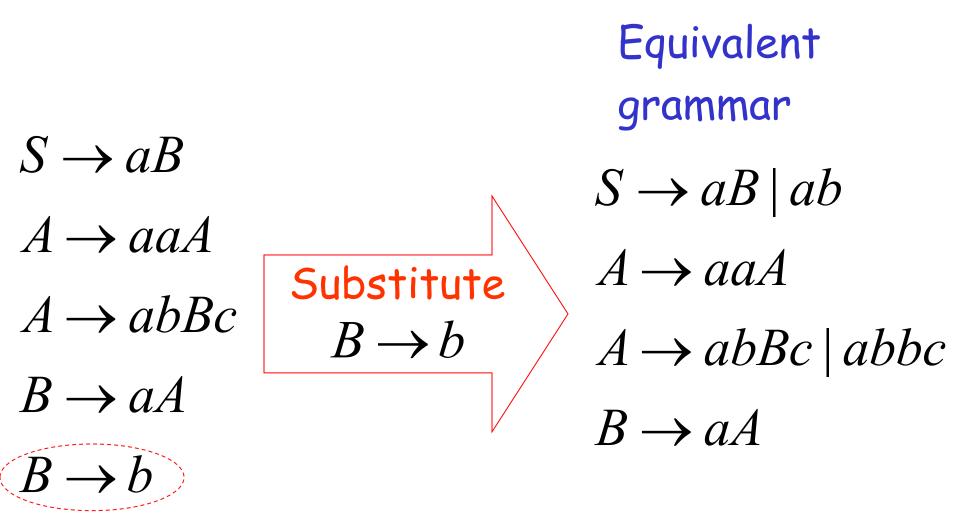
Simplifications of Context-Free Grammars

A Substitution Rule



 $S \rightarrow aB \mid ab$ $A \rightarrow aaA$ $A \rightarrow abBc \mid abbc$ $B \rightarrow aA$ Substitute $B \rightarrow aA$

