

EPUSP

Escola Politécnica da Universidade de São Paulo - EPUSP Departamento de Engenharia de Energia e Automação Elétricas - PEA Av. Prof. Luciano Gualberto, Travessa 3, No.158 Butantã - São Paulo - SP CEP: 05508-900



# COMPONENTES E SISTEMAS DE COMUNICAÇÃO E SENSOREAMENTO A FIBRAS ÓPTICAS

#### 5<sup>a</sup> AULA

Tipos, Características e Critérios de Projeto dos Sistemas de Comunicação a Fibras Ópticas

# Prof. Dr. Josemir Coelho Santos

Horário: 14 h às 17 h (4ª Feira)

3° Quadrimestre 2016

PEA 5716

Tipos de sistemas de comunicação a fibras ópticas

Dividem-se em: • Analógicos • Digitais

#### ESPECIFICAÇÃO e AVALIAÇÃO Sistemas de Comunicação a Fibras Ópticas

Características das fibras
Atenuação
Dispersão

• Transmissores

• Receptores

## Requisitos de um Enlace Óptico

Características limitantes na análise dos requisitos de um Enlace Óptico

- Distância desejada (ou possível) de transmissão);
- Taxa de transmissão de dados ou largura de banda do canal;
- Taxa de erro na comunicação (bit error rate BERpara sistemas digitais)

Configuração Básica de Enlaces

• Dedicados ponto-a-ponto e

• Conectados em redes (locais ou remotas).

#### Assuntos a serem discutidos

- <u>Enlaces ponto-a-ponto</u>: Critérios para análise de desempenho (aplicáveis, com adaptações, às redes);
- <u>Sistemas de Multiplexação</u> (empregados para aumentar o número de canais de comunicação num mesmo canal;
- <u>Técnicas de Modulação</u> dos sinais nos sistemas analógicos;
- Sistemas de Codificação de dados para os sistemas digitais e
- Sistemas de comunicação coerentes

#### **Enlaces Ponto-a-Ponto**

• <u>Fibra óptica</u> (multimodo ou monomodo)

- Diâmetro do núcleo;
- Perfil de índice do núcleo;
- Dispersão;
- Atenuação;
- Abertura numérica (NA)

Parâmetros para análise dos sistemas

• <u>Fonte óptica</u> (LED ou LD)

**Fotodetector** 

(PIN ou APD):

- Comprimento de onda de emissão;
- Largura da linha espectral;
- Potência óptica emitida;
- perda no acoplamento com a fibra
- Responsitividade;
- Comprimento de onda de operação;
- Velocidade de resposta;
- Sensibilidade

#### **Enlaces Ponto-a-Ponto**

<u>Tipos de</u> <u>análises a</u> <u>considerar</u>

#### • Balanço de Potência do Enlace:

• Avalia as perdas envolvidas no mesmo

- Balanço dos tempos de Resposta (ou subida):
  - Avalia sua capacidade de transmissão

## Balanço de Potência do Enlace

#### Modelo para considerar as perdas de potência óptica num enlace ponto-a-ponto



## Balanço de Potência do Enlace

A <u>Perda total P<sub>T</sub> no percurso é dada por</u>:

 $P_T = P_s - P_R = 2 lc + n l_{sp} + \alpha_f L + margem do sistema$ 

Onde:  $-\underline{P_s}$  é a potência que emerge da fonte de luz para a fibra;

- $P_R$  é a sensibilidade (em dB) do detector;
- $\underline{L}$  é o comprimento total de enlace;
- $\alpha_{\rm f}$  é a atenuação da Fibras Ópticas;
- $l_{\rm SP}$  é a perda em cada Emenda;

-  $l_{\rm C}$  é a perda em cada Conectores;

Margem de segurança para perdas (de 6 a 8 dBs)
• variações térmicas;
• envelhecimento;
• etc.

#### Balanço de Potência do Enlace - Exemplo

Exemplo de forma de utilização do <u>balanço de perdas</u> no projeto de um enlace:

Dados: - Taxa de dados 20 Mb/s;

- Taxa de erro de Bit (BER) de 10<sup>-9</sup>;
- Receptor: Fotodiodo *pin* de silício operando a 850nm;

Curvas típicas de sensibilidade de vários detectores (em dB) em função da taxa de transmissão de dados (em Mb/s)

Obtém-se que o sinal de entrada requerido pelo receptor é -42 dB. (42 dB abaixo de 1 mW).



PEA 5716

#### Balanço de Potência do Enlace - Exemplo

- <u>LED de GaAlAs</u>: Acopla Potência óptica média de <u>50  $\mu$ W</u> (-13 dBm) em uma fibra de 50  $\mu$ m de diâmetro de núcleo  $\Rightarrow$  (perda de potência permissível de 29 dB);

- Assume-se Perda de 1 dB ocorre quando a fibra é conectada a um cabo e que mais 1 dB de perda devida a um conector ocorre na interface cabo-fotodetector;

- Margem de 6 dB para o sistema;

- Distância de transmissão possível para um cabo com uma atenuação de  $\alpha_f$  dB/km:

 $\overline{PT} = \overline{PS} - \overline{PR} = 29 \text{ dB} = 2 (1 \text{ dB}) + \alpha f L + 6 \text{ dB}$ 

### Balanço de Potência do Enlace - Exemplo

- Se  $\alpha_f = 3,5 \text{ dB/km}$ .

∴ é possível construir-se um caminho de transmissão de no máximo 6 km de comprimento.

Gráfico Balanço de Potência óptica num enlace ponto-a-ponto.



