANIMALIA SUB-REINO METAZOA

-FILO NEMATHELMINTHES
CLASSE NEMATODA

-FILO PLATYHELMINTHES

CLASSE CESTODARIA

Nematóides


Nematos= filamento

- 500 mil espécies, grandes populações
- Muitos habitats:
- Muitos de vida livre (água e solo)
- Parasitas: de plantas, moluscos, anelídeos, artrópodes, vertebrados
- 80 mil espécies são parasitas de vertebrados
- 50 espécies parasitam o homem

Características

- Tamanho variado (1mm até > 1m)
- Fusiformes, alongados
- Boca e ânus
- Muitos ovos, casca espessa
- -Parasitas: dióicos (\varnothing e \diamondsuit), \diamondsuit > \varnothing
- (exceção: Strongyloides)
- -Parasitas intestinais humanos: monoxenos

Desenvolvimento dos Nematóides

Larvas: menores e sexualmente imaturas, aeróbicas (z cestóides)

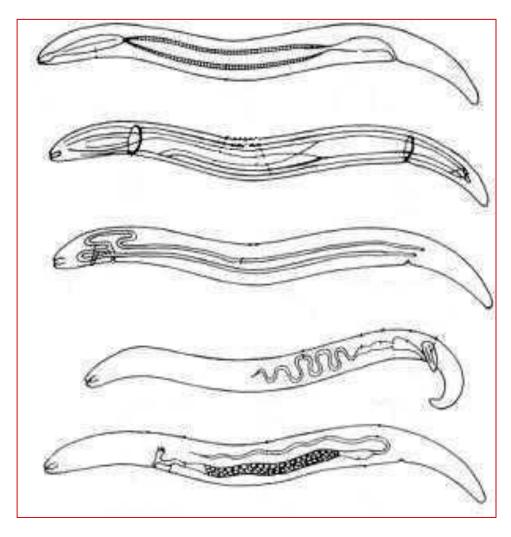
Estrutura do corpo

Cutícula - "exoesqueleto"

- * Proteção
- * Locomoção (extensão-retração)
- Estratificada
- Poder ter estrias, cristas e expansões
- Proteínas, lipídeos e carboidratos
- Pouco permeável (Sistemas Digestório e Excretor)
- Entrada de oxigênio
- Crescimento depende de síntese (Ascaris adulto: mm até 20cm)

Pseudoceloma- cavidade com líquido

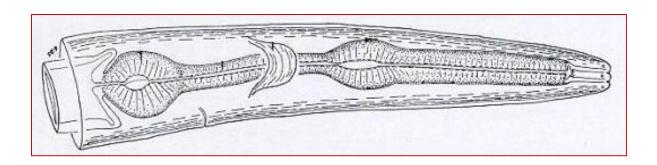
Sistemas


Digestório

Nervoso (nervos e gânglios)

Excretor (tubular)

Reprodutor masculino (órgão de cópula)


Reprodutor feminino (ovário, útero, vagina)

Sem sistema circulatório: difusão de O2 no pseudoceloma, hemoglobinas de alta afinidade Glicogênio é principal fonte energética, rápido esgotamento (fármacos)

Aparelho digestório

- Completo (boca e ânus)
- Esôfago musculoso e com válvulas

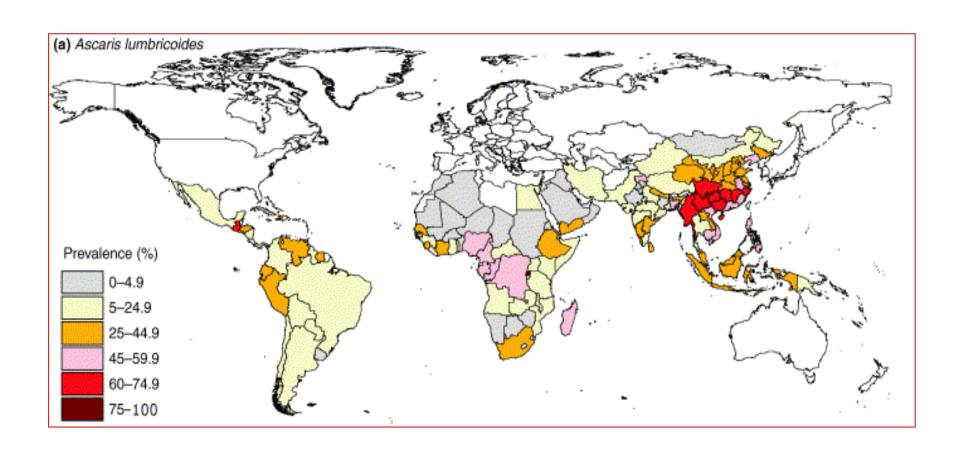
Alimentação

- Bactérias e restos digeridos- Ascaris e Enterobius
- Sangue: perfuram a mucosa intestinal- ancilostomídeos
- Penetram na mucosa e causam histólise- Trichuris
- Tecidos- Strongyloides (mucosa) e larvas migrans

Nematóides parasitas intestinais

Ascaris lumbricoides Trichuris trichiura

Enterobius vermicularis


Strongyloides stercoralis Ancilostomídeos

Larva migrans

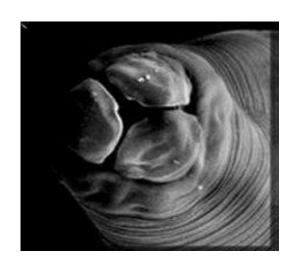
Formas de transmissão

- Transmissão oro-fecal (ovos)
- Ingestão ovos do ambiente
- Penetração pela pele (larvas)