 $S \rightarrow aR | ab | aaA$

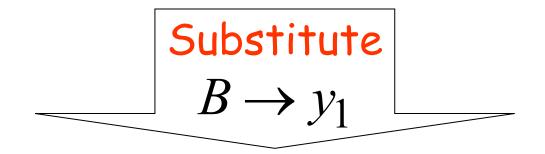
 $A \rightarrow aaA$

 $A \rightarrow abBc \mid abbc \mid abaAc$

Equivalent grammar

In general: $A \rightarrow xBz$

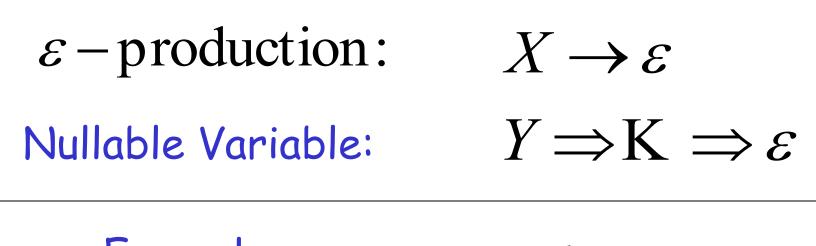
 $B \rightarrow y_1$

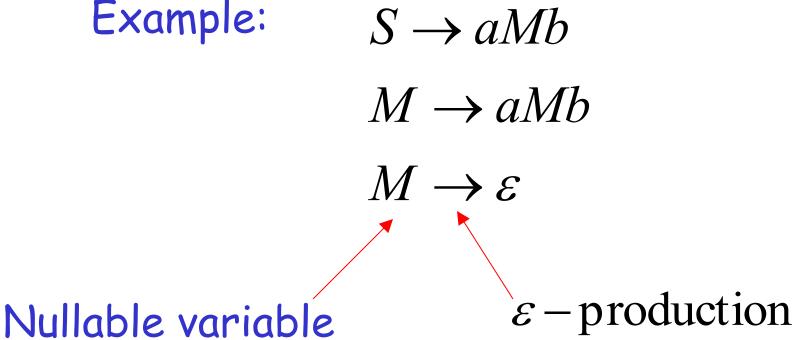


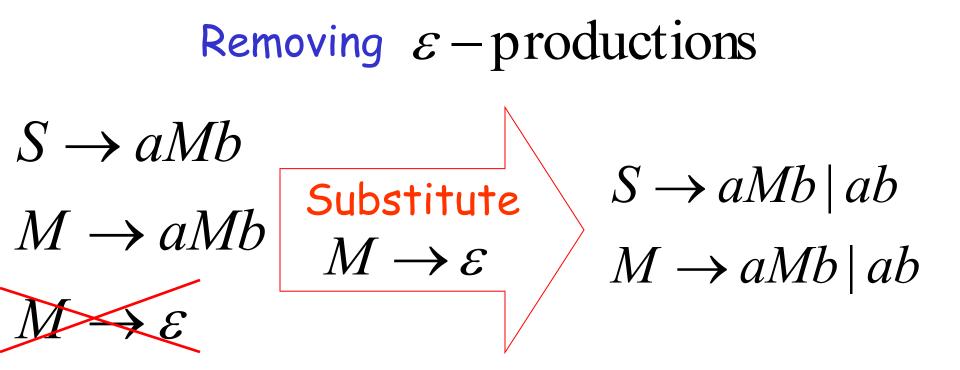
 $A \rightarrow xBz \mid xy_1z$

equivalent grammar

Nullable Variables



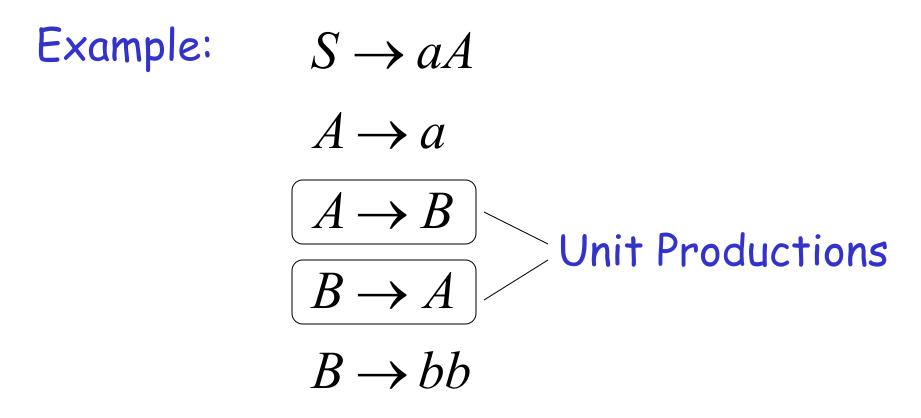




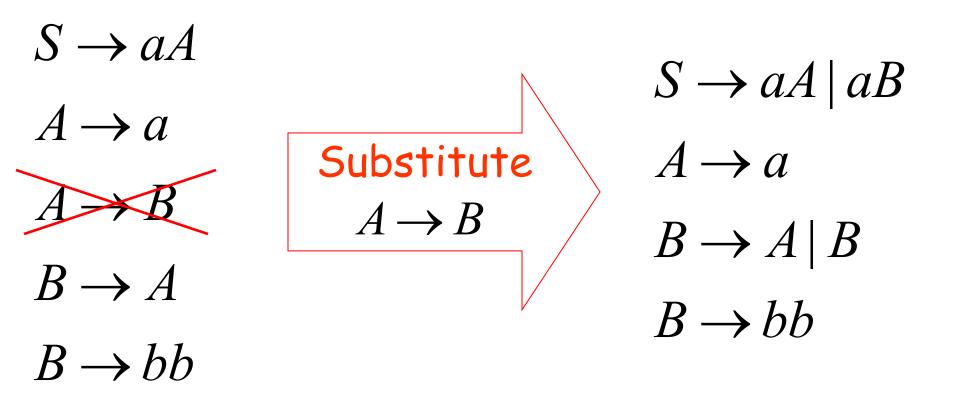
After we remove all the \mathcal{E} -productions all the nullable variables disappear (except for the start variable)

