
Costas Busch - LSU 1

Parsing

Costas Busch - LSU 2

Compiler

Program File

v = 5;

if (v>5)

 x = 12 + v;

while (x !=3) {

 x = x - 3;

 v = 10;

}

......

Add v,v,5

cmp v,5

jmplt ELSE

THEN:

 add x, 12,v

ELSE:

WHILE:

cmp x,3

...

Machine Code

Costas Busch - LSU 3

Lexical

analyzer parser

Compiler

Program

file

machine

code

Input String Output

Costas Busch - LSU 4

Lexical analyzer:

• Recognizes the lexemes of the

 input program file:

Keywords (if, then, else, while,…),

Integers,

Identifiers (variables), etc

•It is built with DFAs (based on the

 theory of regular languages)

Costas Busch - LSU 5

•Knows the grammar of the

 programming language to be compiled

Parser:

•Constructs derivation (and derivation tree)

 for input program file (input string)

•Converts derivation to machine code

Costas Busch - LSU 6

Example Parser
PROGRAM STMT_LIST

STMT_LIST STMT; STMT_LIST | STMT;

STMT EXPR | IF_STMT | WHILE_STMT

 | { STMT_LIST }

EXPR EXPR + EXPR | EXPR - EXPR | ID

IF_STMT if (EXPR) then STMT

 | if (EXPR) then STMT else STMT

WHILE_STMT while (EXPR) do STMT

Costas Busch - LSU 7

The parser finds the derivation

 of a particular input file

10 + 2 * 5

Example

Parser

E -> E + E

 | E * E

 | INT

E => E + E

 => E + E * E

 => 10 + E*E

 => 10 + 2 * E

 => 10 + 2 * 5

Input string

derivation

Costas Busch - LSU 8

E => E + E

 => E + E * E

 => 10 + E*E

 => 10 + 2 * E

 => 10 + 2 * 5

derivation derivation tree

10

E

2 5

E E

E E

+

*

mult a, 2, 5

add b, 10, a

machine code Derivation trees

are used to build

Machine code

a

b

Costas Busch - LSU 9

A simple (exhaustive) parser

Costas Busch - LSU 10

grammar

Exhaustive Parser
input

string
derivation

We will build an exhaustive search parser

that examines all possible derivations

Costas Busch - LSU 11

Example:

Exhaustive Parser

derivation

S

bSaS

aSbS

SSSInput string

? aabb

aabbFind derivation of string

Costas Busch - LSU 12

Exhaustive Search

||| bSaaSbSSS

Phase 1:

All possible derivations of length 1

Find derivation

 of aabb

S

bSaS

aSbS

SSS

Costas Busch - LSU 13

Find derivation

 of aabb

Cannot possibly produce aabb

Phase 1:

||| bSaaSbSSS

S

bSaS

aSbS

SSS

Costas Busch - LSU 14

aSbS

SSS

Phase 1

In Phase 2,

explore the next step

of each derivation

from Phase 1

||| bSaaSbSSS

Costas Busch - LSU 15

Phase 2

aSbS

SSS

 SSSS

bSaSSSS

aSbSSSS

SSSSSS

Phase 1

abaSbS

abSabaSbS

aaSbbaSbS

aSSbaSbS

Find derivation

 of aabb

||| bSaaSbSSS

Costas Busch - LSU 16

Phase 2

SSSS

aSbSSSS

SSSSSS

aaSbbaSbS

aSSbaSbS

Find derivation

 of aabb

In Phase 3 explore

all possible derivations

||| bSaaSbSSS

Costas Busch - LSU 17

Phase 2

SSSS

aSbSSSS

SSSSSS

aaSbbaSbS

aSSbaSbS

A possible derivation

of Phase 3

aabbaaSbbaSbS

Find derivation

 of aabb

||| bSaaSbSSS

Costas Busch - LSU 18

Final result of exhaustive search

Exhaustive Parser

derivation

S

bSaS

aSbS

SSSInput

string

aabb

aabbaaSbbaSbS

Costas Busch - LSU 19

(-productions)

Suppose that the grammar does not have

productions of the form

A

BA (unit productions)

Time Complexity

Since the are no -productions

Costas Busch - LSU 20

wxxxS k 21

|||| wxi

For any derivation of a

string of terminals)(GLw

it holds that for all i

Costas Busch - LSU 21

Since the are no unit productions

1. At most derivation steps are needed

 to produce a string with at most

 variables

||w

jx ||w

2. At most derivation steps are needed

 to convert the variables of to the

 string of terminals

||w

jx
w

Costas Busch - LSU 22

Therefore, at most derivation

steps are required to produce

||2 w
w

The exhaustive search requires at most

 ||2 w phases

Costas Busch - LSU 23

Possible derivation choices

to be examined in phase 1: k

kSuppose the grammar has productions

at most

Costas Busch - LSU 24

Choices for phase 2: at most
2kkk

Choices of

phase 1

Number of

Productions

Choices for phase i: at most
ii kkk)1(

Choices of

 phase i-1

Number of

Productions

In General

Costas Busch - LSU 25

Total exploration choices for string : w

)(||2||22 ww kOkkk

Extremely bad!!!

