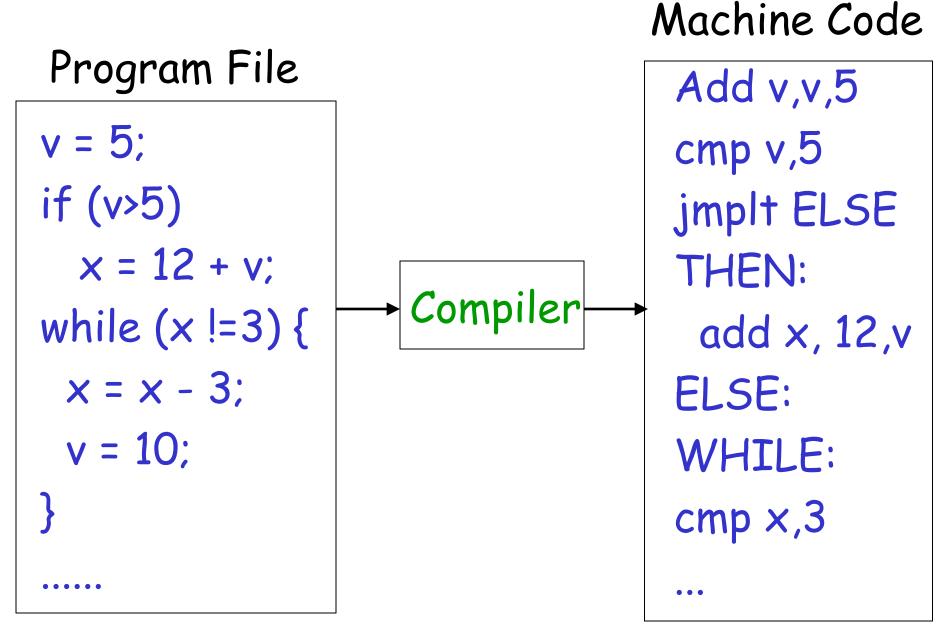
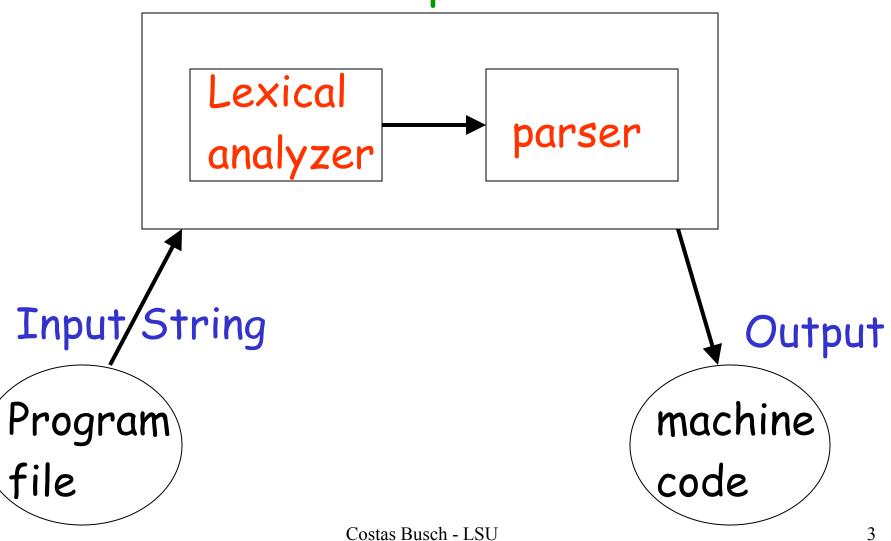
Parsing

Costas Busch - LSU

1





Lexical analyzer:

- Recognizes the lexemes of the input program file:
 - Keywords (if, then, else, while,...), Integers, Identifiers (variables), etc

•It is built with DFAs (based on the theory of regular languages)

Parser:

 Knows the grammar of the programming language to be compiled

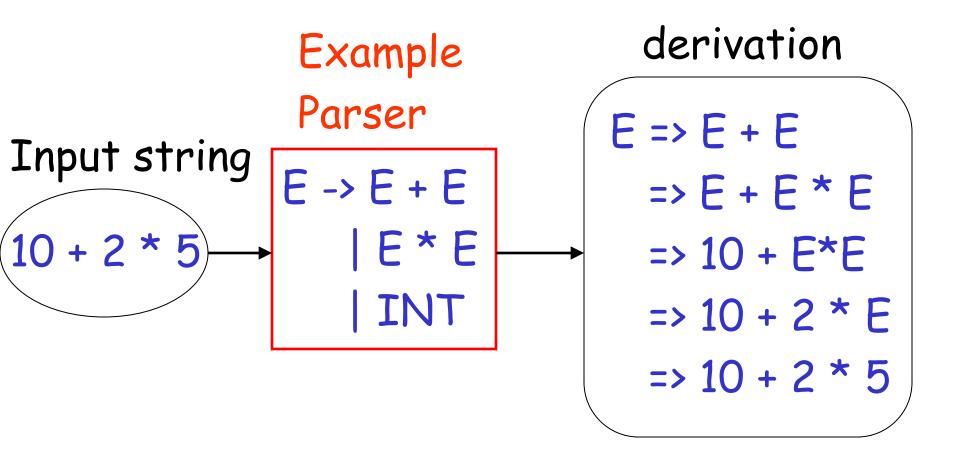
•Constructs derivation (and derivation tree) for input program file (input string)

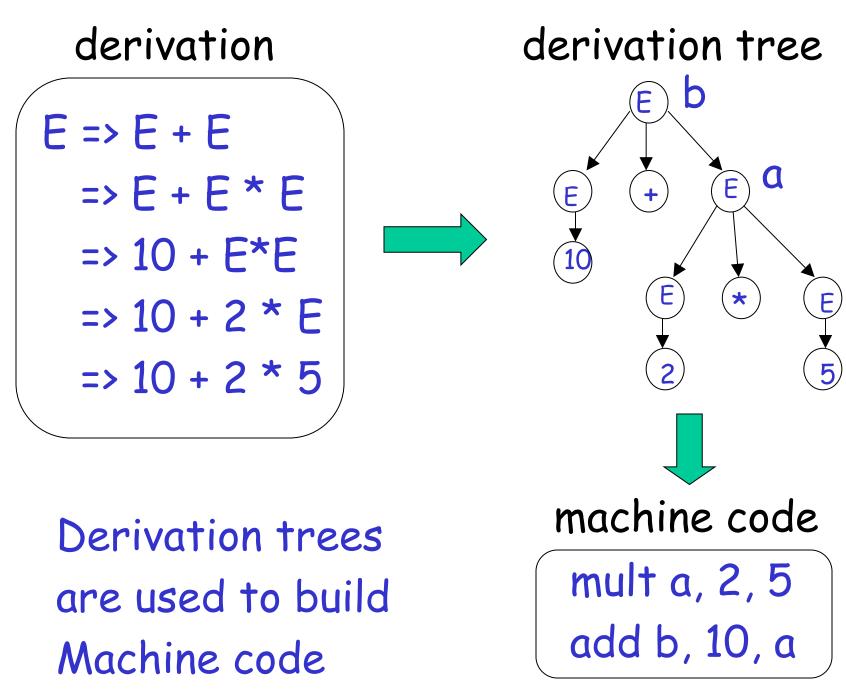
Converts derivation to machine code

Example Parser

 $\begin{array}{l} \mathsf{EXPR} \to \mathsf{EXPR} + \mathsf{EXPR} \mid \mathsf{EXPR} - \mathsf{EXPR} \mid \mathsf{ID} \\ \mathsf{IF}_\mathsf{STMT} \to \mathsf{if} (\mathsf{EXPR}) \mathsf{then} \mathsf{STMT} \\ \quad \mid \mathsf{if} (\mathsf{EXPR}) \mathsf{then} \mathsf{STMT} \mathsf{else} \mathsf{STMT} \\ \end{array}$