Unit-Productions

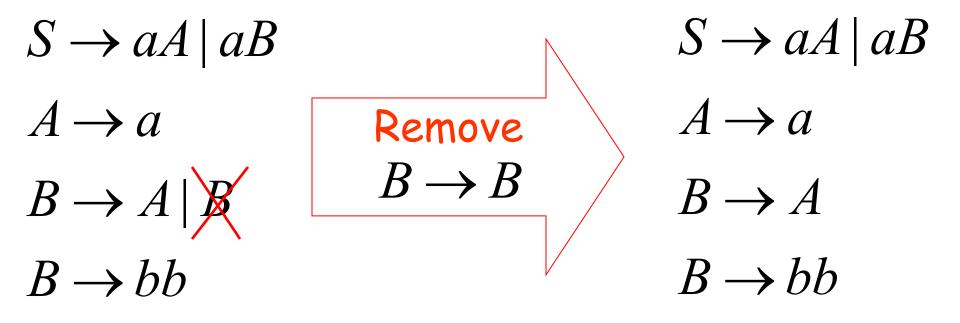
Unit Production: $X \rightarrow Y$ (a single variable in both sides)

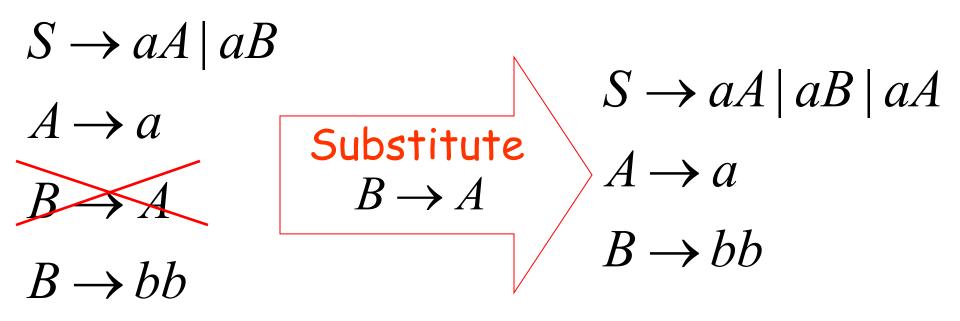


Removal of unit productions:

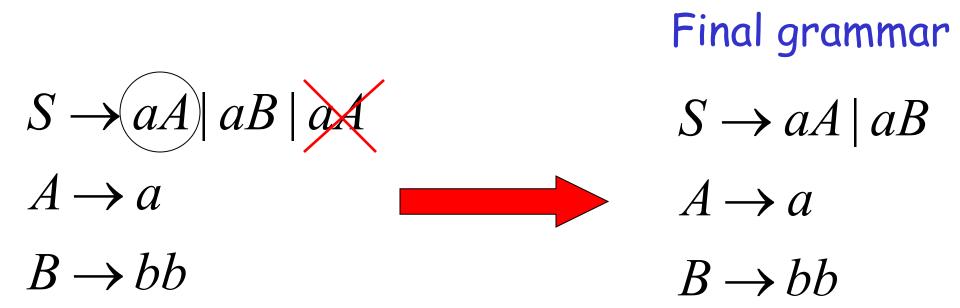


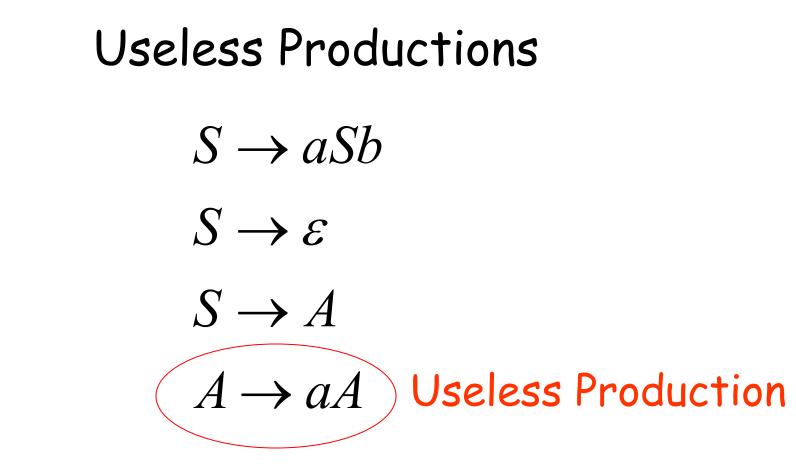
Unit productions of form $X \rightarrow X$ can be removed immediately





Remove repeated productions

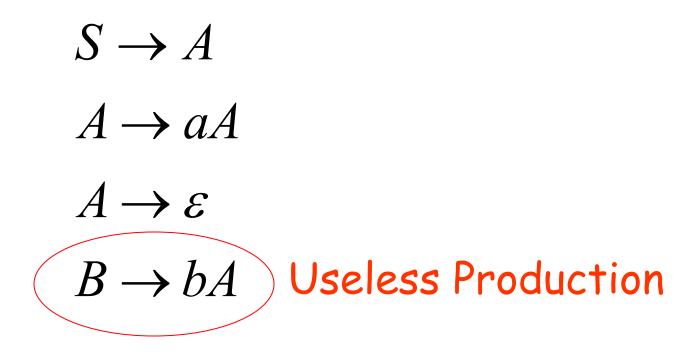




Some derivations never terminate...

 $S \Rightarrow A \Rightarrow aA \Rightarrow aaA \Rightarrow K \Rightarrow aaK aA \Rightarrow K$

Another grammar:



Not reachable from S

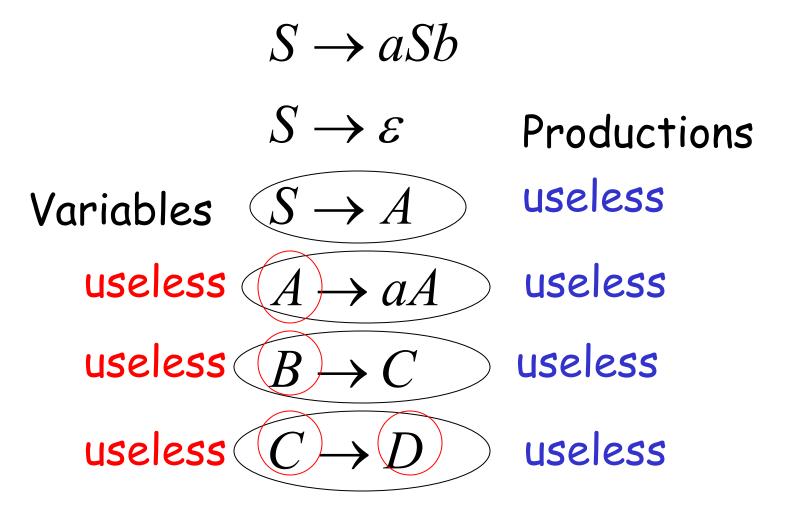
In general:

If there is a derivation $S \Rightarrow K \Rightarrow xAy \Rightarrow K \Rightarrow w \in L(G)$ consists of terminals

