
A View of 20th and 21st Century Software Engineering
Barry Boehm

University of Southern California
University Park Campus, Los Angeles

boehm@cse.usc.edu

ABSTRACT
George Santayana's statement, "Those who cannot remember the
past are condemned to repeat it," is only half true. The past also
includes successful histories. If you haven't been made aware of
them, you're often condemned not to repeat their successes.

In a rapidly expanding field such as software engineering, this
happens a lot. Extensive studies of many software projects such as
the Standish Reports offer convincing evidence that many projects
fail to repeat past successes.

This paper tries to identify at least some of the major past software
experiences that were well worth repeating, and some that were not.
It also tries to identify underlying phenomena influencing the
evolution of software engineering practices that have at least helped
the author appreciate how our field has gotten to where it has been
and where it is.

A counterpart Santayana-like statement about the past and future
might say, "In an era of rapid change, those who repeat the past are
condemned to a bleak future." (Think about the dinosaurs, and
think carefully about software engineering maturity models that
emphasize repeatability.)

This paper also tries to identify some of the major sources of change
that will affect software engineering practices in the next couple of
decades, and identifies some strategies for assessing and adapting to
these sources of change. It also makes some first steps towards
distinguishing relatively timeless software engineering principles
that are risky not to repeat, and conditions of change under which
aging practices will become increasingly risky to repeat.

Categories and Subject Descriptors
D.2.9 [Management]: Cost estimation, life cycle, productivity,
software configuration management, software process models.

General Terms
Management, Economics, Human Factors.

Keywords
Software engineering, software history, software futures

1. INTRODUCTION
One has to be a bit presumptuous to try to characterize both the past
and future of software engineering in a few pages. For one thing,
there are many types of software engineering: large or small;
commodity or custom; embedded or user-intensive; greenfield or
legacy/COTS/reuse-driven; homebrew, outsourced, or both; casual-
use or mission-critical. For another thing, unlike the engineering of
electrons, materials, or chemicals, the basic software elements we
engineer tend to change significantly from one decade to the next.

Fortunately, I’ve been able to work on many types and generations
of software engineering since starting as a programmer in 1955. I’ve
made a good many mistakes in developing, managing, and acquiring
software, and hopefully learned from them. I’ve been able to learn
from many insightful and experienced software engineers, and to
interact with many thoughtful people who have analyzed trends and
practices in software engineering. These learning experiences have
helped me a good deal in trying to understand how software
engineering got to where it is and where it is likely to go. They have
also helped in my trying to distinguish between timeless principles
and obsolete practices for developing successful software-intensive
systems.

In this regard, I am adapting the [147] definition of “engineering” to
define engineering as “the application of science and mathematics
by which the properties of software are made useful to people.” The
phrase “useful to people” implies that the relevant sciences include
the behavioral sciences, management sciences, and economics, as
well as computer science.

In this paper, I’ll begin with a simple hypothesis: software people
don’t like to see software engineering done unsuccessfully, and try
to make things better. I’ll try to elaborate this into a high-level
decade-by-decade explanation of software engineering’s past. I’ll
then identify some trends affecting future software engineering
practices, and summarize some implications for future software
engineering researchers, practitioners, and educators.

2. A Hegelian View of Software Engineering’s
Past
The philosopher Hegel hypothesized that increased human
understanding follows a path of thesis (this is why things happen the
way they do); antithesis (the thesis fails in some important ways;
here is a better explanation); and synthesis (the antithesis rejected
too much of the original thesis; here is a hybrid that captures the
best of both while avoiding their defects). Below I’ll try to apply this
hypothesis to explaining the evolution of software engineering from
the 1950’s to the present.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
ICSE’06, May 20–28, 2006, Shanghai, China.
Copyright 2006 ACM 1-59593-085-X/06/0005…$5.00.

12

2.1 1950’s Thesis: Software Engineering Is
Like Hardware Engineering
When I entered the software field in 1955 at General Dynamics, the
prevailing thesis was, “Engineer software like you engineer
hardware.” Everyone in the GD software organization was either a
hardware engineer or a mathematician, and the software being
developed was supporting aircraft or rocket engineering. People
kept engineering notebooks and practiced such hardware precepts as
“measure twice, cut once,” before running their code on the
computer.
This behavior was also consistent with 1950’s computing
economics. On my first day on the job, my supervisor showed me
the GD ERA 1103 computer, which filled a large room. He said,
“Now listen. We are paying $600 an hour for this computer and $2
an hour for you, and I want you to act accordingly.” This instilled in
me a number of good practices such as desk checking, buddy
checking, and manually executing my programs before running
them. But it also left me with a bias toward saving microseconds
when the economic balance started going the other way.
The most ambitious information processing project of the 1950’s
was the development of the Semi-Automated Ground Environment
(SAGE) for U.S. and Canadian air defense. It brought together
leading radar engineers, communications engineers, computer
engineers, and nascent software engineers to develop a system that
would detect, track, and prevent enemy aircraft from bombing the
U.S. and Canadian homelands.
Figure 1 shows the software development process developed by the
hardware engineers for use in SAGE [1]. It shows that sequential
waterfall-type models have been used in software development for a
long time. Further, if one arranges the steps in a V form with Coding
at the bottom, this 1956 process is equivalent to the V-model for
software development. SAGE also developed the Lincoln Labs
Utility System to aid the thousands of programmers participating in
SAGE software development. It included an assembler, a library and
build management system, a number of utility programs, and aids to
testing and debugging. The resulting SAGE system successfully met
its specifications with about a one-year schedule slip. Benington’s
bottom-line comment on the success was “It is easy for me to single
out the one factor that led to our relative success: we were all
engineers and had been trained to organize our efforts along
engineering lines.”
Another indication of the hardware engineering orientation of the
1950’s is in the names of the leading professional societies for
software professionals: the Association for Computing Machinery
and the IEEE Computer Society.

2.2 1960’s Antithesis: Software Crafting
By the 1960’s, however, people were finding out that software
phenomenology differed from hardware phenomenology in
significant ways. First, software was much easier to modify than was
hardware, and it did not require expensive production lines to make
product copies. One changed the program once, and then reloaded
the same bit pattern onto another computer, rather than having to
individually change the configuration of each copy of the hardware.
This ease of modification led many people and organizations to
adopt a “code and fix” approach to software development, as
compared to the exhaustive Critical Design Reviews that hardware
engineers performed before committing to production lines and
bending metal (measure twice, cut once). Many software

applications became more people-intensive than hardware-intensive;
even SAGE became more dominated by psychologists addressing
human-computer interaction issues than by radar engineers.