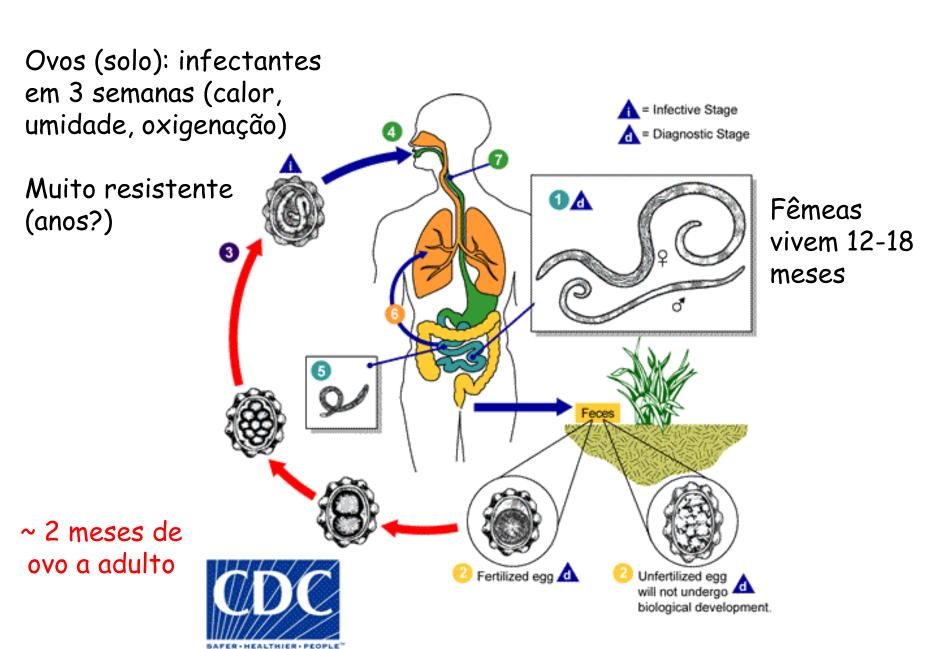
Ascaris lumbricoides

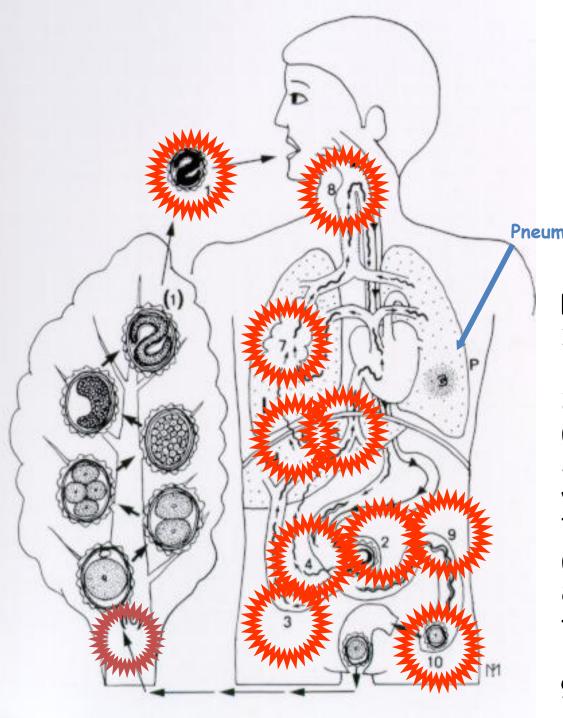
Afeta 0,8 bilhões de pessoas, ~ 60 mil mortes/ano

Parasita exclusivamente humano


Maior nematóide intestinal humano

~10 parasitos por pessoa (700)


200.000 ovos por dia (resistentes)


90% jejuno (íleo>duodeno, estômago)

Boca com três lábios

Ciclo de vida de Ascaris lumbricoides

Pneumonite de Löeffler

Fases larvárias:

1-L1 interior do ovo

L2 interior do ovo

2-L3: eclosão ovo no intestino

(larva: 200-300 µm)

3- Penetra parede e atinge

vasos)

7-L4 alvéolos pulmonares

(7 dias após ingestão)

8- Tosse e deglutição (da traquéia para esôfago)

9-Adulto: luz do ID

Sintomatologia e Patologia

- Proporcional à carga de parasitas
- Geralmente assintomáticos
- Pulmões

Edema inflamatório

Pneumonia

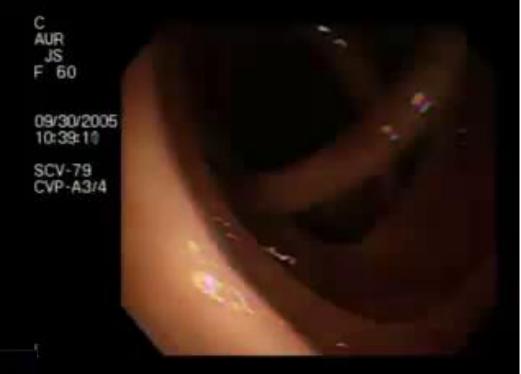
Síndrome de Loeffler (eusinófilos)