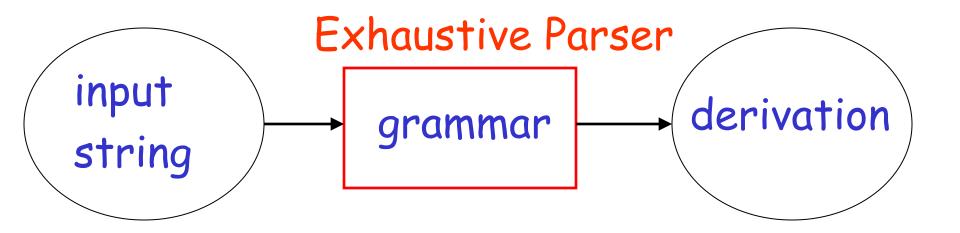
The parser finds the derivation of a particular input file



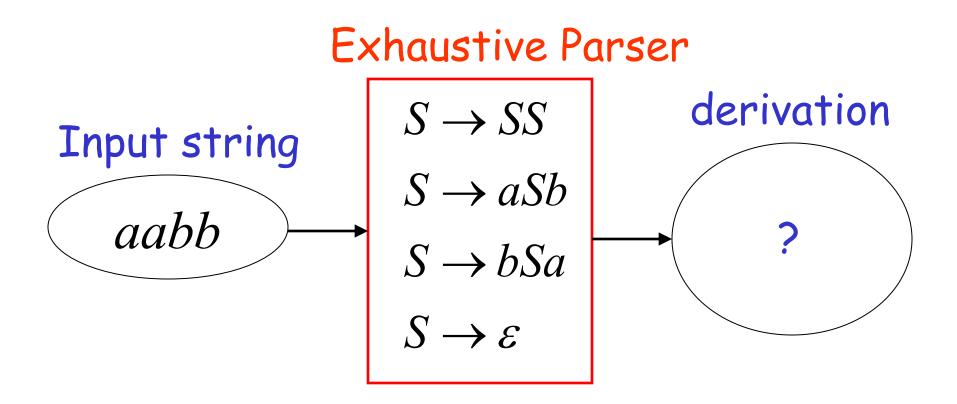


A simple (exhaustive) parser

We will build an exhaustive search parser that examines all possible derivations



Example: Find derivation of string *aabb*



Exhaustive Search

 $S \rightarrow SS \mid aSb \mid bSa \mid \varepsilon$

Phase 1:

- $S \Longrightarrow SS$
 - $S \Rightarrow aSb$

Find derivation of aabb

- $S \Rightarrow bSa$
- $S \Longrightarrow \varepsilon$

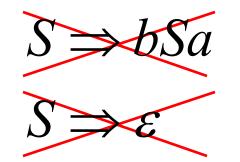
All possible derivations of length 1

 $S \rightarrow SS \mid aSb \mid bSa \mid \varepsilon$

Phase 1:

 $S \Longrightarrow SS$ $S \Longrightarrow aSh$

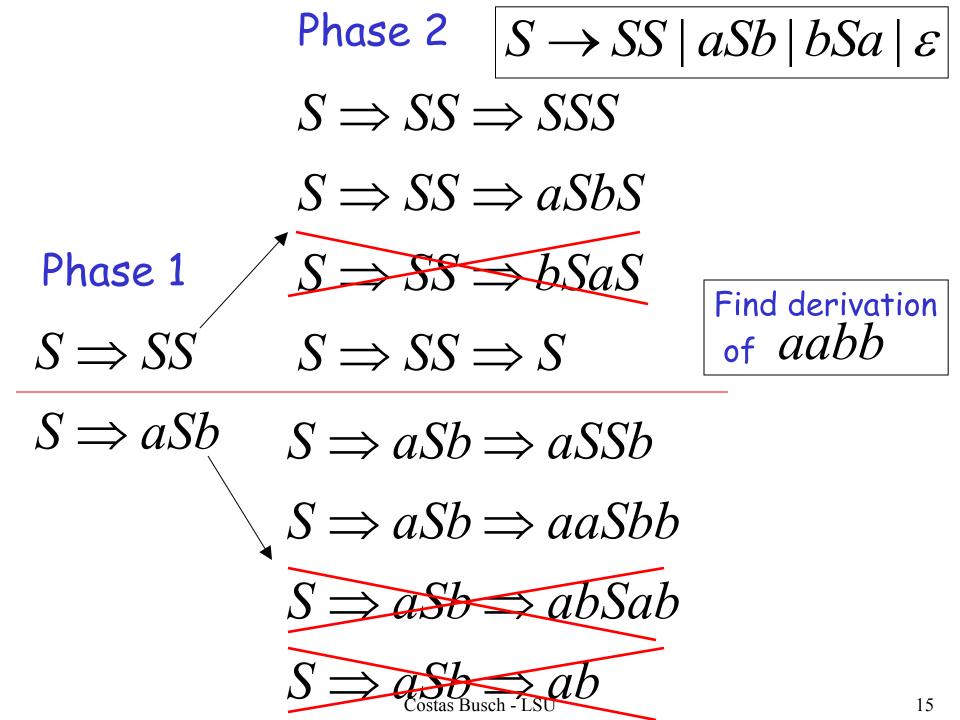
Find derivation of aabb



Cannot possibly produce *aabb*

 $S \rightarrow SS \mid aSb \mid bSa \mid \varepsilon$

Phase 1 $S \Rightarrow SS$ $S \Rightarrow aSb$ In Phase 2, explore the next step of each derivation from Phase 1



Phase 2 $S \Rightarrow SS \Rightarrow SSS$ $S \Rightarrow SS \Rightarrow aSbS$ $S \Rightarrow SS \Rightarrow S$

 $S \rightarrow SS \mid aSb \mid bSa \mid \varepsilon$

Find derivation of aabb

 $S \Rightarrow aSb \Rightarrow aSSb$

 $S \Rightarrow aSb \Rightarrow aaSbb$

In Phase 3 explore all possible derivations Phase 2 $S \Rightarrow SS \Rightarrow SSS$ $S \Rightarrow SS \Rightarrow aSbS$ $S \Rightarrow SS \Rightarrow S$

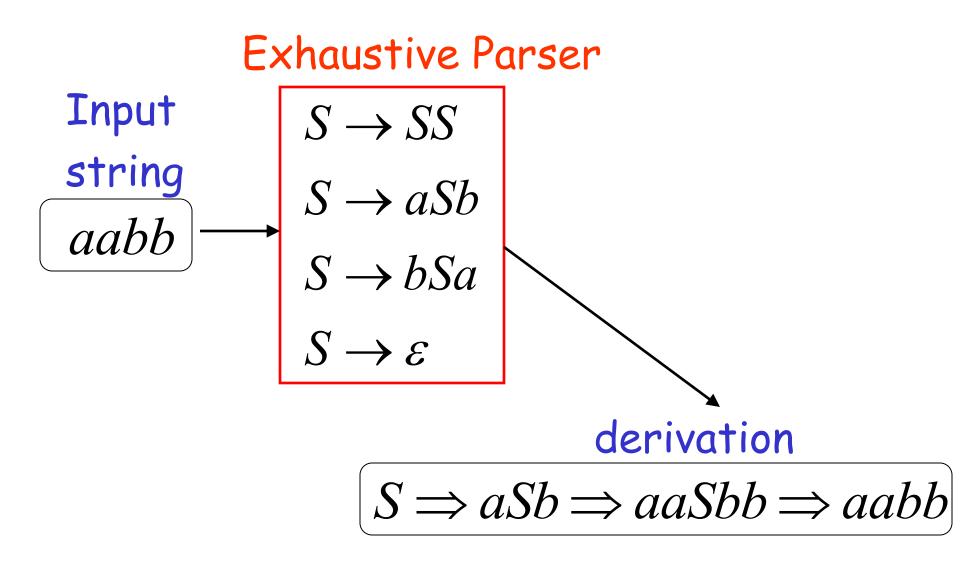
 $S \Rightarrow aSb \Rightarrow aSSb$

 $S \rightarrow SS \mid aSb \mid bSa \mid \varepsilon$

Find derivation of aabb

 $S \Rightarrow aSb \Rightarrow aaSbb$ A possible derivation
of Phase 3 $S \Rightarrow aSb \Rightarrow aaSbb \Rightarrow aabb$

Final result of exhaustive search



Time Complexity

- Suppose that the grammar does not have productions of the form
 - $A \rightarrow \mathcal{E}$ (*E*-productions) $A \rightarrow B$ (unit productions)