Then variable A is useful

Otherwise, variable A is useless

A production $A \rightarrow x$ is useless if any of its variables is useless



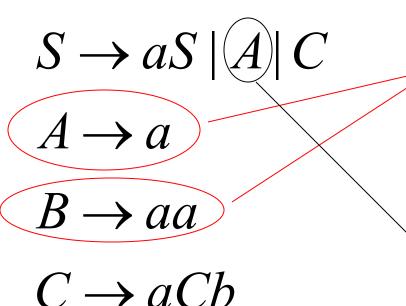
Costas Busch - LSU

Removing Useless Variables and Productions

Example Grammar: $S \rightarrow aS | A | C$

 $S \rightarrow aS \mid A \mid C$ $A \rightarrow a$ $B \rightarrow aa$ $C \rightarrow aCb$

First: find all variables that can produce strings with only terminals or \mathcal{E} (possible useful variables)



Round 1: $\{A, B\}$

(the right hand side of production that has only terminals)

Round 2: $\{A, B, S\}$ (the right hand side of a production has terminals and variables of previous round)

This process can be generalized

Then, remove productions that use variables other than $\{A, B, S\}$

$$S \rightarrow aS \mid A \mid C$$

$$A \rightarrow a$$

$$B \rightarrow aa$$

$$C \rightarrow aCb$$

$$S \rightarrow aS \mid A$$

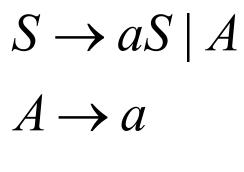
$$S \rightarrow aS \mid A$$

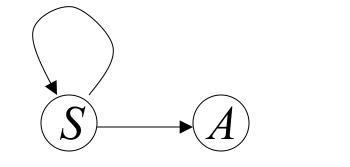
$$A \rightarrow a$$

$$B \rightarrow aa$$

Second: Find all variables reachable from S

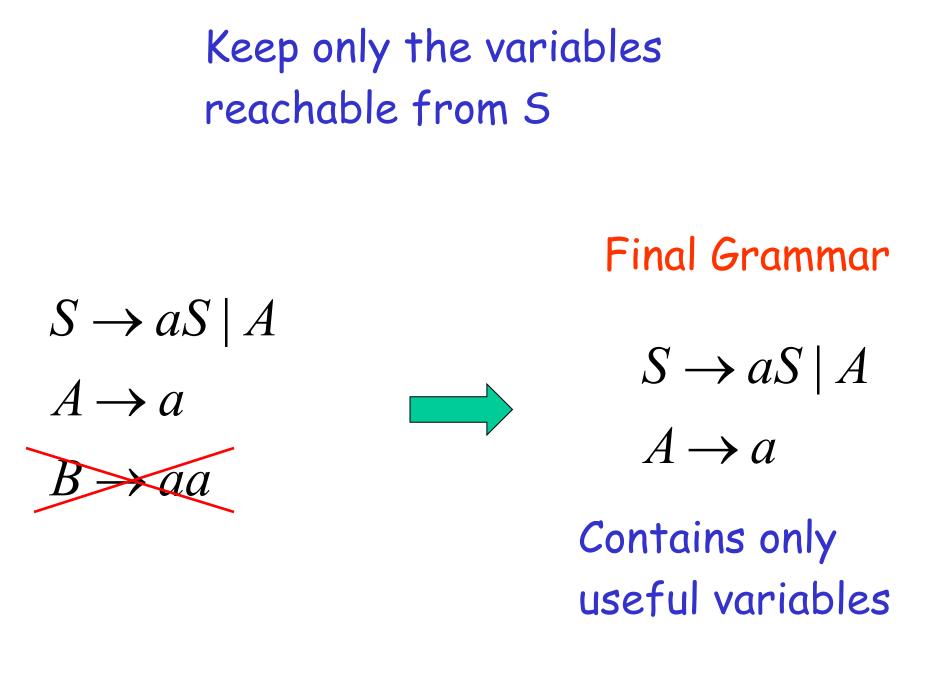
Use a Dependency Graph where nodes are variables