- Intestino

Dor abdominal

Náusea, emagrecimento

Má absorção de nutrientes

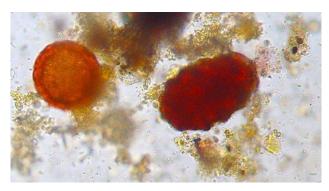

Diarréia

Obstrução intestinal

Perfuração do intestino

- Infecções intensas (crianças): problemas hepáticos

colonoscopia Ascaris



endoscopia Ascaris

Diagnóstico

- Exame de fezes (ovos)
- Observação do verme
- Radiografias
- Imunológicos-ruins

40×60μm

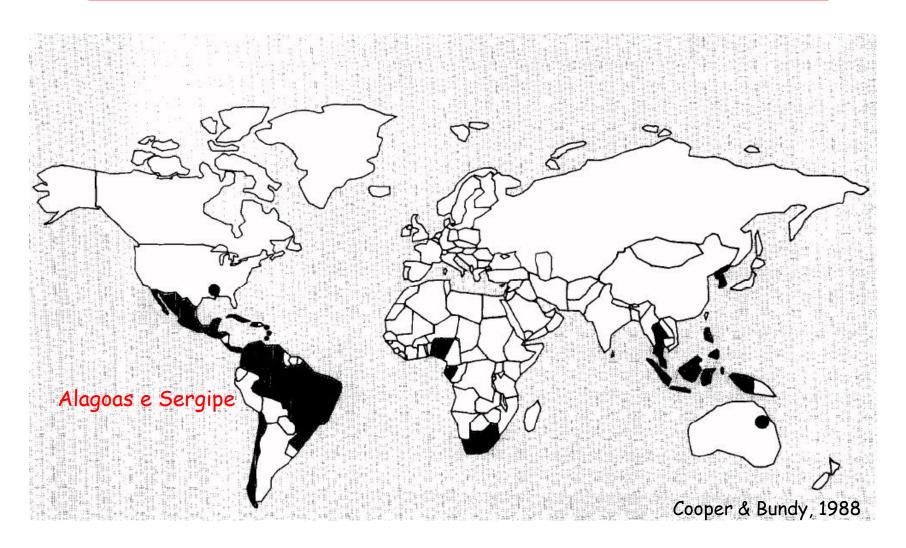
Tratamento

- Pirantel
- Albendazol/Mebendazol/Levamisol
- Piperazina (GABA)

Não são eficazes contra as larvas

- -Tratamento deve ser repetido *
- -Exame de fezes deve ser repetido

-Cirurgia

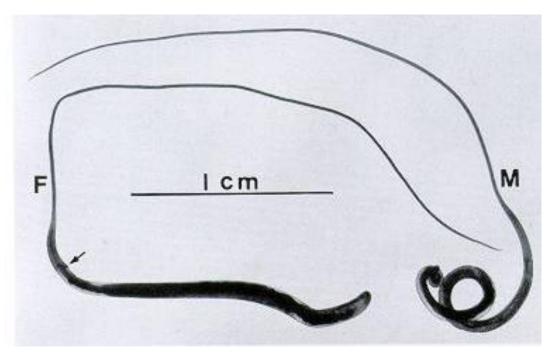

Profilaxia

Higiene

Saneamento

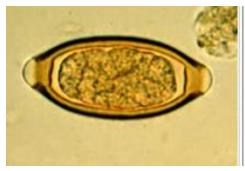
Ovos sobrevivem a tratamento de esgotos mas não a aquecimento a 50°C Ovos podem ser aspirados com poeira 100 - 250 ovos por grama de terra!

Trichuris trichiura (Tricuríase)

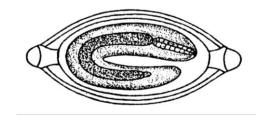


0,6 bilhão de indivíduos parasitados 10.000 mortes / ano (Ojha et al., 2014)

O parasito

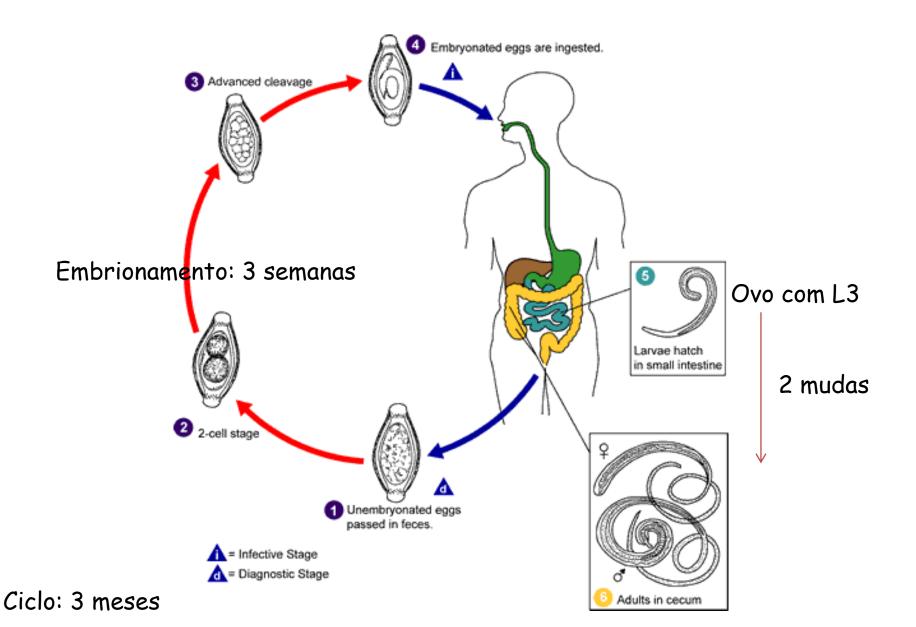

- Parasita humano (macacos, suínos) com 3-5cm
- Peças bucais rudimentares
- Vivem no ceco e no cólon por 4-5 anos
- 2-10 parasitos (até 1000)

Trichuris trichiura: thrix= cabelo, oura=cauda. Erro!