phase 1 phase 2 phase 2|w|

Exponential to the string length

Costas Busch - LSU 26

Faster Parsers

Costas Busch - LSU 27

There exist faster parsing algorithms

for specialized grammars

S-grammar: avA

Symbol String of variables

),(X

appears once in a production

Each pair of variable, terminal

(a restricted version of Greinbach Normal form)

wX

Costas Busch - LSU 28

S-grammar example:

cS

bSSS

aSS

abccabcSabSSaSS

Each string has a unique derivation

Costas Busch - LSU 29

In the exhaustive search parsing

there is only one choice in each phase

For S-grammars:

Total steps for parsing string : w ||w

Steps for a phase: 1

Costas Busch - LSU 30

For general context-free grammars:

Next, we give a parsing algorithm

that parses a string in time w)|(| 3wO

(this time is very close to the worst case

optimal since parsing can be used to solve

the matrix multiplication problem)

Costas Busch - LSU 31

The CYK Parsing Algorithm

Input: • Arbitrary Grammar

 in Chomsky Normal Form

G

• String

Output: Determine if)(GLw

w

Number of Steps:)|(| 3wO

Can be easily converted to a Parser

Costas Busch - LSU 32

Basic Idea

Denote by the set of variables

that generate a string

)(wF
w

Consider a grammar

In Chomsky Normal Form
G

)(wFX wX
*
if

Costas Busch - LSU 33

Suppose that we have computed)(wF

Check if :)(wFS

YES

NO

)(GLw

)(GLw

)(
*
wS

Costas Busch - LSU 34

and there is production

uvw

)(uFX

)(wF can be computed recursively:

)(vFY

XYH

Then)(wFH

prefix suffix

If

)(
*
vY)(

*
uX

and

)(
**

wuvuYXYH

Write

Costas Busch - LSU 35

Examine all prefix-suffix

decompositions of w

1||1
 wvuw

2||2
 wvuw

11||
vuw w

1

2

|w|-1

Length Set of Variables

that generate w

1H

2H

1|| wH

1||21)(wHHHwF Result:

Costas Busch - LSU 36

At the basis of the recursion

we have strings of length 1

} symbol generate that Variables{)(F

symbol X

Very easy to find

Costas Busch - LSU 37

The whole algorithm can be implemented

with dynamic programming:

Remark:

First compute for smaller

substrings and then use this

to compute the result for larger

substrings of

)(wF

w

w

Costas Busch - LSU 38

• Grammar : G

bABB

aBBA

ABS

|

|

• Determine if)(GLaabbbw

Example:

Costas Busch - LSU 39

a a b b b

aa ab bb bb

aab abb bbb

aabb abbb

aabbb

aabbbDecompose the string

to all possible substrings
Length

1

2

3

4

5

Costas Busch - LSU 40

 a

{A}

a

{A}

b

{B}

b

{B}

b

{B}

 aa ab bb bb

 aab abb bbb

 aabb abbb

 aabbb

bABBaBBAABS | ,| ,

)(F

Costas Busch - LSU 41

 a

{A}

a

{A}

b

{B}

b

{B}

b

{B}

 aa

{}

ab

{S,B}

bb

{A}

bb

{A}

 aab abb bbb

 aabb abbb

 aabbb

bABBaBBAABS | ,| ,

)(F

)(F

Costas Busch - LSU 42

)(aaF

}{)(AaF

AAX There is no production of form

aaprefix suffix

}{)(AaF

bABBaBBAABS | ,| ,

Thus, {})(aaF

)(abF

}{)(AaF

ABX There are two productions of form

abprefix suffix

}{)(BbF

Thus, },{)(BSabF

ABBABS ,

Costas Busch - LSU 43

 a

{A}

a

{A}

b

{B}

b

{B}

b

{B}

 aa

{}

ab

{S,B}

bb

{A}

bb

{A}

 aab

{S,B}

abb

{A}

bbb

{S,B}

 aabb

abbb

 aabbb

bABBaBBAABS | ,| ,

Costas Busch - LSU 44

)(aabF

}{)(AaF

ASX There is no production of form

aabprefix suffix

},{)(BSabF

bABBaBBAABS | ,| ,

ABX

ABBABS ,

There are 2 productions of form

Decomposition 1

},{1 BSH

Costas Busch - LSU 45

)(aabF

{})(aaF

BX There is no production of form

aabprefix suffix

}{)(BbF

bABBaBBAABS | ,| ,

Decomposition 2

}{2 H

},{}{},{)(21 BSBSHHaabF

Costas Busch - LSU 46

 a

{A}

a

{A}

b

{B}

b

{B}

b

{B}

 aa

{}

ab

{S,B}

bb

{A}

bb

{A}

 aab

{S,B}

abb

{A}

bbb

{S,B}

 aabb

{A}

abbb

{S,B}

 aabbb

{S,B}

bABBaBBAABS | ,| ,

)(aabbbF

)(GLaabbb

)(wFS

Since

Costas Busch - LSU 47

Approximate time complexity:

)|(||)||(| 32 wOwwO

Number of

substrings

Number of

Prefix-suffix

decompositions

for a string