OPERATIONAL PLAN

MACHINE
SPECIFICATIONS

OPERATIONAL
SPECIFICATIONS

PROGRAM
SPECIFICATIONS

CODING
SPECIFICATIONS

CODING

PARAMETER TESTING
(SPECIFICATIONS)

ASSEMBLY TESTING
(SPECIFICATIONS)

SHAKEDOWN

SYSTEM EVALUATION

Figure 1. The SAGE Software Development Process (1956)
Another software difference was that software did not wear out.
Thus, software reliability could only imperfectly be estimated by
hardware reliability models, and “software maintenance” was a
much different activity than hardware maintenance. Software was
invisible, it didn’t weigh anything, but it cost a lot. It was hard to tell
whether it was on schedule or not, and if you added more people to
bring it back on schedule, it just got later, as Fred Brooks explained
in the Mythical Man-Month [42]. Software generally had many
more states, modes, and paths to test, making its specifications much
more difficult. Winston Royce, in his classic 1970 paper, said, “In
order to procure a $5 million hardware device, I would expect a 30-
page specification would provide adequate detail to control the
procurement. In order to procure $5 million worth of software, a
1500 page specification is about right in order to achieve
comparable control.”[132].
Another problem with the hardware engineering approach was that
the rapid expansion of demand for software outstripped the supply
of engineers and mathematicians. The SAGE program began hiring
and training humanities, social sciences, foreign language, and fine
arts majors to develop software. Similar non-engineering people
flooded into software development positions for business,
government, and services data processing.
These people were much more comfortable with the code-and-fix
approach. They were often very creative, but their fixes often led to
heavily patched spaghetti code. Many of them were heavily
influenced by 1960’s “question authority” attitudes and tended to
march to their own drummers rather than those of the organization
employing them. A significant subculture in this regard was the

13

“hacker culture” of very bright free spirits clustering around major
university computer science departments [83]. Frequent role models
were the “cowboy programmers” who could pull all-nighters to
hastily patch faulty code to meet deadlines, and would then be
rewarded as heroes.
Not all of the 1960’s succumbed to the code-and-fix approach,
IBM’s OS-360 family of programs, although expensive, late, and
initially awkward to use, provided more reliable and comprehensive
services than its predecessors and most contemporaries, leading to a
dominant marketplace position. NASA’s Mercury, Gemini, and
Apollo manned spacecraft and ground control software kept pace
with the ambitious “man on the moon by the end of the decade”
schedule at a high level of reliability.
Other trends in the 1960’s were:

• Much better infrastructure. Powerful mainframe operating
systems, utilities, and mature higher-order languages such
as Fortran and COBOL made it easier for non-
mathematicians to enter the field.

• Generally manageable small applications, although those
often resulted in hard-to-maintain spaghetti code.

• The establishment of computer science and informatics
departments of universities, with increasing emphasis on
software.

• The beginning of for-profit software development and
product companies.

• More and more large, mission-oriented applications.
Some were successful as with OS/360 and Apollo above,
but many more were unsuccessful, requiring near-
complete rework to get an adequate system.

• Larger gaps between the needs of these systems and the
capabilities for realizing them.

This situation led the NATO Science Committee to convene two
landmark “Software Engineering” conferences in 1968 and 1969,
attended by many of the leading researcher and practitioners in the
field [107][44]. These conferences provided a strong baseline of
understanding of the software engineering state of the practice that
industry and government organizations could use as a basis for
determining and developing improvements. It was clear that better
organized methods and more disciplined practices were needed to
scale up to the increasingly large projects and products that were
being commissioned.

2.3 1970’s Synthesis and Antithesis: Formality
and Waterfall Processes
The main reaction to the 1960’s code-and-fix approach involved
processes in which coding was more carefully organized and was
preceded by design, and design was preceded by requirements
engineering. Figure 2 summarizes the major 1970’s initiatives to
synthesize the best of 1950’s hardware engineering techniques with
improved software-oriented techniques.
More careful organization of code was exemplified by Dijkstra’s
famous letter to ACM Communications, “Go To Statement
Considered Harmful” [56]. The Bohm-Jacopini result [40] showing
that sequential programs could always be constructed without go-
to’s led to the Structured Programming movement.

This movement had two primary branches. One was a “formal
methods” branch that focused on program correctness, either by
mathematical proof [72][70], or by construction via a “programming
calculus” [56]. The other branch was a less formal mix of technical
and management methods, “top-down structured programming with
chief programmer teams,” pioneered by Mills and highlighted by the
successful New York Times application led by Baker [7].

Crafting
1960's

Hardware Engineering
1950's

Hardware
engineering

methods
- SAGE

-Hardware
efficiency

Software craft
- Code-and-fix
-Heroic
debugging

Structured
Methods

Waterfall Process

Formal Methods

Demand
growth,
diversity

Software
Differences

Skill
Shortfalls

Domain
understanding

Spaghetti Code

Larger projects,
Weak planning &

 control

Many defects

Figure2. Software Engineering Trends Through the 1970’s

The success of structured programming led to many other
“structured” approaches applied to software design. Principles of
modularity were strengthened by Constantine’s concepts of coupling
(to be minimized between modules) and cohesion (to be maximized
within modules) [48], by Parnas’s increasingly strong techniques of
information hiding [116][117][118], and by abstract data types
[92][75][151]. A number of tools and methods employing
structured concepts were developed, such as structured design
[106][55][154]; Jackson’s structured design and programming [82],
emphasizing data considerations; and Structured Program Design
Language [45].
Requirements-driven processes were well established in the 1956
SAGE process model in Figure 1, but a stronger synthesis of the
1950’s paradigm and the 1960’s crafting paradigm was provided by
Royce’s version of the “waterfall” model shown in Figure 3 [132].
It added the concepts of confining iterations to successive phases,
and a “build it twice” prototyping activity before committing to full-
scale development. A subsequent version emphasized verification
and validation of the artifacts in each phase before proceeding to the
next phase in order to contain defect finding and fixing within the
same phase whenever possible. This was based on the data from

14

TRW, IBM, GTE, and safeguard on the relative cost of finding
defects early vs. late [24].

SYSTEM
REQUIREMENTS

TESTING

CODING

PROGRAM
DESIGN

ANALYSIS

PRELIMINARY
PROGRAM

DESIGN

SOFTWARE
REQUIREMENTS

OPERATIONS

PRELIMINARY
DESIGN

ANALYSIS

PROGRAM
DESIGN

CODING

TESTING

USAGE

Figure 3. The Royce Waterfall Model (1970)

Phase in Which defect was fixed

10

20

50

100

200

500

1000

R
el

at
iv

e
co

st
 to

 fi
x

de
fe

ct

2

1

5

Requirements Design Code Development Acceptance Operation
test test

Smaller software projects

Larger software projects

• Median (TRW survey)

80%

20%

SAFEGUARD

GTE

IBM-SSD

•

•

•

•

•

•

Phase in Which defect was fixed

10

20

50

100

200

500

1000

R
el

at
iv

e
co

st
 to

 fi
x

de
fe

ct

2

1

5

Requirements Design Code Development Acceptance Operation
test test

Smaller software projects

Larger software projects

• Median (TRW survey)

80%

20%

SAFEGUARD

GTE

IBM-SSD

••

••

••

•

•

•

Figure 4. Increase in Software Cost-to-fix vs. Phase (1976)

Unfortunately, partly due to convenience in contracting for software
acquisition, the waterfall model was most frequently interpreted as a
purely sequential process, in which design did not start until there
was a complete set of requirements, and coding did not start until
completion of an exhaustive critical design review. These
misinterpretations were reinforced by government process standards
emphasizing a pure sequential interpretation of the waterfall model.