Ovos

- 50um x 22um
- 3.000 7.000 ovos / dia
- Só embrionam no meio exterior (3 semanas)
- Viáveis por vários meses
- Eclodem no intestino delgado



(lime shaped, bandeja, limão siciliano...)

Ciclo de vida de Trichuris

Sintomas

-Geralmente assintomáticos

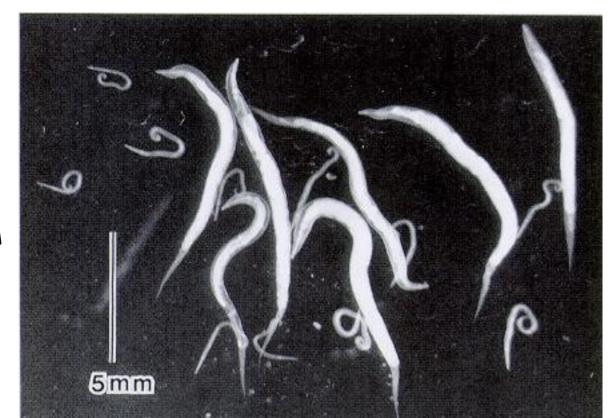
-Infecções maciças:

Irritações nas terminações nervosas Dor abdominal, diarréia, perda de peso Anemia proporcional à parasitemia $(5\mu l sangue/dia/verme)$

Diagnóstico e tratamento


-Busca de ovos nas fezes

-Tratamento:
Mebendazol
Pamoato de Oxantel

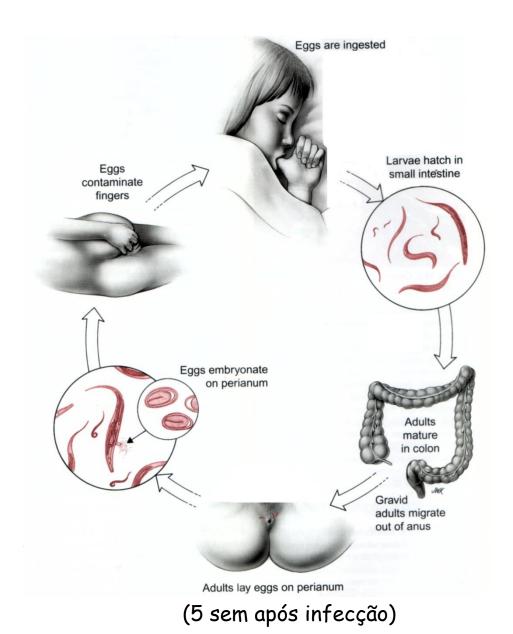

Formas de transmissão

- Transmissão oro-fecal (ovos)
- Ingestão ovos do ambiente
- Penetração pela pele (larvas)

Enterobius vermiculares

- Homem é único hospedeiro
- -Vivem na região cecal (livres ou aderidos)
- Saprófitas

91 cm ♂3a5 mm

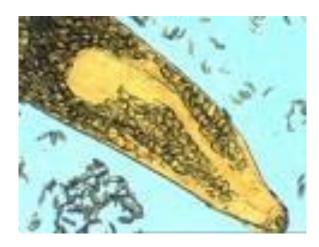

Cosmopolita

Helminto intestinal mais comum em países desenvolvidos

Alta incidência em climas temperados Ásia, Europa, América do Norte, América Latina, África, Oceania

EUA e Canadá, escolares e pré-escolares: 30 a 70%!

Ciclo vital de Enterobius vermicularis


Ciclo: 1,5-2 meses
Ovo infectante em 6h *
Eclode no ID (L3 de 150µm)

Ovos retidos na pele e mucosa perianal, às vezes nas fezes (geralmente 1-poucas fêmeas)

O ovo

- -Fêmea grávida na região perianal à noite (prurido)
- Ovos no útero (11.000 a 15.000), fêmea rompe-se
- Ovos aderentes mas não muito resistentes
- Fêmea vive 1-3 meses, macho 7 semanas?

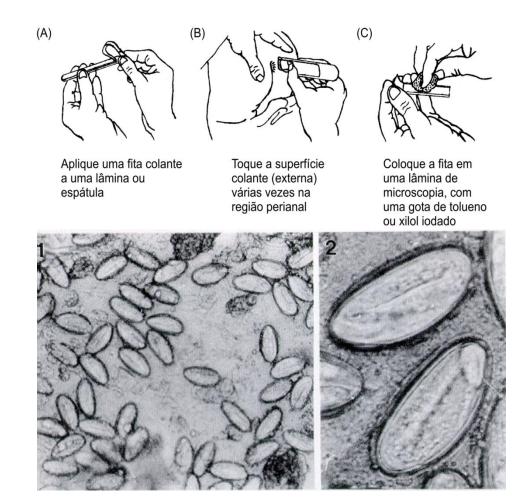
Formato característico, 50-60 μm

Transmissão

- Heteroinfecção
- Auto-infecção externa (oral)
- Auto-infecção interna (retal)

Transmissão intradomiciliar, instituições

Sintomatologia


Depende do número de vermes (1 ou poucos, até 10.000)

Geralmente assintomáticos Prurido anal (noturno)

