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Fiber Modes
• Maxwell’s equations in the Fourier domain lead to

—2

˜E+n2(w)k2

0

˜E = 0.

• n = n
1

inside the core but changes to n
2

in the cladding.

• Useful to work in cylindrical coordinates r,f ,z.

• Common to choose Ez and Hz as independent components.

• Equation for Ez in cylindrical coordinates:

∂ 2Ez

∂r2

+
1

r
∂Ez

∂r
+

1

r2

∂ 2Ez

∂f 2

+
∂ 2Ez

∂ z2

+n2k2

0

Ez = 0.

• Hz satisfies the same equation.
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Fiber Modes (cont.)
• Use the method of separation of variables:

Ez(r,f ,z) = F(r)F(f)Z(z).

• We then obtain three ODEs:

d2Z/dz2 +b 2Z = 0,

d2F/df 2 +m2F = 0,

d2F
dr2

+
1

r
dF
dr

+
✓

n2k2

0

�b 2�m2

r2

◆
F = 0.

• b and m are two constants (m must be an integer).

• First two equations can be solved easily to obtain

Z(z) = exp(ib z), F(f) = exp(imf).

• F(r) satisfies the Bessel equation.
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Fiber Modes (cont.)
• General solution for Ez and Hz:

Ez =
⇢

AJm(pr)exp(imf)exp(ib z) ; r  a,
CKm(qr)exp(imf)exp(ib z); r > a.

Hz =
⇢

BJm(pr)exp(imf)exp(ib z) ; r  a,
DKm(qr)exp(imf)exp(ib z); r > a.

p2 = n2

1

k2

0

�b 2, q2 = b 2�n2

2

k2

0

.

• Other components can be written in terms of Ez and Hz:
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i
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Eigenvalue Equation
• Boundary conditions: Ez, Hz, Ef , and Hf should be continuous

across the core–cladding interface.

• Continuity of Ez and Hz at r = a leads to
AJm(pa) = CKm(qa), BJm(pa) = DKm(qa).

• Continuity of Ef and Hf provides two more equations.

• Four equations lead to the eigenvalue equation


J0m(pa)
pJm(pa)

+
K0

m(qa)
qKm(qa)

�
J0m(pa)
pJm(pa)

+
n2

2

n2

1

K0
m(qa)

qKm(qa)

�

=
m2

a2

✓
1

p2

+
1

q2
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+
n2

2

n2

1

1

q2

◆

p2 = n2

1

k2

0

�b 2, q2 = b 2�n2

2

k2

0
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Eigenvalue Equation
• Eigenvalue equation involves Bessel functions and their derivatives.

It needs to be solved numerically.

• Noting that p2 +q2 = (n2

1

�n2

2

)k2

0

, we introduce the dimensionless
V parameter as

V = k
0

a
q

n2

1

�n2

2

.

• Multiple solutions for b for a given value of V .

• Each solution represents an optical mode.

• Number of modes increases rapidly with V parameter.

• E↵ective mode index n̄ = b/k
0

lies between n
1

and n
2

for all bound
modes.
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Effective Mode Index

• Useful to introduce a normalized quantity

b = (n̄�n
2

)/(n
1

�n
2

), (0 < b < 1).

• Modes quantified through b (w) or b(V ).
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Classification of Fiber Modes
• In general, both Ez and Hz are nonzero (hybrid modes).

• Multiple solutions occur for each value of m.

• Modes denoted by HEmn or EHmn (n = 1,2, . . .) depending on whether
Hz or Ez dominates.

• TE and TM modes exist for m = 0 (called TE
0n and TM

0n).

• Setting m = 0 in the eigenvalue equation, we obtain two equations


J0m(pa)
pJm(pa)

+
K0

m(qa)
qKm(qa)

�
= 0,


J0m(pa)
pJm(pa)

+
n2

2

n2

1

K0
m(qa)

qKm(qa)

�
= 0

• These equations govern TE
0n and TM

0n modes of fiber.
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Linearly Polarized Modes
• Eigenvalue equation simplified considerably for weakly guiding fibers

(n
1

�n
2

⌧ 1):


J0m(pa)
pJm(pa)

+
K0

m(qa)
qKm(qa)

�
2

=
m2

a2

✓
1

p2

+
1

q2

◆
2

.

• Using properties of Bessel functions, the eigenvalue equation can
be written in the following compact form:

p
Jl�1

(pa)
Jl(pa)

=�q
Kl�1

(qa)
Kl(qa)

,

where l = 1 for TE and TM modes, l = m�1 for HE modes, and
l = m+1 for EH modes.

• TE
0,n and TM

0,n modes are degenerate. Also, HEm+1,n and EHm�1,n

are degenerate in this approximation.
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Linearly Polarized Modes
• Degenerate modes travel at the same velocity through fiber.

• Any linear combination of degenerate modes will travel without
change in shape.

• Certain linearly polarized combinations produce LPmn modes.

? LP
0n is composed of of HE

1n.

? LP
1n is composed of TE

0n + TM
0n + HE

2n.

? LPmn is composed of HEm+1,n + EHm�1,n.

• Historically, LP modes were obtained first using a simplified analysis
of fiber modes.
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Fundamental Fiber Mode
• A mode ceases to exist when q = 0 (no decay in the cladding).

• TE
01

and TM
01

reach cuto↵ when J
0

(V ) = 0.

• This follows from their eigenvalue equation

p
J

0

(pa)
J

1

(pa)
=�q

K
0

(qa)
K

1

(qa)
after setting q = 0 and pa = V .

• Single-mode fibers require V < 2.405 (first zero of J
0

).

• They transport light through the fundamental HE
11

mode.

• This mode is almost linearly polarized (|Ez|2 ⌧ |Ex|2)

Ex(r,f ,z) =
⇢

A[J
0

(pr)/J
0

(pa)]eib z
; r  a,

A[K
0

(qr)/K
0

(qa)]eib z
; r > a.
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Fundamental Fiber Mode
• Use of Bessel functions is not always practical.

• It is possible to approximate spatial distribution of HE
11

mode
with a Gaussian for V in the range 1 to 2.5.

• Ex(r,f ,z)⇡ Aexp(�r2/w2)eib z.

• Spot size w depends on V parameter.
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Single-Mode Properties
• Spot size: w/a⇡ 0.65+1.619V�3/2 +2.879V�6.

• Mode index:

n̄ = n
2

+b(n
1

�n
2

)⇡ n
2

(1+bD),

b(V )⇡ (1.1428�0.9960/V )2.

• Confinement factor:

G =
P

core

P
total

=
R a

0

|Ex|2r dr
R •

0

|Ex|2r dr
= 1� exp

✓
�2a2

w2

◆
.

• G⇡ 0.8 for V = 2 but drops to 0.2 for V = 1.

• Mode properties completely specified if V parameter is known.
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Fiber Birefringence
• Real fibers exhibit some birefringence (n̄x 6= n̄y).

• Modal birefringence quite small (Bm = |n̄x� n̄y|⇠ 10

�6).

• Beat length: LB = l/Bm.

• State of polarization evolves periodically.

• Birefringence varies randomly along fiber length (PMD) because of
stress and core-size variations.