Quantitative Approaches
One good effect of stronger process models was the stimulation of
stronger quantitative approaches to software engineering. Some
good work had been done in the 1960’s such as System
Development Corp’s software productivity data [110] and
experimental data showing 26:1 productivity differences among
programmers [66]; IBM’s data presented in the 1960 NATO report
[5]; and early data on distributions of software defects by phase and
type. Partly stimulated by the 1973 Datamation article, “Software
and its Impact: A Quantitative Assessment” [22], and the Air Force
CCIP-85 study on which it was based, more management attention
and support was given to quantitative software analysis.
Considerable progress was made in the 1970’s on complexity
metrics that helped identify defect-prone modules [95][76]; software
reliability estimation models [135][94]; quantitative approaches to
software quality [23][101]; software cost and schedule estimation
models [121][73][26]; and sustained quantitative laboratories such

as the NASA/UMaryland/CSC Software Engineering Laboratory
[11].
Some other significant contributions in the 1970’s were the in-depth
analysis of people factors in Weinberg’s Psychology of Computer
Programming [144]; Brooks’ Mythical Man Month [42], which
captured many lessons learned on incompressibility of software
schedules, the 9:1 cost difference between a piece of demonstration
software and a software system product, and many others; Wirth’s
Pascal [149] and Modula-2 [150] programming languages; Fagan’s
inspection techniques [61]; Toshiba’s reusable product line of
industrial process control software [96]; and Lehman and Belady’s
studies of software evolution dynamics [12]. Others will be covered
below as precursors to 1980’s contributions.
However, by the end of the 1970’s, problems were cropping up with
formality and sequential waterfall processes. Formal methods had
difficulties with scalability and usability by the majority of less-
expert programmers (a 1975 survey found that the average coder in
14 large organizations had two years of college education and two
years of software experience; was familiar with two programming
languages and software products; and was generally sloppy,
inflexible, “in over his head”, and undermanaged [50]. The
sequential waterfall model was heavily document-intensive, slow-
paced, and expensive to use.
Since much of this documentation preceded coding, many impatient
managers would rush their teams into coding with only minimal
effort in requirements and design. Many used variants of the self-
fulfilling prophecy, “We’d better hurry up and start coding, because
we’ll have a lot of debugging to do.” A 1979 survey indicated that
about 50% of the respondents were not using good software
requirements and design practices [80] resulting from 1950’s SAGE
experience [25]. Many organizations were finding that their
software costs were exceeding their hardware costs, tracking the
1973 prediction in Figure 5 [22], and were concerned about
significantly improving software productivity and use of well-
known best practices, leading to the 1980’s trends to be discussed
next.

100

80

60

40

20

0
1955 1970 1985

Hardware

Software

Year

% of
total cost

Figure 5. Large-Organization Hardware-Software Cost Trends

(1973)

2.4 1980’s Synthesis: Productivity and
Scalability
Along with some early best practices developed in the 1970’s, the
1980’s led to a number of initiatives to address the 1970’s problems,
and to improve software engineering productivity and scalability.
Figure 6 shows the extension of the timeline in Figure 2 through the
rest of the decades through the 2010’s addressed in the paper.

15

Figure 6. A Full Range of Software Engineering Trends

?

Concurrent Processes
1990's

Global Integration
2010's

Agility; Value
2000's

Formality; Waterfall
1970's

Productivity
1980's

Crafting
1960's

Hardware Engineering
1950's

Hardware
engineering

methods
- SAGE

-Hardware
efficiency

Software craft
- Code-and-fix
-Heroic
debugging

Structured
Methods

Waterfall Process

Formal Methods

Object-oriented
methods

Standards,
Maturity Models

Software
Factories

Business 4GLs,
CAD/CAM, User
programming

Domain-specific
SW architectures,
product-line reuse

Service-oriented
architectures,
Model-driven
development

Rapid composition,
evolution

environments

Concurrent, risk-
driven process

Hybrid Agile,
Plan-Driven

Methods

Agile Methods

Integrated Systems
and Software
Engineering

Collaborative
methods,

infrastructure,
environments;
Value-based

methods;
Enterprise

architectures;
System building

by users

Demand
growth,
diversity

Software
Differences

Skill
Shortfalls

Domain
understanding

Spaghetti Code

Larger projects,
Weak planning &

 control

Many defects

Evolvability,
 reusability

 Noncompliance

Slow execution

HCI, COTS,
emergence

Process overhead

Lack of scalability

Lack of
scalability

Enterprise integration

Human factors

Process bureaucracy

Rapid change

Rapid change

Stovepipes

Lack of scalability

Rapid
change

Rapid change

Scale

Model
clashes

Global connectivity,
business practicality,

 security threats,
massive systems

of systems

Disruptors:
Autonomy,

Bio-computing,
Computational

plenty,
Multicultural

megasystems

16

The rise in quantitative methods in the late 1970’s helped identify
the major leverage points for improving software productivity.
Distributions of effort and defects by phase and activity enabled
better prioritization of improvement areas. For example,
organizations spending 60% of their effort in the test phase found
that 70% of the “test” activity was actually rework that could be
done much less expensively if avoided or done earlier, as indicated
by Figure 4. The cost drivers in estimation models identified
management controllables that could reduce costs through
investments in better staffing training, processes, methods, tools,
and asset reuse.
The problems with process noncompliance were dealt with initially
by more thorough contractual standards, such as the 1985 U.S.
Department of Defense (DoD) Standards DoD-STD-2167 and MIL-
STD-1521B, which strongly reinforced the waterfall model by tying
its milestones to management reviews, progress payments, and
award fees. When these often failed to discriminate between capable
software developers and persuasive proposal developers, the DoD
commissioned the newly-formed (1984) CMU Software
Engineering Institute to develop a software capability maturity
model (SW-CMM) and associated methods for assessing an
organization’s software process maturity. Based extensively on
IBM’s highly disciplined software practices and Deming-Juran-
Crosby quality practices and maturity levels, the resulting SW-
CMM provided a highly effective framework for both capability
assessment and improvement [81] The SW-CMM content was
largely method-independent, although some strong sequential
waterfall-model reinforcement remained. For example, the first
Ability to Perform in the first Key Process Area, Requirements
Management, states, “Analysis and allocation of the system
requirements is not the responsibility of the software engineering
group but is a prerequisite for their work.” [114]. A similar
International Standards Organization ISO-9001 standard for quality
practices applicable to software was concurrently developed, largely
under European leadership.
The threat of being disqualified from bids caused most software
contractors to invest in SW-CMM and ISO-9001 compliance. Most
reported good returns on investment due to reduced software
rework. These results spread the use of the maturity models to
internal software organizations, and led to a new round of refining
and developing new standards and maturity models, to be discussed
under the 1990’s.