Hemorragia anal Diarréia, colite e emagrecimento Vaginite Perfurações da parede do peritônio

Diagnóstico

- "Swab anal" (em 3 dias consecutivos logo cedo- 90%)
- Exame de fezes
- Eosinofilia

Tratamento

Dos doentes, família, instituição

- Mebendazol
- Piperazina
- Pamoato de Pirvíneo
- Pamoato de Pirantel

Profilaxia

- Banho
- Troca e limpeza de roupas (lavagem a 55°C ou fervura)
- Higiene das mãos
- Limpeza de banheiros

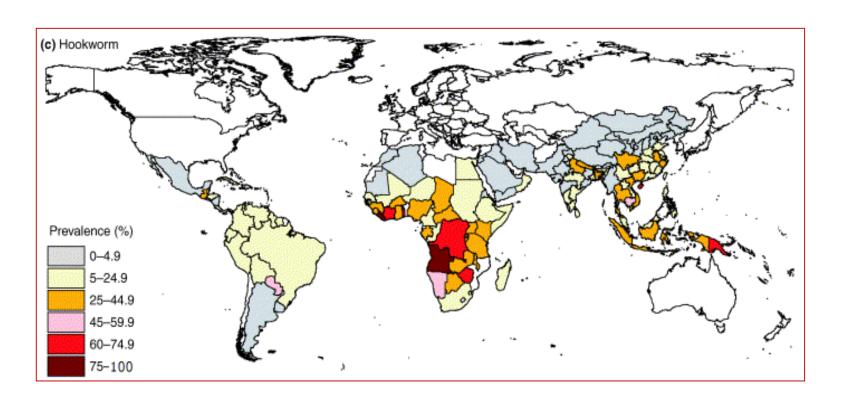
- Destruição de ovos: cresol saponificado a 10%, fenol 7%, cloramina 4% (desinfetante comum não!)

Formas de transmissão

- Transmissão oro-fecal (ovos)
- Ingestão ovos do ambiente
- Penetração pela pele (larvas)

Intervalo?

Formas de transmissão


- Transmissão oro-fecal (ovos)
- Ingestão ovos do ambiente
- Penetração pela pele (larvas)

Ancilostomídeos

Ancylostoma duodenale Necator americanus

Distribuição mundial

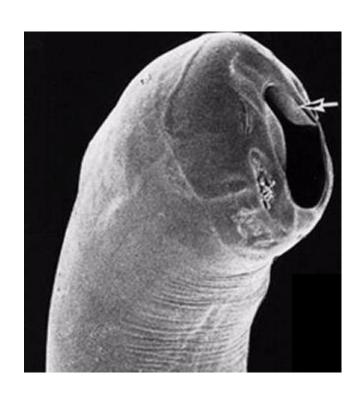
Mundo: 0,6 bilhões (Hotez et al. 2008) 75% Necator, 25% Ancylostoma

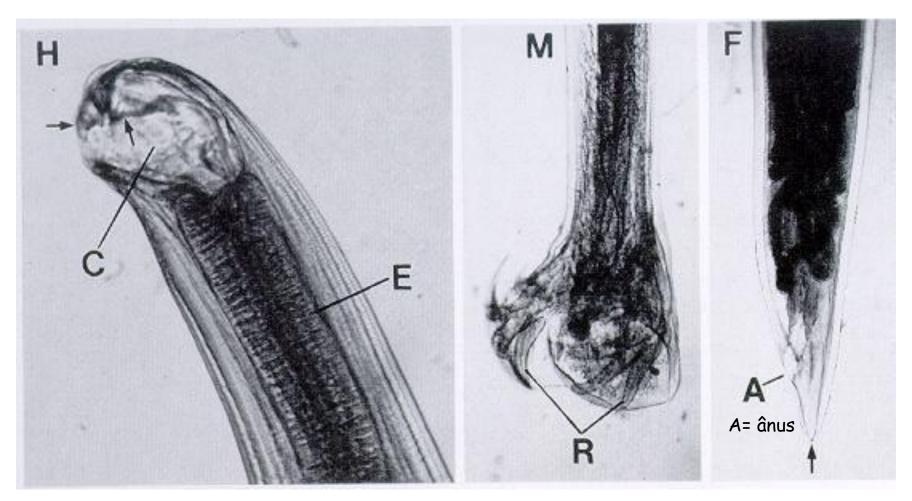
Brasil: 24 milhões (OMS 1998)

No Brasil há 3500 anos (múmias). Primeiro *Ancylostoma* (da Ásia), depois *Necator* (dos escravos da África).

Atualmente é mais frequente infecção por Ancylostoma, especialmente na área rural

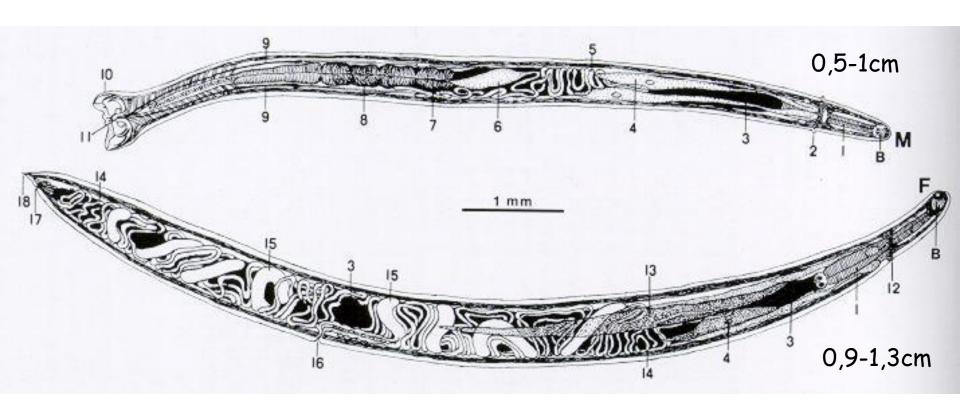
Regiões do Pará, Maranhão, Piauí, São Paulo (áreas do interior e litoral com 70-80% de positivos!)