Since the are no \mathcal{E} -productions

For any derivation of a string of terminals $w \in L(G)$

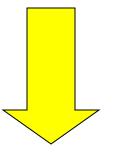
$$S \Longrightarrow x_1 \Longrightarrow x_2 \Longrightarrow \Lambda \Longrightarrow x_k \Longrightarrow w$$

it holds that $|X_i| \leq |W|$ for all *i*

Since the are no unit productions

- At most | w | derivation steps are needed to produce a string X_j with at most | w | variables
- 2. At most |w| derivation steps are needed to convert the variables of X_j to the string of terminals W

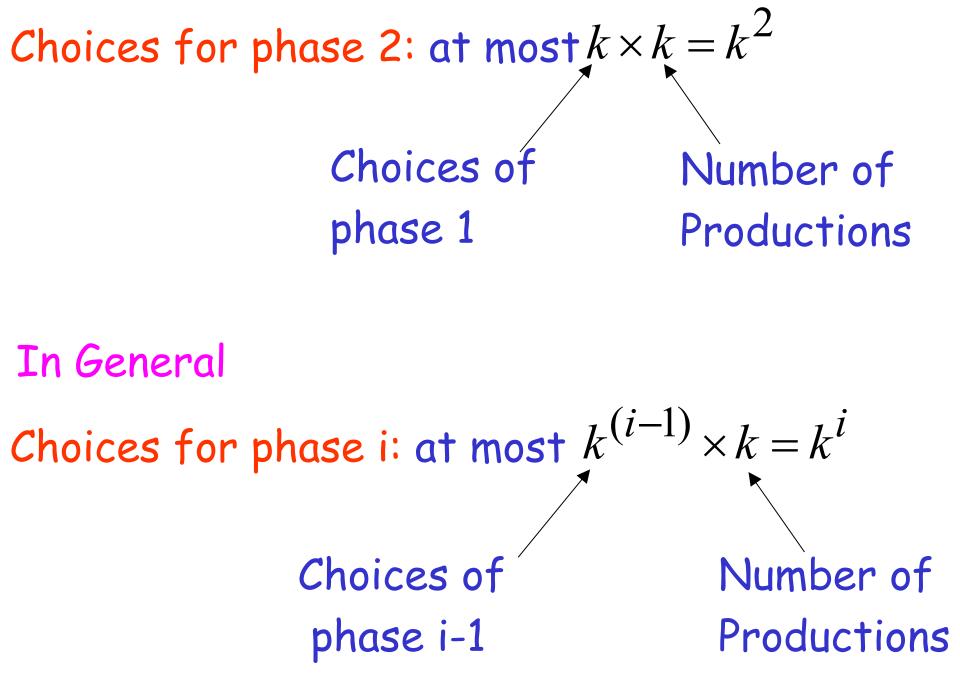
Therefore, at most 2|w| derivation steps are required to produce W



The exhaustive search requires at most 2 | w | phases

Suppose the grammar has k productions

Possible derivation choices to be examined in phase 1: at most k



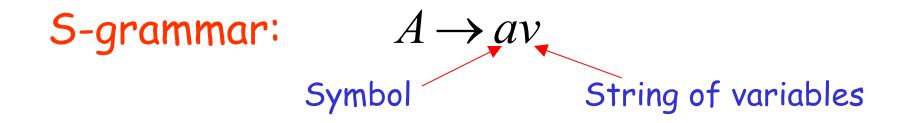
Total exploration choices for string W:

 $k + k^{2} + \Lambda + k^{2|w|} = O(k^{2|w|})$ phase 2 |w| phase 1 phase 2

Exponential to the string length Extremely bad!!!

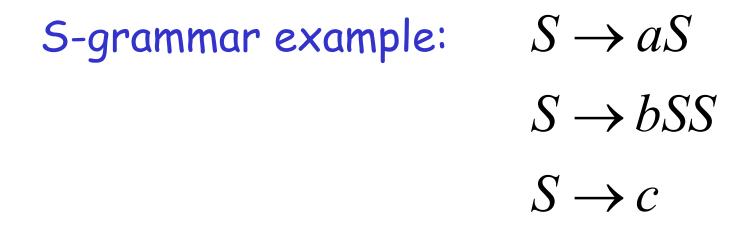
Faster Parsers

There exist faster parsing algorithms for specialized grammars



Each pair of variable, terminal (X,σ) appears once in a production $X \rightarrow \sigma W$