 $B \rightarrow aa$

unreachable



Removing All

Step 1: Remove Nullable Variables

Step 2: Remove Unit-Productions

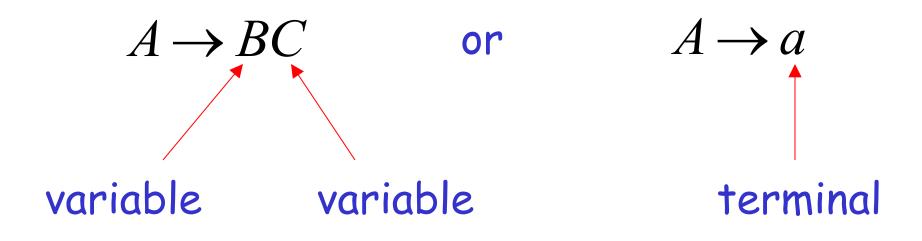
Step 3: Remove Useless Variables

This sequence guarantees that unwanted variables and productions are removed

Normal Forms for Context-free Grammars

Chomsky Normal Form

Each production has form:



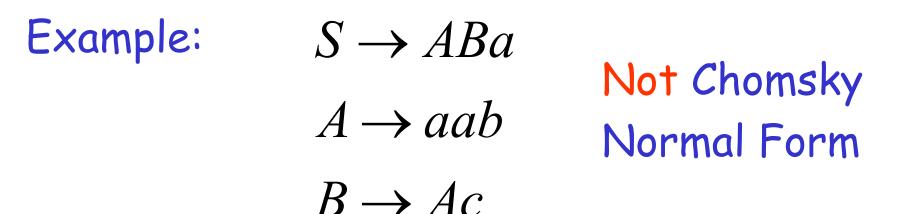
Examples:

 $S \to AS$ $S \to a$ $A \to SA$ $A \to b$

Chomsky Normal Form $S \rightarrow AS$ $S \rightarrow AAS$ $A \rightarrow SA$ $A \rightarrow aa$

Not Chomsky Normal Form

Conversion to Chomsky Normal Form



We will convert it to Chomsky Normal Form

Introduce new variables for the terminals: T_a, T_b, T_c $S \rightarrow ABT_a$ $A \rightarrow T_a T_a T_b$ $S \rightarrow ABa$ $B \rightarrow AT_c$ $A \rightarrow aab$ $T_a \rightarrow a$ $B \rightarrow Ac$ $T_b \rightarrow b$ $T_c \rightarrow c$

Introduce new intermediate variable V_1 to break first production:

$$S \rightarrow ABT_{a}$$

$$A \rightarrow T_{a}T_{a}T_{b}$$

$$B \rightarrow AT_{c}$$

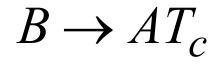
$$T_{a} \rightarrow a$$

$$T_{b} \rightarrow b$$

$$T_{c} \rightarrow c$$

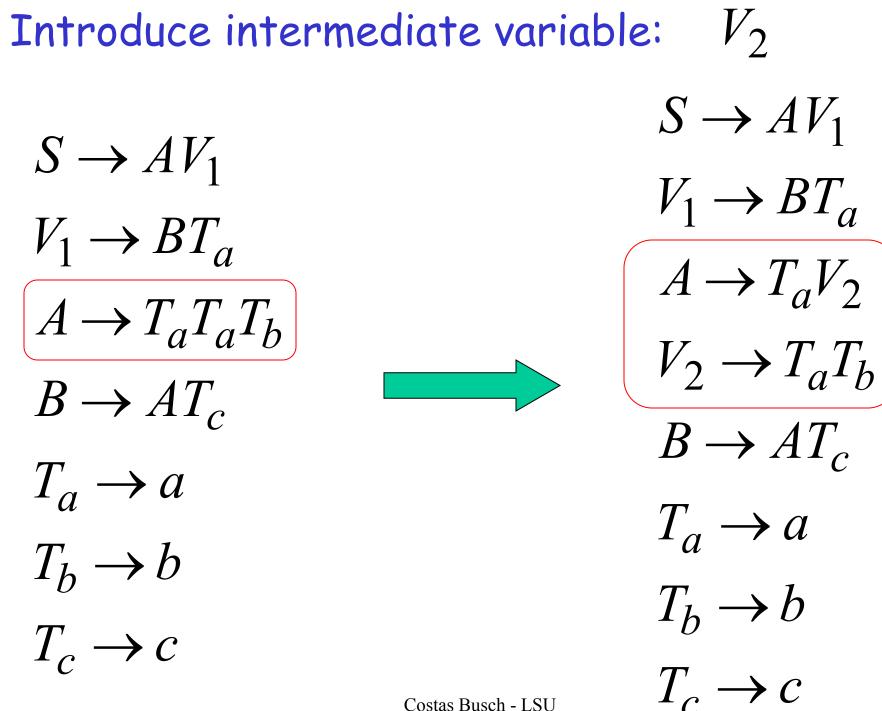
 $S \to AV_1$ $V_1 \to BT_a$

 $A \rightarrow T_a T_a T_b$



 $T_a \rightarrow a$

 $T_h \rightarrow b$



Final grammar in Chomsky Normal Form: $S \rightarrow AV_1$ $V_1 \rightarrow BT_a$ $A \rightarrow T_a V_2$ Initial grammar $V_2 \rightarrow T_a T_h$ $S \rightarrow ABa$ $B \rightarrow AT_c$ $A \rightarrow aab$ $T_a \rightarrow a$ $B \rightarrow Ac$ $T_h \rightarrow b$ $T_c \rightarrow c$

In general:

From any context-free grammar (which doesn't produce \mathcal{E}) not in Chomsky Normal Form

we can obtain: an equivalent grammar in Chomsky Normal Form

The Procedure

First remove:

Nullable variables Unit productions (Useless variables optional) Then, for every symbol a: New variable: T_a Add production $T_a \rightarrow a$

In productions with length at least 2 replace a with T_a

Productions of form $A \rightarrow a$ do not need to change! Replace any production $A \rightarrow C_1 C_2 \Lambda C_n$

with
$$A \rightarrow C_1 V_1$$

 $V_1 \rightarrow C_2 V_2$
K
 $V_{n-2} \rightarrow C_{n-1} C_n$

New intermediate variables: V_1, V_2, K, V_{n-2}

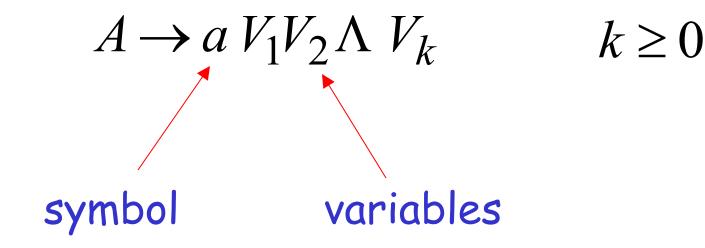
Observations

 Chomsky normal forms are good for parsing and proving theorems

 It is easy to find the Chomsky normal form for any context-free grammar (which doesn't generate E)

Greinbach Normal Form

All productions have form:



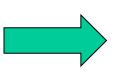
$S \to cAB$ $A \to aA \mid bB \mid b$ $B \to b$

Greinbach Normal Form $S \to abSb$ $S \to aa$

Not Greinbach Normal Form

Conversion to Greinbach Normal Form:

 $S \to abSb$ $S \to aa$



$$S \rightarrow aT_bST_b$$
$$S \rightarrow aT_a$$
$$T_a \rightarrow a$$
$$T_b \rightarrow b$$
Greinbach

Observations

Greinbach normal forms are very good
 for parsing strings (better than Chomsky Normal Forms)

 However, it is difficult to find the Greinbach normal of a grammar