Software Tools
In the software tools area, besides the requirements and design tools
discussed under the 1970’s, significant tool progress had been mode
in the 1970’s in such areas as test tools (path and test coverage
analyzers, automated test case generators, unit test tools, test
traceability tools, test data analysis tools, test simulator-stimulators
and operational test aids) and configuration management tools. An
excellent record of progress in the configuration management (CM)
area has been developed by the NSF ACM/IEE(UK)–sponsored
IMPACT project [62]. It traces the mutual impact that academic
research and industrial research and practice have had in evolving
CM from a manual bookkeeping practice to powerful automated
aids for version and release management, asynchronous
checkin/checkout, change tracking, and integration and test support.
A counterpart IMPACT paper has been published on modern
programming languages [134]; other are underway on

Requirements, Design, Resource Estimation, Middleware, Reviews
and Walkthroughs, and Analysis and Testing [113].
The major emphasis in the 1980’s was on integrating tools into
support environments. There were initially overfocused on
Integrated Programming Support Environments (IPSE’s), but
eventually broadened their scope to Computer-Aided Software
Engineering (CASE) or Software Factories. These were pursued
extensively in the U.S. and Europe, but employed most effectively
in Japan [50].
A significant effort to improve the productivity of formal software
development was the RAISE environment [21]. A major effort to
develop a standard tool interoperability framework was the
HP/NIST/ECMA Toaster Model [107]. Research on advanced
software development environments included knowledge-based
support, integrated project databases [119], advanced tools
interoperability architecture, and tool/environment configuration
and execution languages such as Odin [46].

Software Processes
Such languages led to the vision of process-supported software
environments and Osterweil’s influential “Software Processes are
Software Too” keynote address and paper at ICSE 9 [111]. Besides
reorienting the focus of software environments, this concept
exposed a rich duality between practices that are good for
developing products and practices that are good for developing
processes. Initially, this focus was primarily on process
programming languages and tools, but the concept was broadened to
yield highly useful insights on software process requirements,
process architectures, process change management, process families,
and process asset libraries with reusable and composable process
components, enabling more cost-effective realization of higher
software process maturity levels.
Improved software processes contributed to significant increases in
productivity by reducing rework, but prospects of even greater
productivity improvement were envisioned via work avoidance. In
the early 1980’s, both revolutionary and evolutionary approaches to
work avoidance were addressed in the U.S. DoD STARS program
[57]. The revolutionary approach emphasized formal specifications
and automated transformational approaches to generating code from
specifications, going back to early–1970’s “automatic
programming” research [9][10], and was pursued via the
Knowledge-Based Software Assistant (KBSA) program The
evolutionary approach emphasized a mixed strategy of staffing,
reuse, process, tools, and management, supported by integrated
environments [27]. The DoD software program also emphasized
accelerating technology transition, based on the [128] study
indicating that an average of 18 years was needed to transition
software engineering technology from concept to practice. This led
to the technology-transition focus of the DoD-sponsored CMU
Software Engineering Institute (SEI) in 1984. Similar initiatives
were pursued in the European Community and Japan, eventually
leading to SEI-like organizations in Europe and Japan.

2.4.1 No Silver Bullet
The 1980’s saw other potential productivity improvement
approaches such as expert systems, very high level languages, object
orientation, powerful workstations, and visual programming. All of
these were put into perspective by Brooks’ famous “No Silver
Bullet” paper presented at IFIP 1986 [43]. It distinguished the
“accidental” repetitive tasks that could be avoided or streamlined via

17

automation, from the “essential” tasks unavoidably requiring
syntheses of human expertise, judgment, and collaboration. The
essential tasks involve four major challenges for productivity
solutions: high levels of software complexity, conformity,
changeability, and invisibility. Addressing these challenges raised
the bar significantly for techniques claiming to be “silver bullet”
software solutions. Brooks’ primary candidates for addressing the
essential challenges included great designers, rapid prototyping,
evolutionary development (growing vs. building software systems)
and work avoidance via reuse.

Software Reuse
The biggest productivity payoffs during the 1980’s turned out to
involve work avoidance and streamlining through various forms of
reuse. Commercial infrastructure software reuse (more powerful
operating systems, database management systems, GUI builders,
distributed middleware, and office automation on interactive
personal workstations) both avoided much programming and long
turnaround times. Engelbart’s 1968 vision and demonstration was
reduced to scalable practice via a remarkable desktop-metaphor,
mouse and windows interactive GUI, what you see is what you get
(WYSIWYG) editing, and networking/middleware support system
developed at Xerox PARC in the 1970’s reduced to affordable use
by Apple’s Lisa(1983) and Macintosh(1984), and implemented
eventually on the IBM PC family by Microsoft’s Windows 3.1
(198x).
Better domain architecting and engineering enabled much more
effective reuse of application components, supported both by reuse
frameworks such as Draco [109] and by domain-specific business
fourth-generation-language (4GL’s) such as FOCUS and NOMAD
[102]. Object-oriented methods tracing back to Simula-67 [53]
enabled even stronger software reuse and evolvability via structures
and relations (classes, objects, methods, inheritance) that provided
more natural support for domain applications. They also provided
better abstract data type modularization support for high-cohesion
modules and low inter-module coupling. This was particularly
valuable for improving the productivity of software maintenance,
which by the 1980’s was consuming about 50-75% of most
organizations’ software effort [91][26]. Object-oriented
programming languages and environments such as Smalltalk, Eiffel
[102], C++ [140], and Java [69] stimulated the rapid growth of
object-oriented development, as did a proliferation of object-
oriented design and development methods eventually converging via
the Unified Modeling Language (UML) in the 1990’s [41].

2.5 1990’s Antithesis: Concurrent vs.
Sequential Processes
The strong momentum of object-oriented methods continued into
the 1990’s. Object-oriented methods were strengthened through
such advances as design patterns [67]; software architectures and
architecture description languages [121][137][12]; and the
development of UML. The continued expansion of the Internet and
emergence of the World Wide Web [17] strengthened both OO
methods and the criticality of software in the competitive
marketplace.
Emphasis on Time-To-Market
The increased importance of software as a competitive discriminator
and the need to reduce software time-to-market caused a major shift
away from the sequential waterfall model to models emphasizing
concurrent engineering of requirements, design, and code; of

product and process; and of software and systems. For example, in
the late 1980’s Hewlett Packard found that several of its market
sectors had product lifetimes of about 2.75 years, while its waterfall
process was taking 4 years for software development. As seen in
Figure 7, its investment in a product line architecture and reusable
components increased development time for the first three products
in 1986-87, but had reduced development time to one year by 1991-
92 [92]. The late 1990’s saw the publication of several influential

books on software reuse [83][128][125][146].

