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Objectives
• Course objective
• Gain the ability to design effective and sustainable breeding programs of cross-pollination species and to 

implement modern selection tools

• Learning outcomes: 
• 1) Be able to predict response from selection in complex cross-pollination breeding programs
• 2) Understand the dynamics of cross-pollination populations under selection
• 3) Be able to use best linear unbiased prediction (BLUP) for both conventional and genomic selection

• Be aware that
• No basic concepts will be covered during the lectures
• I assume that  all the students have a basic knowledge in genetics and plant breeding



Requisites
• Methods of plant breeding

• Population genetics

• Quantitative genetics

• Biometry

• Mixed models and components of variance

• Biometry of molecular markers

• R



Schedule
Workflow - LGN5825 - 2018 On Fridays, 8 -12 pm

Week Date Lectures Labs
1 9-Mar Population and quantitative review Data quality control
2 16-Mar Population structure and genetic effects Population genetics and structure
3 23-Mar Covariance between relatives Pedigree
4 6-Apr Response to selection Kinship
5 13-Apr Inbreeding, heterosis, and hybrids between populations Mixed Model Equations
6 20-Apr Hybrids between lines REML/BLUP (I and A)
7 27-Apr Test I
8 4-May Lines, testers and testcrosses Diallells
9 11-May Base populations and breeding schemes Optimized Training Sets

10 18-May GWAS GWAS
11 25-May Genomic Selection GS (GBLUP)
12 8-Jun Recurrent Selection GS (Bayes + GE)
13 15-Jun Reciprocal Recurrent Selection GS (MOOB)
14 22-Jun Test II
15 29-Jun Test on R

classes Moodle STOA
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Allogamous (cross-pollination)

• Species
• Cross-pollination ≥ 95%
• Mechanisms
monoecy, dioecy, protogyny, protandry, self-incompatibility, morphological
• Evolution – some advantages of being heterozygous
• Utilize the heterosis and avoid the inbreeding depresssion

• Populations
• Group of individuals that constitute a set of genes and are maintained using cross-fertilization at

the same place and time
• Parents do not transfer the entire genotype to offspring, which is randomly formed each generation
• Although the phenotype is evaluated, the alleles are selected



Variation in breeding populations
• A phenotypic observation on a single individual is determined by the environment, genetic effects, and

residual effects
• P = G + E

• The total genetic value g is the genetic value of an individual per se, and this is of key importance when
selecting the best individuals to release as varieties

• An individual’s genetic value can be further broken down into
• Additive (ga),
• Dominance (gd), and
• Epistatic (gi)

• Breeding value (BV)
• Only additive allelic effects can be transmitted from parent to offspring
• BV is the sum total of the additive allele effects
• It is also the value of an individual as a parent

𝑦' = 𝑢 + 𝑔' + 𝑒'



Additive effect of an allele 

• The additive effect at a locus is the linear effect of allele dosage on the phenotypic value

• Note: Loci that are dominant or that interact epistatically with other loci still have an additive effect

• In most cases, dominance and epistasis are assumed insignificant, and are included in the e error term

• The general model then becomes

• where ai is the additive genetic value of individual i

𝑦' = 𝑢 + 𝑎' + 𝑒'



Transmitting ability

• The average effect of a random sample of half of an individual’s alleles
• Equals one half of an individual’s total breeding value (a/2)

• Breeding values of parents and progeny
• Each parent contributes half of its alleles to the progeny
• Average breeding value of progeny is the average breeding value of the two parents

• where p1 and p2 are parents one and two respectively

• Progeny breeding values vary due to random sampling
• BV of individual i deviates from the parental mean due to random sampling of alleles
• This random term is referred to as the ’Mendelian sampling”
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Heritability

• The degree of correspondence between the phenotypic values and the breeding values
• Indicates how well the trait will respond to selection
• Ratio of additive genetic variance to phenotypic variance

• Is also the regression of the breeding value on the phenotypic value

• This is because y = a + e where a is the additive genetic component of the phenotype (y), and e is the
non-additive genetic component

• Then
• cov(a,y) = cov(a,a+e) = cov(a,a) + cov(a,e)
• Because a and e are uncorrelated cov(a, y ) =
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Correlation and regression coefficient 