Os parasitos

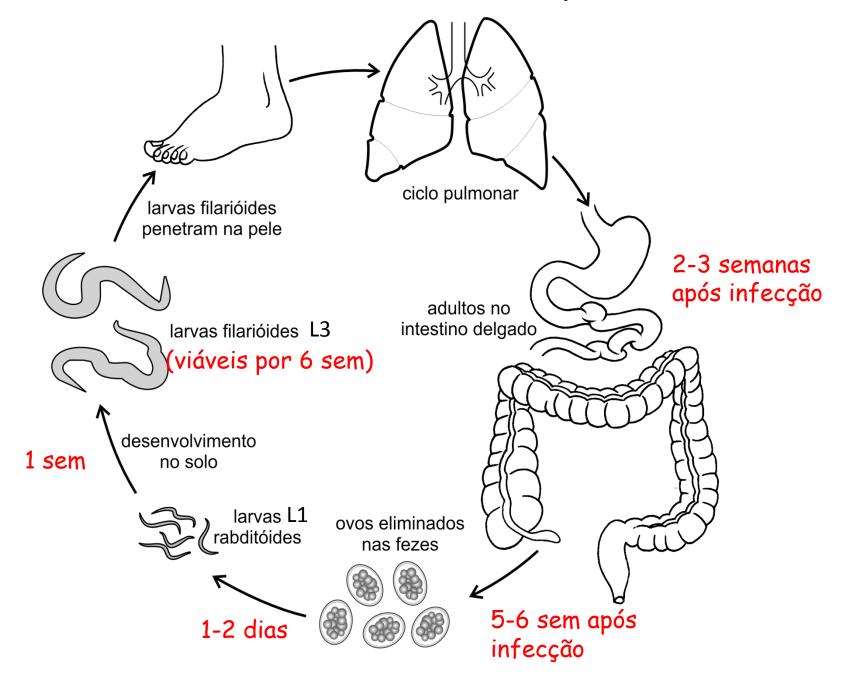

- Aproximadamente 1 cm
- Cápsula bucal
- Habitat: intestino delgado
- 5.000 a 20.000 ovos/dia
- (Necator até 9.000, Ancylostoma até 20.000)
- Vivem de 1 a 5 anos (Necator até 5, Ancylostoma até 2anos)

Ancylostoma duodenale (agkylos=ganchos)

Necator americanus (do latim: matador)



C= cápsula bucal E= Esôfago


R= raios bilaterais da bursa Região posterior da fêmea copuladora do macho

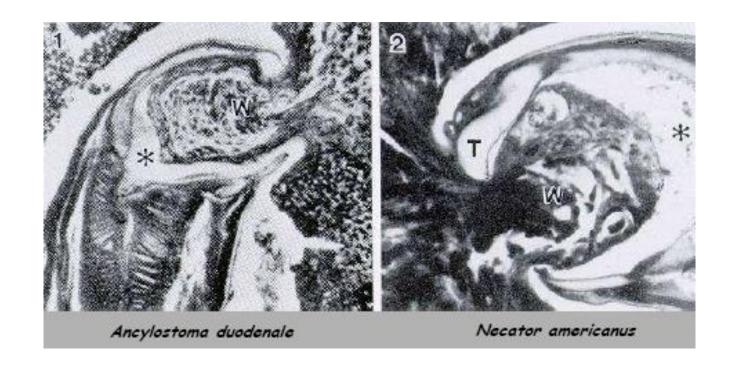
Ancylostoma duodenale

Desenho original de A. Looss (1905)- descrição da penetração *

Ciclo vital dos ancilostomídeos

A doença- ancilostomíase

- Depende da carga parasitária
- Problemas pulmonares
- Intestinos


Dilacerações

Infecções

Modificação das pregas intestinais

Perda de sangue:

- 30 (Necator) 260 μ l (Ancylostoma)/dia /verme
- 1000 parasitos = 30-260 ml/dia!

Sintomas graves:

Ancylostoma duodenale= 100 vermes

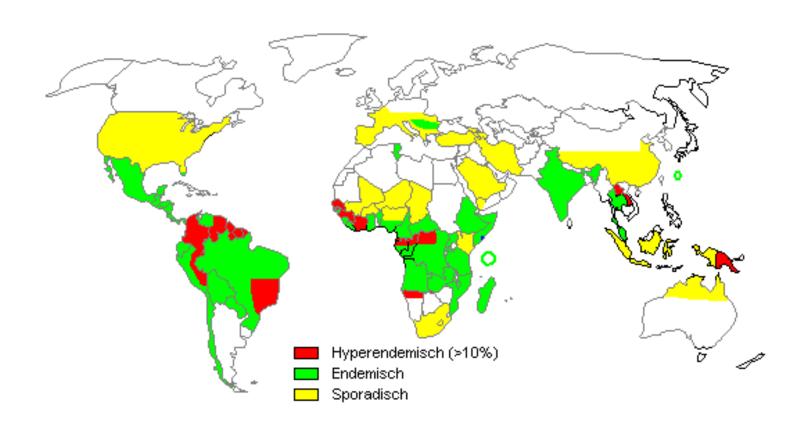
Necator americanus= 1000 vermes

Sintomas e diagnóstico

Amarelão

- Coceira
- Tosse
- Dor abdominal
- Anemia
- Desnutrição

- Ovos nas fezes
- Eosinofilia


Tratamento

- Mebendazol
- Albendazol
- Levamisol
- Pirantel
- -Reposição de Ferro

Controle

- Saneamento básico
- Uso de calçados
- Combate às larvas no solo: plantio de capim-cidreira e outros
- Medicamentos- repetição (larvas não morrem)
- Ancylostoma: contaminação também por ingestão (sem ciclo pulmonar) e passagem transplacentária de larvas!

Strongyloides stercoralis

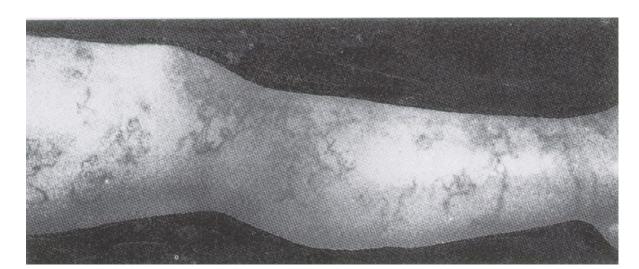
Larva migrans

Hospedeiro "errado"

Larva não evolui

Penetração pela pele: retidas sob a pele Larva migrans cutânea

Via oral: "encalham" no fígado, pulmão, outros Larva migrans visceral


Larva migrans cutânea

("Bicho geográfico")

 Larvas de Ancylostoma braziliense e A. caninum (cães e gatos)

Penetram pela pele e migram no tecido subcutâneo 2-5cm/dia, dias-meses

Infecções autolimitadas, prurido

Larva migrans cutânea

Tratamento
Tiabendazol tópico
Mebendazol

Controle

Praias- cães e gatos (escolher áreas alagadas) Tanques de areia

Larva migrans visceral

- Toxocara canis ou Toxocara catis
- Habitat: Intestino delgado de cães e gatos (Parecido com *Ascaris*)
- 200 mil ovos por dia
- Ingestão de ovos com larvas L3
- Corrente sanguinea e órgãos: granulomas
- Fígado> pulmões> cérebro> olhos> gânglios
- Geralmente assintomática ou autolimitada
- Casos fatais

- Difícil diagnóstico:

Clínico, sorologia (ELISA), radiológico, biópsia de fígado

-Tratamento:

Tiabendazol, albendazol e dietilcarbamazina (DEC)

Corticosteróides (inflamação)

Problema mundial

Europa, América do Norte e Ásia: 15 a 54% cães infectados Ovos resistentes

Controle:

Tratamento periódico cães e gatos Proteção parques infantis Redução cães e gatos vadios Higiene

Nematódios intestinais: diagnóstico

Espécie	Estágio diagnóstico	Método diagnóstico exame direto, técnicas de concentração, Kato-Katz		
Ascaris lumbricoides	OVO			
Trichuris trichiura	ovo	exame direto, técnicas de concentração, Kato-Katz		
Ancilostomídeos	ovo (às vezes larvas são encontradas)	exame direto, técnicas de concentração, Kato-Katz		
Strongyloides stercoralis	larva rabditóide	pesquisa de larvas (Baermann, Rugai)		
Enterobius vermicularis	ovo	swab anal		

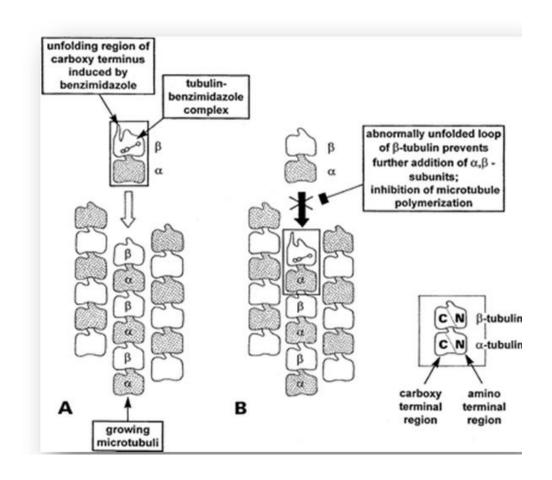
Kato Katz: ovos/ g fezes

Nematódios intestinais: tratamento

Droga	Indicações e atividade relativa			
Albendazol	Ascaris lumbricoides +++			
	Trichuris trichiura	++		
	Ancilostomídeos	+++		
	Strongyloides stercoralis	++		
	Enterobius vermicularis	+++		
Mebendazol	Ascaris lumbricoides	+++		
	Trichuris trichiura	++		
	Ancilostomídeos	+++		
	Enterobius vermicularis	+++		
Levamisol	Ascaris lumbricoides	+++		
Piperazina	Ascaris lumbricoides	+++		
lvermectina	Strongyloides stercoralis	+++		
Cambendazol	Strongyloides stercoralis	++		
Tiabendazol	Strongyloides stercoralis	++		

Modo de ação dos fármacos

Benzimidazóis:


mebendazol, albendazol tiabendazol, cambendazol

Interferem na produção de energia e captação de nutrientes

Baixa absorção intestinal, baixa toxicidade

Inibem a fumarato redutase mitocondrial (produção ATP)

2. Inibem formação de microtúbulos e captação de glicose

Mebendazol: inibição em *Ascaris* com constante de inibição 250-400 vezes maior que em bovinos.