Figure 7. HP Product Line Reuse Investment and Payoff

Besides time-to market, another factor causing organizations to
depart from waterfall processes was the shift to user-interactive
products with emergent rather than prespecifiable requirements.
Most users asked for their GUI requirements would answer, “I’m
not sure, but I’ll know it when I see it” (IKIWISI). Also, reuse-
intensive and COTS-intensive software development tended to
follow a bottom-up capabilities-to-requirements process rather than
a top-down requirements-to capabilities process.

Controlling Concurrency
The risk-driven spiral model [28] was intended as a process to
support concurrent engineering, with the project’s primary risks
used to determine how much concurrent requirements engineering,
architecting, prototyping, and critical-component development was
enough. However, the original model contained insufficient
guidance on how to keep all of these concurrent activities
synchronized and stabilized. Some guidance was provided by the
elaboration of software risk management activities [28][46] and the
use of the stakeholder win-win Theory W [31] as milestone criteria.
But the most significant addition was a set of common industry-
coordinated stakeholder commitment milestones that serve as a basis
for synchronizing and stabilizing concurrent spiral (or other)
processes.
These anchor point milestones-- Life Cycle Objectives (LCO), Life
Cycle Architecture(LCA), and Initial Operational Capability (IOC)
– have pass-fail criteria based on the compatibility and feasibility of
the concurrently-engineered requirements, prototypes, architecture,
plans, and business case [33]. They turned out to be compatible with
major government acquisition milestones and the AT&T
Architecture Review Board milestones [19][97]. They were also

18

adopted by Rational/IBM as the phase gates in the Rational Unified
Process [87][133][84], and as such have been used on many
successful projects. They are similar to the process milestones used
by Microsoft to synchronize and stabilize its concurrent software
processes [53]. Other notable forms of concurrent, incremental and
evolutionary development include the Scandinavian Participatory
Design approach [62], various forms of Rapid Application
Development [103][98], and agile methods, to be discussed under
the 2000’s below. [87] is an excellent source for iterative and
evolutionary development methods.

Open Source Development
Another significant form of concurrent engineering making strong
contribution in the 1990’s was open source software development.
From its roots in the hacker culture of the 1960’s, it established an
institutional presence in 1985 with Stallman’s establishment of the
Free Software Foundation and the GNU General Public License
[140]. This established the conditions of free use and evolution of a
number of highly useful software packages such as the GCC C-
Language compiler and the emacs editor. Major 1990’s milestones
in the open source movement were Torvalds’ Linux (1991),
Berners-Lee’s World Wide Web consortium (1994), Raymond’s
“The Cathedral and the Bazaar” book [128], and the O’Reilly Open
Source Summit (1998), including leaders of such products as Linux

, Apache, TCL, Python, Perl, and Mozilla [144].
Usability and Human-Computer Interaction
As mentioned above, another major 1990’s emphasis was on
increased usability of software products by non-programmers. This
required reinterpreting an almost universal principle, the Golden
Rule, “Do unto others as you would have others do unto you”, To
literal-minded programmers and computer science students, this
meant developing programmer-friendly user interfaces. These are
often not acceptable to doctors, pilots, or the general public, leading
to preferable alternatives such as the Platinum Rule, “Do unto others
as they would be done unto.”
Serious research in human-computer interaction (HCI) was going on
as early as the second phase of the SAGE project at Rand Corp in
the 1950’s, whose research team included Turing Award winner
Allen Newell. Subsequent significant advances have included
experimental artifacts such as Sketchpad and the Engelbert and
Xerox PARC interactive environments discussed above. They have
also included the rapid prototyping and Scandinavian Participatory
Design work discussed above, and sets of HCI guidelines such as
[138] and [13]. The late 1980’s and 1990’s also saw the HCI field
expand its focus from computer support of individual performance
to include group support systems [96][111].

2.6 2000’s Antithesis and Partial Synthesis:
Agility and Value
So far, the 2000’s have seen a continuation of the trend toward rapid
application development, and an acceleration of the pace of change
in information technology (Google, Web-based collaboration
support), in organizations (mergers, acquisitions, startups), in
competitive countermeasures (corporate judo, national security), and
in the environment (globalization, consumer demand patterns). This
rapid pace of change has caused increasing frustration with the
heavyweight plans, specifications, and other documentation
imposed by contractual inertia and maturity model compliance

criteria. One organization recently presented a picture of its CMM
Level 4 Memorial Library: 99 thick spiral binders of documentation
used only to pass a CMM assessment.

Agile Methods
The late 1990’s saw the emergence of a number of agile methods
such as Adaptive Software Development, Crystal, Dynamic Systems
Development, eXtreme Programming (XP), Feature Driven
Development, and Scrum. Its major method proprietors met in 2001
and issued the Agile Manifesto, putting forth four main value
preferences:
• Individuals and interactions over processes and tools.
• Working software over comprehensive documentation.
• Customer collaboration over contract negotiation
• Responding to change over following a plan.
The most widely adopted agile method has been XP, whose major
technical premise in [14] was that its combination of customer
collocation, short development increments, simple design, pair
programming, refactoring, and continuous integration would flatten
the cost-of change-vs.-time curve in Figure 4. However, data
reported so far indicate that this flattening does not take place for
larger projects. A good example was provided by a large Thought
Works Lease Management system presented at ICSE 2002 [62].
When the size of the project reached over 1000 stories, 500,000
lines of code, and 50 people, with some changes touching over 100
objects, the cost of change inevitably increased. This required the
project to add some more explicit plans, controls, and high-level
architecture representations.
Analysis of the relative “home grounds” of agile and plan-driven
methods found that agile methods were most workable on small
projects with relatively low at-risk outcomes, highly capable
personnel, rapidly changing requirements, and a culture of thriving
on chaos vs. order. As shown in Figure 8 [36], the agile home
ground is at the center of the diagram, the plan-driven home ground
is at the periphery, and projects in the middle such as the lease
management project needed to add some plan-driven practices to
XP to stay successful.

Value-Based Software Engineering
Agile methods’ emphasis on usability improvement via short
increments and value-prioritized increment content are also
responsive to trends in software customer preferences. A recent
Computerworld panel on “The Future of Information Technology
(IT)” indicated that usability and total ownership cost-benefits,
including user inefficiency and ineffectiveness costs, are becoming
IT user organizations’ top priorities [5]. A representative quote from
panelist W. Brian Arthur was “Computers are working about as fast
as we need. The bottleneck is making it all usable.” A recurring
user-organization desire is to have technology that adapts to people
rather than vice versa. This is increasingly reflected in users’ product
selection activities, with evaluation criteria increasingly emphasizing
product usability and value added vs. a previous heavy emphasis on
product features and purchase costs. Such trends ultimately will
affect producers’ product and process priorities, marketing
strategies, and competitive survival.
Some technology trends strongly affecting software engineering for
usability and cost-effectiveness are increasingly powerful enterprise
support packages, data access and mining tools, and Personal Digital
Assistant (PDA) capabilities. Such products have tremendous

