

• Maxwell's equations in the Fourier domain lead to

 $\nabla^2 \tilde{\mathbf{E}} + n^2(\boldsymbol{\omega}) k_0^2 \tilde{\mathbf{E}} = 0.$

- $n = n_1$ inside the core but changes to n_2 in the cladding.
- Useful to work in cylindrical coordinates ρ, ϕ, z .
- Common to choose E_z and H_z as independent components.
- Equation for E_z in cylindrical coordinates:

$$\frac{\partial^2 E_z}{\partial \rho^2} + \frac{1}{\rho} \frac{\partial E_z}{\partial \rho} + \frac{1}{\rho^2} \frac{\partial^2 E_z}{\partial \phi^2} + \frac{\partial^2 E_z}{\partial z^2} + n^2 k_0^2 E_z = 0.$$

• H_z satisfies the same equation.

Fiber Modes (cont.)

• Use the method of separation of variables:

 $E_z(\rho,\phi,z) = F(\rho)\Phi(\phi)Z(z).$

• We then obtain three ODEs:

 $d^{2}Z/dz^{2} + \beta^{2}Z = 0,$ $d^{2}\Phi/d\phi^{2} + m^{2}\Phi = 0,$ $\frac{d^{2}F}{d\rho^{2}} + \frac{1}{\rho}\frac{dF}{d\rho} + \left(n^{2}k_{0}^{2} - \beta^{2} - \frac{m^{2}}{\rho^{2}}\right)F = 0.$

- β and m are two constants (m must be an integer).
- First two equations can be solved easily to obtain $Z(z) = \exp(i\beta z), \qquad \Phi(\phi) = \exp(im\phi).$
- $F(\rho)$ satisfies the Bessel equation.

Fiber Modes (cont.)

• General solution for E_z and H_z :

$$E_{z} = \begin{cases} AJ_{m}(\rho\rho) \exp(im\phi) \exp(i\beta z); & \rho \leq a, \\ CK_{m}(q\rho) \exp(im\phi) \exp(i\beta z); & \rho > a. \end{cases}$$

$$H_{z} = \begin{cases} BJ_{m}(\rho\rho) \exp(im\phi) \exp(i\beta z); & \rho \leq a, \\ DK_{m}(q\rho) \exp(im\phi) \exp(i\beta z); & \rho > a. \end{cases}$$

 $p^2 = n_1^2 k_0^2 - \beta^2$, $q^2 = \beta^2 - n_2^2 k_0^2$.

• Other components can be written in terms of E_z and H_z :

$$E_{\rho} = \frac{i}{p^{2}} \left(\beta \frac{\partial E_{z}}{\partial \rho} + \mu_{0} \frac{\omega}{\rho} \frac{\partial H_{z}}{\partial \phi} \right), \qquad E_{\phi} = \frac{i}{p^{2}} \left(\frac{\beta}{\rho} \frac{\partial E_{z}}{\partial \phi} - \mu_{0} \omega \frac{\partial H_{z}}{\partial \rho} \right),$$
$$H_{\rho} = \frac{i}{p^{2}} \left(\beta \frac{\partial H_{z}}{\partial \rho} - \varepsilon_{0} n^{2} \frac{\omega}{\rho} \frac{\partial E_{z}}{\partial \phi} \right), \qquad H_{\phi} = \frac{i}{p^{2}} \left(\frac{\beta}{\rho} \frac{\partial H_{z}}{\partial \phi} + \varepsilon_{0} n^{2} \omega \frac{\partial E_{z}}{\partial \rho} \right)$$

UNIVERSITY of

ER

▲
▲
Back
Close

Eigenvalue Equation

- Boundary conditions: E_z , H_z , E_{ϕ} , and H_{ϕ} should be continuous across the *core–cladding interface*.
- Continuity of E_z and H_z at $\rho = a$ leads to $AJ_m(pa) = CK_m(qa), \quad BJ_m(pa) = DK_m(qa).$
- Continuity of E_{ϕ} and H_{ϕ} provides two more equations.
- Four equations lead to the eigenvalue equation

$$\begin{split} \left[\frac{J'_m(pa)}{pJ_m(pa)} + \frac{K'_m(qa)}{qK_m(qa)}\right] \left[\frac{J'_m(pa)}{pJ_m(pa)} + \frac{n_2^2}{n_1^2}\frac{K'_m(qa)}{qK_m(qa)}\right] \\ &= \frac{m^2}{a^2} \left(\frac{1}{p^2} + \frac{1}{q^2}\right) \left(\frac{1}{p^2} + \frac{n_2^2}{n_1^2}\frac{1}{q^2}\right) \\ p^2 &= n_1^2 k_0^2 - \beta^2, \quad q^2 = \beta^2 - n_2^2 k_0^2. \end{split}$$

Eigenvalue Equation

- Eigenvalue equation involves Bessel functions and their derivatives.
 It needs to be solved numerically.
- Noting that $p^2 + q^2 = (n_1^2 n_2^2)k_0^2$, we introduce the dimensionless V parameter as

$$V = k_0 a \sqrt{n_1^2 - n_2^2}.$$

- Multiple solutions for β for a given value of V.
- Each solution represents an optical mode.
- Number of modes increases rapidly with V parameter.
- Effective mode index $\bar{n} = \beta/k_0$ lies between n_1 and n_2 for all bound modes.