Pamoato de Pirvínio:

Impede a utilização de carboidratos exógenos, com o esgotamento das reservas endógenas os helmintos morrem.

Baixa absorção pelo trato gastrintestinal, permanece por período prolongado em contato com os parasitas intestinais.

Fármacos que agem sobre neurônios

- Vertebrados: receptores colinérgicos nicotínicos nas junções neuromusculares e nervos que usam o ácido g-aminobutírico (GABA) no SNC (isolados pela barreira hemato-encefálica)
- Em nematóides sinapses colinérgicas e GABAérgicas (inibitórias) em todo o corpo

Levamisol/Pirantel/Oxantel:

Agem sobre receptores colinérgicos, causando contração repentina seguida de paralisia dos helmintos- bloqueio neuromuscular

Levamisol: também imunomodulador

Ivermectina, piperazina:

Agonistas de GABA, causam paralisia em nematódios e artrópodes

Annita - nitazoxanida

Gastroenterites virais - Rotavírus e Norovírus.

Helmintíases - tratamento de Enterobius vermiculares, Ascaris lumbricoides, Strongyloides stercolaris, Ancilostomíase,

Trichuris trichiura, Taenia sp, Hymenolepis nana

Amebíases - complexo Entamoeba histolytica/dispar

Giardíases - Giardia lamblia ou Giardia intestinalis

Criptosporidíase - Crysptosporidium parvum

Blastocistis hominis, Balantidium coli e Isospora belli

Annita® age contra vermes por meio da inibição de uma enzima indispensável à vida do parasita. O mesmo parece ocorrer em relação aos protozoários, embora outros mecanismos ainda não totalmente esclarecidos possam estar envolvidos.

O tempo médio de ação do medicamento está estimado entre duas a quatro horas após a sua administração.

- ·Approximately two billion people are infected with soil-transmitted helminths worldwide.
- ·Infected children are physically, nutritionally and cognitively impaired

- ·Control is based on:
 - periodical deworming to eliminate infecting worms
 - health education to prevent reinfection
 - improved sanitation to reduce soil contamination
 - safe and effective medicines are available

Review

Controlling Soil-Transmitted Helminthiasis in Pre-School-Age Children through Preventive Chemotherapy

Marco Albonico^{1*}, Henrietta Allen², Lester Chitsulo², Dirk Engels², Albis-Francesco Gabrielli², Lorenzo Savioli²

1 Ivo de Carneri Foundation (IdCF), Milano, Italy, 2 Department of Control of Neglected Tropical Diseases, World Health Organization, Geneva, Switzerland

Pre-school age children account for 10%–20% of the 2 billion people worldwide who are infected with soil-transmitted helminths (STHs)

Table 1. Estimates of Numbers Infected with STHs [90]

Parasite	Total Infected (Millions)	Under 5 Years (Millions)	(1 a 5 anos de idade, pré-escolares=IPE)
Ascaris lumbricoides	1221	122	
Trichuris trichiura	795	86	
Hookworm	740	21	

doi:10.1371/journal.pntd.0000126.t001

Helminth allergens, parasite-specific IgE, and its protective role in human immunity

Colin Matthew Fitzsimmons^{1†}, Franco Harald Falcone²*† and David William Dunne¹

Table 1 | Summary of helminthic allergens.

Helminth allergen	Common name	Gene ontology (biological process)	Related common allergen	Conserved domains	UniProt accession number	AllFam	Reference
Necator ar	nericanus (HOOKWORN	1)					
Nec a ASP-2	ASP-2	Unknown	Unknown	SCP-like extracellular protein domain, cd00168	Q7Z1H1	n/a	Zhan et al. (60)
Nec a calreticulin	Calreticulin	Calcium ion binding	Unknown	Calreticulin superfamily, PF00262	076961	n/a	Pritchard et al. (61)
Ascaris sur	um (PIG ROUNDWORM)	AND Ascaris lumbricoid	les (HUMAN ROUN	DWORM)			
Asc s 1	ABA-1, nematode polyprotein allergens	Fatty acid and retinoid binding	Unknown	n/a	Q06811	n/a	Christie et al. (62)
Asc s3	Tropomyosin	Troponin T binding	Panallergen	Tropomyosin, PF00261	F1L5K1, F1L3V2, F1KVZ5, F1L218	n/a	Acevedo et al. (63)
GSTA	Glutathione S-transferase 1	Transferase	Dust-mite allergen, Der p 8	GST_C_Sigma_ like, cd03039, PF13417, GST_N_Sigma_ like, cd03192, PF02798	P46436	n/a	Acevedo et al. (64)

Alérgenos = antígenos indutores de IgE (resposta Th2). Poucas famílias de proteínas, comuns em vermes, insetos, poeira.

- Em infecções por ancilostomídeos a resposta Th2 (antihelmíntica) é atenuada por antígenos do parasita, o que leva a menor alergia.
- Infecções por *Ascaris* estão associadas a aumento de alergia relacionada a reação cruzada entre proteínas do verme e moléculas similares em poeira e insetos
- A melhor compreensão dos mecanismos pelos quais alguns vermes atenuam a resposta Th2 do hospedeiro pode auxiliar na terapia para alergias.
- •Por outro lado, o tratamento inadvertido dessas verminoses pode aumentar doença atópica.