(a restricted version of Greinbach Normal form)



Each string has a unique derivation

$S \Rightarrow aS \Rightarrow abSS \Rightarrow abcS \Rightarrow abcc$

For S-grammars:

In the exhaustive search parsing there is only one choice in each phase

Steps for a phase: 1

Total steps for parsing string w : |w|

For general context-free grammars:

Next, we give a parsing algorithm that parses a string w in time $O(|w|^3)$

(this time is very close to the worst case optimal since parsing can be used to solve the matrix multiplication problem)

The CYK Parsing Algorithm

Input:

- Arbitrary Grammar G in Chomsky Normal Form
- String W

Output: Determine if $w \in L(G)$ Number of Steps: $O(|w|^3)$

Can be easily converted to a Parser

Basic Idea

Consider a grammar *G* In Chomsky Normal Form

Denote by F(w) the set of variables that generate a string \mathcal{W}

 $X \in F(w)$ if $X \Longrightarrow w$

*

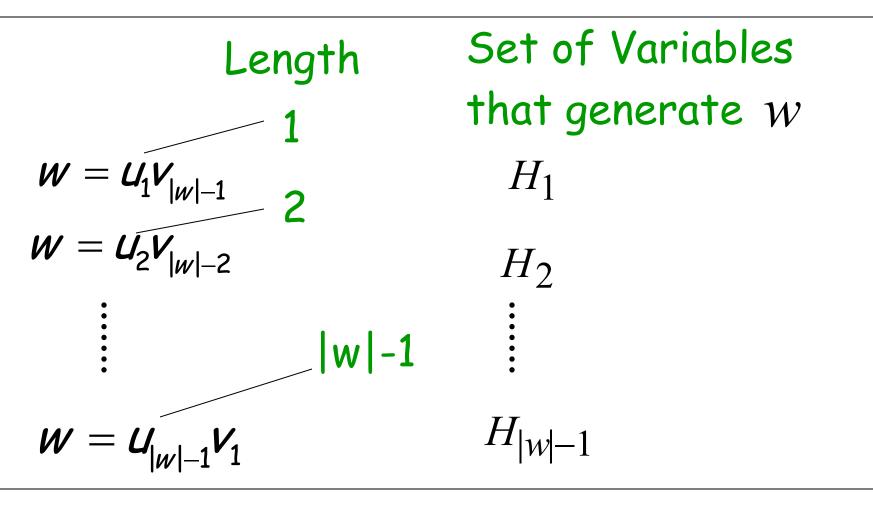
Suppose that we have computed F(w)

Check if $S \in F(w)$: YES $\longrightarrow w \in L(G)$ $(S \Longrightarrow w)$ NO $\longrightarrow w \notin L(G)$

F(w) can be computed recursively: prefix suffix Write W = UVIf $X \in F(u)$ and $Y \in F(v)$ * $(Y \Rightarrow v)$ $(X \Rightarrow u)$ and there is production $H \rightarrow XY$ Then $H \in F(w)$ $(H \Rightarrow XY \Rightarrow uY \Rightarrow uv = w)$

Costas Busch - LSU

Examine all prefix-suffix decompositions of w



Result: $F(w) = H_1 \cup H_2 \cup \Lambda \cup H_{|w|-1}$

Costas Busch - LSU

At the basis of the recursion we have strings of length 1

 $F(\sigma) = \{ \text{Variables that generate symbol } \sigma \}$ \uparrow Symbol $X \rightarrow \sigma$

Very easy to find

Remark:

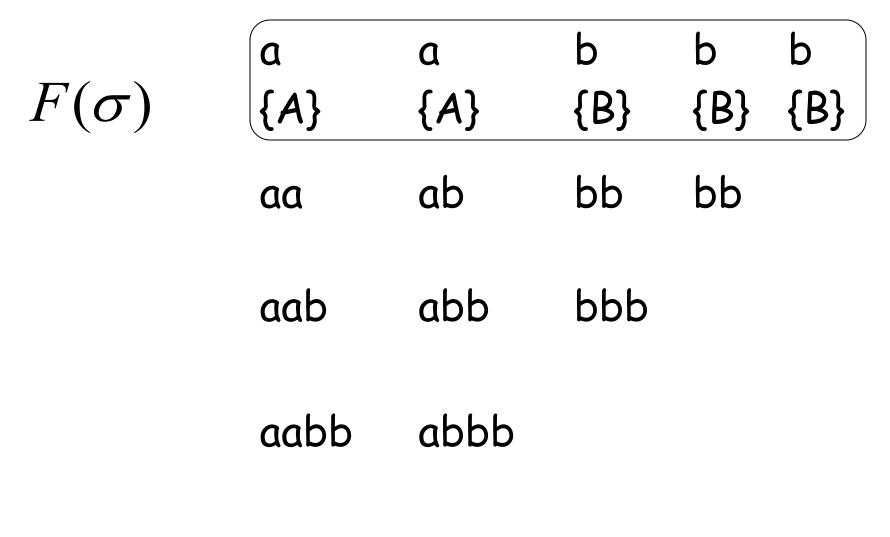
The whole algorithm can be implemented with dynamic programming:

First compute F(w') for smaller substrings W' and then use this to compute the result for larger substrings of W

• Grammar $G: S \rightarrow AB$ $A \rightarrow BB \mid a$ $B \rightarrow AB \mid b$

• Determine if $w = aabbb \in L(G)$

Length 1	Decompose the string <i>aabbb</i> to all possible substrings					
	۵	۵	b	b	b	
2	aa	ab	bb	bb		
3	aab	abb	bbb			
4	aabb	abbb				
5	aabbb					



aabbb

Costas Busch - LSU

$F(\sigma) =$	a {A}	a {A}	b {B}	b {B}	b {B}
	aa	ab	bb	bb	
$F(\cdot) =$	{}	{S,B}	{A}	{A}	
	aab	abb	bbb		

aabb abbb

aabbb

Costas Busch - LSU

 $F(aa) \qquad \text{prefix } a \text{ suffix} \\ F(a) = \{A\} \quad F(a) = \{A\}$

There is no production of form $X \rightarrow AA$ Thus, $F(aa) = \{\}$

$$F(ab) \qquad prefix \ ab \ suffix \\ F(a) = \{A\} \ F(b) = \{B\}$$

There are two productions of form $X \to AB$ $S \to AB, B \to AB$

Thus, $F(ab) = \{S, B\}$

$S \rightarrow AB$,	$A \rightarrow BE$	$B \mid a, B$	$\rightarrow AB$	b	
	۵	۵	b	b	b
	{A}	{A}	{B}	{B}	{B}
	aa	ab	bb	bb	
	{}	{S,B}	{A}	{A}	
	aab	abb	bbb		
	{S,B}	{ A }	{S,B}		
	aabb	abbb			

aabbb

F(aab)

Decomposition 1

prefix ab suffix $F(a) = \{A\} \quad F(ab) = \{S, B\}$ There is no production of form $X \rightarrow AS$ There are 2 productions of form $X \rightarrow AB$

 $S \to AB, \quad B \to AB$

$H_1 = \{S, B\}$

Decomposition 2

prefix aab suffix $F(aa) = \{\} \qquad F(b) = \{B\}$ There is no production of form $X \rightarrow B$

F(aab)

$$\mathcal{H}_2 = \{\}$$

$F(aab) = H_1 \cup H_2 = \{S, B\} \cup \{\} = \{S, B\}$

$S \rightarrow AB$,	$A \rightarrow BB$	a, B	$\rightarrow AB$	b	
	۵	۵	b	b	b
	{A}	{A}	{B}	{B}	{B}
Since	۵۵	ab	bb	bb	
$S \in F(w)$	{}	{S,B}	{A}	{ A }	
	aab	abb	bbb		
aabbb = I(C)	{S,B}	{A}	{S,B}		
$aabbb \in L(G)$	aabb	abbb			
	{A}	{S,B}			
	aabbb				
F(aabbb)=	$= \{S,B\}$ Costas Bu	isch - LSU			46

Approximate time complexity:

Number of substrings

Number of Prefix-suffix decompositions for a string

 $O(|w|^2 \cdot |w|) = O(|w|^3)$