Effective Mode Index

• Useful to introduce a normalized quantity

 $b = (\bar{n} - n_2)/(n_1 - n_2), \quad (0 < b < 1).$

• Modes quantified through $\beta(\omega)$ or b(V).

71/253

Back

Close

Classification of Fiber Modes

- In general, both E_z and H_z are nonzero (hybrid modes).
- Multiple solutions occur for each value of m.
- Modes denoted by HE_{mn} or EH_{mn} (n = 1, 2, ...) depending on whether H_z or E_z dominates.
- TE and TM modes exist for m = 0 (called TE_{0n} and TM_{0n}).

• Setting m = 0 in the eigenvalue equation, we obtain two equations

$$\left[\frac{J'_m(pa)}{pJ_m(pa)} + \frac{K'_m(qa)}{qK_m(qa)}\right] = 0, \qquad \left[\frac{J'_m(pa)}{pJ_m(pa)} + \frac{n_2^2}{n_1^2}\frac{K'_m(qa)}{qK_m(qa)}\right] = 0$$

• These equations govern TE_{0n} and TM_{0n} modes of fiber.

Linearly Polarized Modes

• Eigenvalue equation simplified considerably for weakly guiding fibers $(n_1 - n_2 \ll 1)$:

$$\left[\frac{J'_m(pa)}{pJ_m(pa)} + \frac{K'_m(qa)}{qK_m(qa)}\right]^2 = \frac{m^2}{a^2} \left(\frac{1}{p^2} + \frac{1}{q^2}\right)^2.$$

• Using properties of Bessel functions, the eigenvalue equation can be written in the following compact form:

$$p\frac{J_{l-1}(pa)}{J_l(pa)} = -q\frac{K_{l-1}(qa)}{K_l(qa)},$$

where l = 1 for TE and TM modes, l = m - 1 for HE modes, and l = m + 1 for EH modes.

• $TE_{0,n}$ and $TM_{0,n}$ modes are degenerate. Also, $HE_{m+1,n}$ and $EH_{m-1,n}$ are degenerate in this approximation.

Linearly Polarized Modes

- Degenerate modes travel at the same velocity through fiber.
- Any linear combination of degenerate modes will travel without change in shape.
- Certain linearly polarized combinations produce LP_{mn} modes.
 - * LP_{0n} is composed of HE_{1n} .
 - * LP_{1n} is composed of $TE_{0n} + TM_{0n} + HE_{2n}$.
 - * LP_{mn} is composed of $HE_{m+1,n} + EH_{m-1,n}$.
- Historically, LP modes were obtained first using a simplified analysis of fiber modes.

Fundamental Fiber Mode

- A mode ceases to exist when q = 0 (no decay in the cladding).
- TE_{01} and TM_{01} reach cutoff when $J_0(V) = 0$.
- This follows from their eigenvalue equation

$$p\frac{J_0(pa)}{J_1(pa)} = -q\frac{K_0(qa)}{K_1(qa)}$$

after setting q = 0 and pa = V.

- Single-mode fibers require V < 2.405 (first zero of J_0).
- They transport light through the fundamental HE_{11} mode.
- This mode is almost linearly polarized $(|E_z|^2 \ll |E_x|^2)$

 $E_x(\rho,\phi,z) = \begin{cases} A[J_0(\rho\rho)/J_0(\rho a)]e^{i\beta z}; & \rho \leq a, \\ A[K_0(q\rho)/K_0(qa)]e^{i\beta z}; & \rho > a. \end{cases}$

Fundamental Fiber Mode

- Use of Bessel functions is not always practical.
- It is possible to approximate spatial distribution of HE_{11} mode with a Gaussian for V in the range 1 to 2.5.
- $E_x(\rho,\phi,z) \approx A \exp(-\rho^2/w^2) e^{i\beta z}$.
- Spot size *w* depends on *V* parameter.

Single-Mode Properties

- Spot size: $w/a \approx 0.65 + 1.619V^{-3/2} + 2.879V^{-6}$.
- Mode index:

 $\bar{n} = n_2 + b(n_1 - n_2) \approx n_2(1 + b\Delta),$ $b(V) \approx (1.1428 - 0.9960/V)^2.$

• Confinement factor:

$$\Gamma = \frac{P_{\text{core}}}{P_{\text{total}}} = \frac{\int_0^a |E_x|^2 \rho \, d\rho}{\int_0^\infty |E_x|^2 \rho \, d\rho} = 1 - \exp\left(-\frac{2a^2}{w^2}\right).$$

- $\Gamma \approx 0.8$ for V = 2 but drops to 0.2 for V = 1.
- Mode properties completely specified if V parameter is known.

Fiber Birefringence

- Real fibers exhibit some birefringence $(\bar{n}_x \neq \bar{n}_y)$.
- Modal birefringence quite small $(B_m = |\bar{n}_x \bar{n}_y| \sim 10^{-6})$.
- Beat length: $L_B = \lambda / B_m$.
- State of polarization evolves periodically.
- Birefringence varies randomly along fiber length (PMD) because of stress and core-size variations.

