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Fiber Modes

e Maxwell's equations in the Fourier domain lead to
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VZE +n*(0)kiE = 0.

e n = n; inside the core but changes to n, in the cladding.

e Useful to work in cylindrical coordinates p, 9, z.

e Common to choose E, and H, as independent components.
e Equation for E, in cylindrical coordinates:
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e H, satisfies the same equation.
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Fiber Modes (cont.)

e Use the method of separation of variables:
E(p,9,2) = F(p)P(9)Z(2).
e We then obtain three ODEs:
d*Z/dz* + B*Z =0,
d*®/do* +m*P =0,
d2F+ 1dF+ (nzkg—ﬁz—m—j>F:O.

dp*  pdp p
e 3 and m are two constants (m must be an integer).
e First two equations can be solved easily to obtain

Z(z) =exp(ifz),  P(¢)=exp(im¢).

e ['(p) satisfies the Bessel equation.
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Fiber Modes (cont.)

e General solution for E, and H,:
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L <, AJ,(pp)exp(img)exp(iBz); p <a,
© 7 | CKu(gp)exp(im¢)exp(iBz);  p > a.

o <’ BJ,.(pp)exp(im¢)exp(iBz); p <a,
© | DK.(qp)exp(im¢)exp(iBz);  p > a.

L A
e Other components can be written in terms of E, and H,:
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Eigenvalue Equation
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e Boundary conditions: E., H., Es, and Hy should be continuous
across the core—cladding interface.

e Continuity of £, and H, at p = a leads to
AJ,(pa) =CK,(qa), BJ,(pa)= DK,(qga).

e Continuity of E4 and Hy provides two more equations.
e Four equations lead to the eigenvalue equation

[J,;(pa) K,fn(qa)] [J,iq(pa) L K,fn(qa)]

_|_
pIn(pa)  qKu(ga)| | pJm(pa)  n3qKn(qa)

_m2 1_|_1 1_|_n%1
T2 pz e P2 n% e

p*=niki—B*, q*=PB*—nik}.
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Eigenvalue Equation
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e Eigenvalue equation involves Bessel functions and their derivatives.
It needs to be solved numerically.

e Noting that p*+ ¢* = (n7 —n3)k3, we introduce the dimensionless

V = koay/nj —ns.

e Multiple solutions for B for a given value of V.

V parameter as

e Each solution represents an optical mode.
e Number of modes increases rapidly with V parameter.

e Effective mode index i1 = 3 /k lies between n; and n, for all bound
modes.
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Effective Mode Index
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e Useful to introduce a normalized quantity
b:(ﬁ—nz)/(nl—ng), (O<b<1)

e Modes quantified through B(w) or b(V).
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Classification of Fiber Modes

e In general, both E, and H, are nonzero (hybrid modes).

e Multiple solutions occur for each value of m.

e Modes denoted by HE,,,,, or EH,,,,, (n =1,2,...) depending on whether
H, or E, dominates.

e TE and TM modes exist for m = 0 (called TEq, and TMy,).

e Setting m = 0 in the eigenvalue equation, we obtain two equations

Inpa) . K (qa) ] ) [J,%(pa) n; K,(qa)

—0
pIn(pa)  qKn(qa) pIn(pa)  niqK,(qa)

e These equations govern TEg, and TM, modes of fiber.
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Linearly Polarized Modes

e Eigenvalue equation simplified considerably for weakly guiding fibers
(n1 — Ny KL 1)

Ju(Pa) | K,iz(qa)r:'ﬁ(l N 1>2.

plu(pa)  qKn(ga) a> \p* ¢

e Using properties of Bessel functions, the eigenvalue equation can
be written in the following compact form:

Jioa(pa) qu_l(qa)
Ji(pa) Ki(qa) '
where [ =1 for TE and TM modes, [ =m — 1 for HE modes, and

| =m-+1 for EH modes.

e TEp, and TMy, modes are degenerate. Also, HE,, 1, and EH,,_1 ,
are degenerate in this approximation.




UNIVERSITY of

OPTICS
Linearly Polarized Modes

e Degenerate modes travel at the same velocity through fiber.

e Any linear combination of degenerate modes will travel without
change in shape.

e Certain linearly polarized combinations produce LP,,,, modes.

* LPg, is composed of of HE;,,.
* LPy, is composed of TEy, + TMy, + HEy,.
* LPy, is composed of HE,, 1, + EH,,—1 4.

e Historically, LP modes were obtained first using a simplified analysis
of fiber modes.
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Fundamental Fiber Mode
e A mode ceases to exist when ¢ =0 (no decay in the cladding).

e TEy; and TMy; reach cutoff when Jo(V) = 0.

e This follows from their eigenvalue equation

Jo(pa)  Ko(qa)
PIpa) ~ " TKi(qa)

after setting ¢ =0 and pa=1V.

e Single-mode fibers require V < 2.405 (first zero of Jp).
e They transport light through the fundamental HE{; mode.
e This mode is almost linearly polarized (|E,|* < |E,|?)

AlJo(pp)/Jo(pa)le?*; p <a,

Edp.9:2)= { AlKo(gp)/Ko(qa)lePs p > a.
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Fundamental Fiber Mode

e Use of Bessel functions is not always practical.
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e It is possible to approximate spatial distribution of HE;; mode
with a Gaussian for V in the range 1 to 2.5.

* Ei(p,9,2) = Aexp(—p*/w?)e?.

e Spot size w depends on V' parameter.
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Single-Mode Properties

e Spot size: w/a~0.65+1.619V /2 12879V 5.

e Mode index:
n=n —|—b(l’l1 —I’lz) S n2(1 —|—bA),
b(V) ~ (1.1428 —0.9960/V )*.

e Confinement factor:

PCOI'e N Ex 2 d 2 2
o ROy ((20)
Pow  Jo |Ex|*Pdp

e '~ 0.8 for V=2 but drops to 0.2 for V = 1.

e Mode properties completely specified if V parameter is known.
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Fiber Birefringence
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e Real fibers exhibit some birefringence (71, # 7).

e Modal birefringence quite small (B,, = |ii, — 71,| ~ 107°).
e Beat length: Ly =A/B,,.

e State of polarization evolves periodically.

e Birefringence varies randomly along fiber length (PMD) because of
stress and core-size variations.