19

potential for user value, but determining how they will be best
configured will involve a lot of product experimentation, shakeout,
and emergence of superior combinations of system capabilities.
In terms of future software process implications, the fact that the
capability requirements for these products are emergent rather than
prespecifiable has become the primary challenge. Not only do the
users exhibit the IKIWISI (I’ll know it when I see it) syndrome, but
their priorities change with time. These changes often follow a
Maslow need hierarchy, in which unsatisfied lower-level needs are
top priority, but become lower priorities once the needs are satisfied
[96]. Thus, users will initially be motivated by survival in terms of
capabilities to process new work-loads, followed by security once
the workload-processing needs are satisfied, followed by self-
actualization in terms of capabilities for analyzing the workload
content for self-improvement and market trend insights once the
security needs are satisfied.
It is clear that requirements emergence is incompatible with past
process practices such as requirements-driven sequential waterfall
process models and formal programming calculi; and with process
maturity models emphasizing repeatability and optimization [114].
In their place, more adaptive [74] and risk-driven [32] models are
needed. More fundamentally, the theory underlying software process
models needs to evolve from purely reductionist “modern” world
views (universal, general, timeless, written) to a synthesis of these
and situational “postmodern” world views (particular, local, timely,
oral) as discussed in [144]. A recent theory of value-based software
engineering (VBSE) and its associated software processes [37]
provide a starting point for addressing these challenges, and for
extending them to systems engineering processes. The associated
VBSE book [17] contains further insights and emerging directions
for VBSE processes.
The value-based approach also provides a framework for
determining which low-risk, dynamic parts of a project are better
addressed by more lightweight agile methods and which high-risk,
more stabilized parts are better addressed by plan-driven methods.
Such syntheses are becoming more important as software becomes
more product-critical or mission-critical while software
organizations continue to optimize on time-to-market.

Software Criticality and Dependability
Although people’s, systems’, and organizations’ dependency on
software is becoming increasingly critical, de-pendability is
generally not the top priority for software producers. In the words of
the 1999 PITAC Report, “The IT industry spends the bulk of its
resources, both financial and human, on rapidly bringing products to
market.” [123].
Recognition of the problem is increasing. ACM President David
Patterson has called for the formation of a top-priority
Security/Privacy, Usability, and Reliability (SPUR) initiative [119].
Several of the Computerworld “Future of IT” panelists in [5]
indicated increasing customer pressure for higher quality and vendor
warranties, but others did not yet see significant changes happening
among software product vendors.
This situation will likely continue until a major software-induced
systems catastrophe similar in impact on world consciousness to the
9/11 World Trade Center catastrophe stimulates action toward
establishing account-ability for software dependability. Given the
high and increasing software vulnerabilities of the world’s current
financial, transportation, communications, energy distribution,

medical, and emergency services infrastructures, it is highly likely
that such a software-induced catastrophe will occur between now
and 2025.
Some good progress in high-assurance software technology
continues to be made, including Hoare and others’ scalable use of
assertions in Microsoft products [71], Scherlis’ tools for detecting
Java concurrency problems, Holtzmann and others’ model-checking
capabilities [78] Poore and others’ model-based testing capabilities
[124] and Leveson and others’ contributions to software and system
safety.

COTS, Open Source, and Legacy Software
A source of both significant benefits and challenges to
simultaneously adopting to change and achieving high dependability
is the increasing availability of commercial-off-the-shelf (COTS)
systems and components. These enable rapid development of
products with significant capabilities in a short time. They are also
continually evolved by the COTS vendors to fix defects found by
many users and to competitively keep pace with changes in
technology. However this continuing change is a source of new
streams of defects; the lack of access to COTS source code inhibits
users’ ability to improve their applications’ dependability; and
vendor-controlled evolution adds risks and constraints to users’
evolution planning.
Overall, though, the availability and wide distribution of mass-
produced COTS products makes software productivity curves look
about as good as hardware productivity curves showing exponential
growth in numbers of transistors produced and Internet packets
shipped per year. Instead of counting the number of new source
lines of code (SLOC) produced per year and getting a relatively flat
software productivity curve, a curve more comparable to the
hardware curve should count the number of executable machine
instructions or lines of code in service (LOCS) on the computers
owned by an organization.

Figure 8. U.S. DoD Lines of Code in Service and Cost/LOCS

Figure 8 shows the results of roughly counting the LOCS owned by
the U.S. Department of Defense (DoD) and the DoD cost in dollars
per LOCS between 1950 and 2000 [28]. It conservatively estimated
the figures for 2000 by multiplying 2 million DoD computers by
100 million executable machine instructions per computer, which
gives 200 trillion LOCS. Based on a conservative $40 billion-per-
year DoD software cost, the cost per LOCS is $0.0002. These cost
improvements come largely from software reuse. One might object

20

that not all these LOCS add value for their customers. But one could
raise the same objections for all transistors being added to chips
each year and all the data packets transmitted across the internet. All
three commodities pass similar market tests.
COTS components are also reprioritizing the skills needed by
software engineers. Although a 2001 ACM Communications
editorial stated, “In the end – and at the beginning – it’s all about
programming.” [49], future trends are making this decreasingly true.
Although infrastructure software developers will continue to spend
most of their time programming, most application software
developers are spending more and more of their time assessing,
tailoring, and integrating COTS products. COTS hardware products
are also becoming more pervasive, but they are generally easier to
assess and integrate.
Figure 9 illustrates these trends for a longitudinal sample of small e-
services applications, going from 28% COTS-intensive in 1996-97
to 70% COTS-intensive in 2001-2002, plus an additional industry-
wide 54% COTS-based applications (CBAs) in the 2000 Standish
Group survey [140][152]. COTS software products are particularly
challenging to integrate. They are opaque and hard to debug. They
are often incompatible with each other due to the need for
competitive differentiation. They are uncontrollably evolving,
averaging about to 10 months between new releases, and generally
unsupported by their vendors after 3 subsequent releases. These
latter statistics are a caution to organizations outsourcing
applications with long gestation periods. In one case, an out-sourced
application included 120 COTS products, 46% of which were

delivered in a vendor-unsupported state [153].
CBA Growth Trend in USC e-Services Projects

0
10
20
30
40
50
60
70
80

1997 1998 1999 2000 2001 2002

Year

Pe
rc

en
ta

ge

Figure 9. CBA Growth in USC E-Service Projects ⎯ *Standish

Group, Extreme Chaos (2000)
Open source software, or an organization’s reused or legacy
software, is less opaque and less likely to go unsupported. But these
can also have problems with interoperability and continuing
evolution. In addition, they often place constraints on a new
application’s incremental development, as the existing software
needs to be decomposable to fit the new increments’ content and
interfaces. Across the maintenance life cycle, synchronized refresh
of a large number of continually evolving COTS, open source,
reused, and legacy software and hardware components becomes a
major additional challenge.
In terms of the trends discussed above, COTS, open source, reused,
and legacy software and hardware will often have shortfalls in
usability, dependability, interoperability, and localizability to
different countries and cultures. As discussed above, increasing

customer pressures for COTS usability, dependability, and
interoperability, along with enterprise architecture initiatives, will
reduce these shortfalls to some extent.