PEA 5716

#### Balanço dos Tempos de Resposta (ou subida) do enlace

O balanço dos tempos de resposta do sistema, muito simplificadamente, considera que o tempo de resposta total do sistema é dado por:

$$\mathbf{t}_{\text{SYS}} = \left(\sum_{i=1}^{N} t_i^2\right)^{1/2}$$

Onde:  $-t_i$ - tempos de resposta individuais de cada um de seus componentes:

- $t_{\rm TX}$  tempo de subida do transmissor;
- $t_{MAT}$  tempo de subida da dispersão cromática e do material da fibra;
- $t_{\text{MOD}}$  tempo de subida da dispersão modal da fibra;
- $t_{\rm RX}$  tempo de subida do receptor.

Para o tempo de subida do receptor pode-se utilizar a expressão conservativa:

 $T_r = \frac{2.2}{2\pi\Lambda f} = \frac{0.35}{\Lambda f}$ , em que  $\Delta f$  é a banda passante do receptor.

#### Balanço dos Tempos de Resposta (ou subida) do enlace



Limites da Distância de Transmissão, *L*, por PERDAS (linhas contínuas) e por DISPERSÃO (linhas tracejadas) em função da Taxa de Bits (Bit rate). Círculos denotam sistema comerciais e triângulos experimentos de laboratório.

• <u>Topologia da rede</u> : Maneira como os "nós" de uma rede são geometricamente arranjados e conectados.

Áreas de Interesse das LANs em Fibras Ópticas

- Topologias das LANs (Local Network Area);
- Arquiteturas residentes a falhas (Fail Safe) para as topologias;

Topologias Básicas Para LANs a Fibras Ópticas

- Configuração em <u>LINHA</u> (ou tipo barramento, ou Tacoplada);
- Configuração em ANEL;
- Configuração <u>RADIAL</u> (ou em <u>ESTRELA</u>)

• Configuração em LINHA (ou tipo barramento, ou T-acoplada);



• Configuração em ANEL



• Configuração <u>RADIAL</u> (ou em <u>ESTRELA</u>)



• Esquema Acoplador Óptico Ativo Típico



• Exemplo de derivação tipo T unidirecional construída com um acoplador óptico passivo.



• Esquema de dois tipos de acopladores estrela passivos: - os de reflexão e - os de transmissão

(a)

ESTAÇÃO 1 LINHAS DE ENTRADA ACOPLADOR ACOPLADOR LINHAS ESTRELA ESTRELA DE SUPERFÍCIE IRANSMISSIVO REFLEXIVO ENTRADA REFLETORA LINHAS DE SAÍDA ESTAÇÃO N

Acopladores tipo estrela: (a) por transmissão e (b) por reflexão.

(b)

Uma das maneiras de ampliar a capacidade dos enlaces por fibras ópticas é <u>aumentar</u> o <u>número de canais</u> de informação por canal físico utilizando <u>Técnicas de multiplexação</u>.

Técnicas de Multiplexação

- TDM por Divisão de <u>Tempo</u>;
- FDM por divisão de Freqüência;
- WDM por divisão de <u>Comprimento de Onda</u> e
- SDM por divisão de Espaço.

<u>Curva de atenuação</u> simplificada de uma fibra óptica, parte do espectro utilizada por uma fonte de luz isolada e parte livre para outras fontes.





Sistema WDM unidirecional combinando N entradas sobre uma única fibra.



Dispositivo discriminador WDM por dispersão angular.

3° Quadrimestre 2016

## Técnicas de modulação e codificação analógicas

Técnicas Empregadas em Sistemas de Transmissão de sinais analógicos

- por intensidade da portadora óptica (D-IM);
- por intensidade da subportadora (SCIM);
- por banda lateral dupla da subportadora (DSBSC);
- por freqüência da subportadora (SCFM); e
- por fase da subportadora (PSCM).

A <u>técnica D-IM</u> é a mais simples e é utilizada também sempre que um sinal analógico é codificado por pulsos, consistindo em modular a potência óptica de saída do emissor de maneira diretamente proporcional à amplitude do sinal elétrico que se deseja comunicar. De forma que a potência óptica do transmissor  $P_{OT}$ :

$$P_{OT}(t) = P_{i}[1 + m(t)]$$

Onde:

- P<sub>i</sub> é a potência média de saída do transmissor e

- m(t) é o índice de modulação que é proporcional à amplitude do sinal modulante.

## Técnicas de modulação e codificação analógicas

Sistema de codificação por Amplitude de Pulsos (PAM) e por Código (PCM)



Formas de onda produzidas por um sistema PAM em comparação com um PCM de três BITs.

### Técnicas de modulação e codificação analógicas

Sinais gerados pelas técnicas de modulação por posição de pulsos (PPM) e por largura de pulsos (PWM).

(a) Sinal analógico e amostras,(b) formas de onda PPM,(c) formas de onda PWM.



## Sistemas de Codificação de dados para os sistemas digitais



### Sistemas de Codificação de dados para os sistemas digitais

Formas de onda de um código RZ.

Nestes códigos o sinal forçosamente retorna a "0", a cada dado transmitido, seja ela zero ou um.

Isto evita o problema da deriva dos sinais de saída e minimiza a taxa de erro na transmissão.



### **Sistemas Coerentes**

Em <u>sistemas de modulação Coerentes</u> a modulação do sinal a ser transmitido se dá sobre a freqüência da própria portadora óptica, o que confere a tal tipo de sistema uma <u>banda passante praticamente infinita</u>, uma vez que a freqüência da onda óptica, como citado no início deste texto, é da ordem dos 10<sup>15</sup> Hz.