• The normalized version of the covariance, the correlation coefficient, ranges from -1 to 1, and its
magnitude indicates the strength of a linear relationship between two variables

• where x and y are the standard deviations of x and y

• From standard regression theory, the regression coefficient for the regression of y on x is

• Covariance, correlation, and regression coefficients are important for understanding and estimating
accuracy of selection

𝑟B? =
𝐶𝑂𝑉(𝑥, 𝑦)
𝜎B𝜎?
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Mathematical expectation
• It is also known as the expected value – (the mean)

• How can we estimate the mean and variance?

• Expectation of a constant => E(c) = c
• Expectation of a random variable multiplied by a constant => E(cX) = cE(X)

• Expectation of two random random variables
• E(X + Y) = E(X) + E(Y)
• E(X.Y) = E(X) . E(Y) => If they are independent

• Variance and covariance
• V(X) = E[X - E(X)]2
• COV(X, Y) = E[X - E(X)] . E[Y - E(Y)]
• V(X + Y) = V(X) + V(Y) + 2COV(X, Y)
• V(X - Y) = V(X) + V(Y) - 2COV(X, Y)



Mathematical expectation applied to P=G+E

• E(Yij) = u => the mean of experiment, considered as fixed
• E(gi) = 0 => deviations from the mean
• E(eij) = 0 => deviations from the mean
• E(gi+ eij) = E(gi) + E(eij) = 0

• Phenotipic variance
• V(Y) = E[Yij - E(Yij)]2= E[u + gi+ eij – u] 2 = E[gi+ eij] 2 = E(gi)2 + E(eij) 2 + 2COV(gi, eij)
• E(gi)2 = E[gi – E(gi)]2 = Vg
• E(eij) 2 = E[eij – E(eij)]2 = Ve
• V(Y) = Vp = Vg + Ve

• Heritability
• COV(Yij, gi)
• = E[Yij - E(Yij)] . E[gi - E(gi)]
• = E[u + gi+ eij – u] . E[gi - 0]
• = E(gi)2 + E(eij).E(gi) = E(gi)2 = Vg

𝑦'X = 𝑢 + 𝑔' + 𝑒'X
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Expectation between two observations
• The same genotype evaluated in different replicates
• COV(Yij, Yij’) = E[Yij - E(Yij)] . E[Yij ’- E(Yij’)]
• = E[u + gi+ rj+ eij – u] . E[u + gi+ rj’+ eij’ – u] = E[(gi+ rj+eij) . (gi+ rj’+ eij’)]
• = E(gi)2 + dp
• = Vg
• The variance among genotypes is equal to the covariance within
• Independent of the experimental design
• The covariance between related individuals means genetic covariance

• The same genotype evaluated in different replicates at the same local
• COV(Yijk, Yijk’) = E[Yijk - E(Yijk)] . E[Yijk’ - E(Yijk’)]
• = E[u + gi+ lj+ rk/l+ glij+ eijk – u – lj] . E[u + gi+ lj+ rk’/l+ glij+ eijk’ – u – lj]
• E[gi+ rk/l+ glij+ eijk] . E[gi+ rk’/l+ glij+ eijk’]
• = E(gi)2 + E(glij)2 + dp
• = Vg + Vge
• Overestimated the heritability – there is a confusion between these two components
• Solution – evaluate in more than one place
• The number of places depends on the expected heritability and ratio of components
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Hardy-Weinberg law

• States that the gene and genotype frequencies are constant across generations if:
• population infinitely large
• mating is random
• no selection, mutation or migration

• If allele frequencies in the parents are p and q, for allele 1 and 2 respectively, then the genotype
frequencies in the progeny should be:

• p2 for homozygous allele 1
• 2pq for heterozygous
• q2 for homozygous allele 2

• Processes that change the allele frequencies in a predicable manner
• Migration, mutation, and selection

• A process that changes allele frequencies in an unpredictable manner
• Random sampling of gametes in small populations - drift



Random drift 

• Drift is predictable in amount but not in direction
• Allele frequencies may be seen to change erratically from one generation to another