Model-Driven Development
Although COTS vendors’ needs to competitively differentiate their
products will increase future COTS integration challenges, the
emergence of enterprise architectures and model-driven
development (MDD) offer prospects of improving compatibility.
When large global organizations such as WalMart and General
Motors develop enterprise architectures defining supply chain
protocols and interfaces [66], and similar initiatives such as the U.S.
Federal Enterprise Architecture Framework are pursued by
government organizations, there is significant pressure for COTS
vendors to align with them and participate in their evolution.
MDD capitalizes on the prospect of developing domain models (of
banks, automobiles, supply chains, etc.) whose domain structure
leads to architectures with high module cohesion and low inter-
module coupling, enabling rapid and dependable application
development and evolvability within the domain. Successful MDD
approaches were being developed as early as the 1950’s, in which
engineers would use domain models of rocket vehicles, civil
engineering structures, or electrical circuits and Fortran
infrastructure to enable user engineers to develop and execute
domain applications [29]. This thread continues through business
4GL’s and product line reuse to MDD in the lower part of Figure 6.
The additional challenge for current and future MDD approaches is
to cope with the continuing changes in software infrastructure
(massive distribution, mobile computing, evolving Web objects) and
domain restructuring that are going on. Object–oriented models and
meta-models, and service-oriented architectures using event-based
publish-subscribe concepts of operation provide attractive
approaches for dealing with these, although it is easy to inflate
expectations on how rapidly capabilities will mature. Figure 10
shows the Gartner Associates assessment of MDA technology
maturity as of 2003, using their “history of a silver bullet”
rollercoaster curve. But substantive progress is being made on many
fronts, such as Fowler’s Patterns of Enterprise Applications
Architecture book and the articles in two excellent MDD special
issues in Software [102] and Computer [136].

Figure 10. MDA Adoption Thermometer – Gartner Associates,

2003

 *

21

Interacting software and Systems Engineering
The push to integrate application-domain models and software-
domain models in MDD reflects the trend in the 2000’s toward
integration of software and systems engineering. Another driver in
recognition from surveys such as [140] that the majority of software
project failures stem from systems engineering shortfalls (65% due
to lack of user input, incomplete and changing requirements,
unrealistic expectations and schedules, unclear objectives, and lack
of executive support). Further, systems engineers are belatedly
discovering that they need access to more software skills as their
systems become more software-intensive. In the U.S., this has
caused many software institutions and artifacts to expand their scope
to include systems, such as the Air Force Systems and Software
Technology Center, the Practical Systems and Software
Measurement Program and the Integrated (Systems and Software)
Capability Maturity Model.
The importance of integrating systems and software engineering has
also been highlighted in the experience reports of large
organizations trying to scale up agile methods by using teams of
teams [35]. They find that without up-front systems engineering and
teambuilding, two common failure modes occur. One is that agile
teams are used to making their own team’s architecture or
refactoring decisions, and there is a scarcity of team leaders that can
satisfice both the team’s preferences and the constraints desired or
imposed by the other teams. The other is that agile teams tend to
focus on easiest-first low hanging fruit in the early increments, to
treat system-level quality requirements (scalability, security) as
features to be incorporated in later increments, and to become
unpleasantly surprised when no amount of refactoring will
compensate for the early choice of an unscalable or unsecurable off-
the-shelf component.

3. A View of the 2010’s and Beyond
A related paper on the future of systems and software engineering
process [38] identified eight surprise-tree trends and two ‘wild-card’
trends that would strongly influence future software and systems
engineering directions. Five of the eight surprise-tree trends were
just discussed under the 2000’s: rapid change and the need for
agility; increased emphasis on usability and value; software
criticality and the need for dependability; increasing needs for
COTS, reuse, and legacy software integration; and the increasing
integration of software and systems engineering. Two of the eight
surprise-tree trends will be covered next under the 2010’s: global
connectivity and massive systems of systems. Surprise-free
computational plenty and the two wild-card trends (increasing
software autonomy and combinations of biology and computing)
will be covered under “2020 and beyond”.

3.1 2010’s Antitheses and Partial Syntheses:
Globalization and Systems of Systems

The global connectivity provided by the Internet and low-cost,
high-bandwidth global communications provides major economies
of scale and network economies [7] that drive both an organization’s
product and process strategies. Location-independent distribution
and mobility services create both rich new bases for synergetic
collaboration and challenges in synchronizing activities. Differential
salaries provide opportunities for cost savings through global
outsourcing, although lack of careful preparation can easily turn the
savings into overruns. The ability to develop across multiple time

zones creates the prospect of very rapid development via three-shift
operations, although again there are significant challenges in
management visibility and control, communication semantics, and
building shared values and trust.
On balance, though, the Computerworld “Future of IT” panelists felt
that global collaboration would be commonplace in the future. An
even stronger view is taken by the bestselling [66] book, The World
is Flat: A Brief History of the 21st Century. It is based on extensive
Friedman interviews and site visits with manufacturers and service
organizations in the U.S., Europe, Japan, China and Taiwan; call
centers in India; data entry shops in several developing nations; and
software houses in India, China, Russia and other developing
nations. It paints a picture of the future world that has been
“flattened” by global communications and overnight delivery
services that enable pieces of work to be cost-effectively outsourced
anywhere in the world.
The competitive victors in this flattened world are these who focus
on their core competencies; proactively innovative within and at the
emerging extensions of their core competencies; and efficiently
deconstruct their operations to enable outsourcing of non-core tasks
to lowest-cost acceptable suppliers. Descriptions in the book of how
this works at Wal-Mart and Dell provide convincing cases that this
strategy is likely to prevail in the future. The book makes it clear that
software and its engineering will be essential to success, but that
new skills integrating software engineering with systems
engineering, marketing, finance, and core domain skills will be
critical.
This competition will be increasingly multinational, with
outsourcees trying to master the skills necessary to become
outsourcers, as their internal competition for talent drives salaries
upward, as is happening in India, China, and Russia, for example.
One thing that is unclear, though is the degree to which this dynamic
will create a homogeneous global culture. There are also strong
pressures for countries to preserve their national cultures and values.
Thus, it is likely that the nature of products and processes would
also evolve toward the complementarity of skills in such areas as
culture-matching and localization [49]. Some key culture-matching
dimensions are provided in [77]: power distance,
individualism/collectivism, masculinity/femininity, uncertainty
avoidance, and long-term time orientation. These often explain low
software product and process adoption rates across cultures. One
example is the low adoption rate (17 out of 380 experimental users)
of the more individual/masculine/short-term U.S. culture’s Software
CMM by organizations in the more collective/feminine/long-term
Thai culture [121]. Another example was a much higher Chinese
acceptance level of a workstation desktop organized around people,
relations, and knowledge as compared to Western desktop organized
around tools, folders, and documents [proprietary communication].
As with railroads and telecommunications, a standards-based
infrastructure is essential for effective global collaboration. The
Computerworld panelists envision that standards-based
infrastructure will become increasingly commoditized and move
further up the protocol stack toward applications.
A lot of work needs to be done to establish robust success patterns
for global collaborative processes. Key challenges as discussed
above include cross-cultural bridging; establishment of common
shared vision and trust; contracting mechanisms and incentives;
handovers and change synchronization in multi-timezone
development; and culture-sensitive collaboration-oriented

22

groupware. Most software packages are oriented around individual
use; just determining how best to support groups will take a good
deal of research and experimentation.