• Leads to
• Genetic differentiation between the populations
• Reduced genetic variation within each population
• Increase in homozygote genotypes at the expense of heterozygotes genotypes

• Example of changes in allele frequency in an idealized small population



Magnitude of genetic drift 
• The change in allele frequency is random in that its direction unpredictable
• However, its variance can be predicted
• Thus we can only know the magnitude of change in allele frequency, but not the direction

• Across all lines in a population the allele frequencies will be distributed around q0 with a variance
• p0q0/2Ne
• where Ne is the population size

• p0q0/2Ne is also the variance of q1, the allele frequency in different lines after one generation under drift
• It expresses the magnitude

• In the next generation the sampling process is repeated

• The effect of this continued sampling of successive generations is that the allele frequencies in lines
fluctuates irregularly, and lines become more and more differentiated



Drift over generations

• Allele frequencies

• Eventually alleles in a small population will reach a frequency of one or zero.

• Alleles that reach a frequency of one are said to be fixed and those that reach zero are said to be lost

• Genotype Frequency

• As lines drift apart in allele frequency they also drift apart in genotype frequencies 

• There is an increase in homozygous and a decrease in heterozygous genotypes

• Within a single line, the relationship between allele and genotype frequencies follows Hardy-Weinberg

• The genotype frequencies across all lines, when considered together as one population are no longer in 
HWE



Inbreeding

• Inbreeding is the mating together of individuals that are related to each other by ancestry
• It depends on the population size - number of possible ancestors
• In a population of bisexual organisms, each individuals has two parents, four grandparents, etc.
• Thus, t generations back an individual has 2t ancestors

• Identity by descent (IBD)
• Two mating individuals that share a ancestor may carry replicates of alleles from the common ancestor
• These replicates can then be passed on to the offspring from both parents
• Leading to homozygous in the progeny, with both alleles being identical by descent (IBD)

• The coefficient of inbreeding (F)
• The probability that two alleles at any locus in an individual are IBD
• Degree of relationship between an individual’s parents
• At random mating F is the probability that two gametes taken at random from the population are IBD
• Each individual will have its own F, but the average F is of main interest as a measure of random drift



Rate of inbreeding

• F can be estimated based on the population size
• In the first generation of mating from the base population, there are N individuals and 2N different gametes
• Then, the probability that any given gamete unites with an identical gamete is 1/2N
• In the second generation there are two classes of gametes that can be sampled
• The first is a gamete identical to the gamete of interest and its probability is 1/2N
• The second is a gamete that is not identical based on the current replication with probability (1 - 1/2N)F1
• Thus, the new inbreeding is F2	= 1/2N + (1	- 1/2N)F1	

• The coefficient of inbreeding in generation t is Ft = 1/2N + (1 - 1/2N)Ft

• The F is made up of two parts, one attributable to new inbreeding and another to previous inbreeding
• The new inbreeding is  𝚫F	=	1/2N
• Then, we can rewrite as Ft =	𝚫F	+	(1- 𝚫F)Ft-1 and rearrange it as 𝚫F =	(Ft-Ft-1)/(1-Ft-1)

• 𝚫F is the rate of inbreeding 
• 𝚫F provides a means of comparing the inbreeding effects of different breeding systems



Effective population size (Ne) 

• Drift can also be evaluated in terms of the variance of gene frequencies or the rate of inbreeding
• As 𝚫F can be estimated by looking at the IBD, then Ne can be estimated by
• Ne = 1/2𝚫F
• When the breeding structure is known, Ne can be derived (approximately) from the actual number N

• However, with unequal numbers of females and males
• Ne = 4Nm.Nf/(Nm + Nf)
• Thus, for half-sibs we have
• Ne = 4∞.1/(∞+ 1) ≈ 4∞/(∞) = 4
• 𝚫F = 1/2Ne = 1/(2.4) = 1/8
• And for full-sibs we have
• Ne = 4.1.1/(1 + 1) = 4/2 = 2
• 𝚫F = 1/2Ne = 1/(2.2) = 1/4

• When there are unequal numbers in successive generations Ne is the harmonic mean of the N in each
generation