Software-Intensive Systems of Systems
Concurrently between now and into the 2010’s, the ability of
organizations and their products, systems, and services to compete,
adapt, and survive will depend increasingly on software and on the
ability to integrate related software-intensive systems into systems of
systems (SOS). Historically (and even recently for some forms of
agile methods), systems and software development processes and
maturity models have been recipes for developing standalone
“stovepipe” systems with high risks of inadequate interoperability
with other stovepipe systems. Experience has shown that such
collections of stovepipe systems cause unacceptable delays in
service, uncoordinated and conflicting plans, ineffective or
dangerous decisions, and an inability to cope with rapid change.
During the 1990’s and early 2000’s, standards such as the
International Organization for Standarization (ISO)/International
Electrotechnical Commission (IEC) 12207 [1] and ISO/IEC 15288
[2] began to emerge that situated systems and software project
processes within an enterprise framework. Concurrently, enterprise
architectures such as the International Business Machines (IBM)
Zachman Framework [155], Reference Model for Open Distributed
Processing (RM-ODP) [127] and the U.S. Federal Enterprise
Architecture Framework [3], have been developing and evolving,
along with a number of commercial Enterprise Resource Planning
(ERP) packages.
These frameworks and support packages are making it possible for
organizations to reinvent themselves around transformational,
network-centric systems of systems. As discussed in [77], these are
necessarily software-intensive systems of systems (SISOS), and
have tremendous opportunities for success and equally tremendous
risks of failure. There are many definitions of “systems of systems”
[83]. For this paper, the distinguishing features of a SOS are not
only that it integrates multiple independently-developed systems,
but also that it is very large, dynamically evolving, and
unprecedented, with emergent requirements and behaviors and
complex socio-technical issues to address. Table 1 provides some
additional characteristics of SISOSs.

Table 1. Complexity of SISOS Solution Spaces.

There is often a Lead System Integrator that is responsible for the
development of the SOS architecture, identifying the suppliers and
vendors to provide the various SOS components, adapting the
architecture to meet evolving requirements and selected vendor
limitations or constraints, then overseeing the implementation
efforts and planning and executing the SOS level integration and

test activities. Key to successful SOS development is the ability to
achieve timely decisions with a potentially diverse set of
stakeholders, quickly resolve conflicting needs, and coordinate the
activities of multiple vendors who are currently working together to
provided capabilities for the SOS, but are often competitors on other
system development efforts (sometimes referred to as “coopetitive
relationships”).
In trying to help some early SISOS programs apply the risk-sriven
spiral model, I’ve found that that spiral model and other process,
product, cost, and schedule models need considerable rethinking,
particularly when rapid change needs to be coordinated among as
many stakeholders as are shown in Table 1. Space limitations make
it infeasible to discuss these in detail, but the best approach evolved
so far involves, in Rational Unified Process terms:
1. Longer-than-usual Inception and Elaboration phases, to

concurrently engineer and validate the consistency and
feasibility of the operation, requirements, architecture,
prototypes, and plans; to select and harmonize the suppliers;
and to develop validated baseline specifications and plans for
each validated increment.

2. Short, highly stabilized Construction-phase increments
developed by a dedicated team of people who are good at
efficiently and effectively building software to a given set of
specifications and plans.

3. A dedicated, continuous verification and validation (V&V)
effort during the Construction phase by people who are good at
V&V, providing rapid defect feedback to the developers.

4. A concurrent agile-rebaselining effort by people who are good
at rapidly adapting to change and renegotiating the
specifications and plans for the next Construction increment.

Further elaboration of the top SISOS risks and the process above are
in [35] and [39]. Other good SISOS references are [95], [135], and
[50].

3.2 2020 and Beyond
Computational Plenty Trends
Assuming that Moore’s Law holds, another 20 years of doubling
computing element performance every 18 months will lead to a
performance improvement factor of 220/1.5 = 213.33 = 10,000 by
2025. Similar factors will apply to the size and power consumption
of the competing elements.
This computational plenty will spawn new types of platforms (smart
dust, smart paint, smart materials, nanotechnology, micro electrical-
mechanical systems: MEMS), and new types of applications (sensor
networks, conformable or adaptive materials, human prosthetics).
These will present software engineering challenges for specifying
their configurations and behavior; generating the resulting
applications; verifying and validating their capabilities,
performance, and dependability; and integrating them into even
more complex systems of systems.
Besides new challenges, though, computational plenty will enable
new and more powerful software engineering approaches. It will
enable new and more powerful self-monitoring software and
computing via on-chip co-processors for assertion checking, trend
analysis, intrusion detection, or verifying proof-carrying code. It will
enable higher levels of abstraction, such as pattern-oriented
programming, multi-aspect oriented programming, domain-oriented
visual component assembly, and programming by example with

Characteristic Range of Values

Size 10-100 million lines of code

Number of External
Interfaces

30-300

Number of “Coopetitive”
Suppliers

20-200

Depth of Supplier Hierarchy 6-12 levels

Number of Coordination
Groups

20-200

23

expert feedback on missing portions. It will enable simpler brute-
force solutions such as exhaustive case evaluation vs. complex logic.
It will also enable more powerful software and systems engineering
tools that provide feedback to developers based on domain
knowledge, programming knowledge, systems engineering
knowledge, or management knowledge. It will enable the equivalent
of seat belts and air bags for user-programmers. It will support
show-and-tell documentation and much more powerful system
query and data mining techniques. It will support realistic virtual
game-oriented systems and software engineering education and
training. On balance, the added benefits of computational plenty
should significantly outweigh the added challenges.

Wild Cards: Autonomy and Bio-Computing
“Autonomy” covers technology advancements that use
computational plenty to enable computers and software to
autonomously evaluate situations and determine best-possible
courses of action. Examples include:
• Cooperative intelligent agents that assess situations, analyze

trends, and cooperatively negotiate to determine best available
courses of action.

• Autonomic software, that uses adaptive control techniques to
reconfigure itself to cope with changing situations.

• Machine learning techniques, that construct and test alternative
situation models and converge on versions of models that will
best guide system behavior.

• Extensions of robots at conventional-to-nanotechnology scales
empowered with autonomy capabilities such as the above.

Combinations of biology and computing include:
• Biology-based computing, that uses biological or molecular

phenomena to solve computational problems beyond the reach
of silicon-based technology.

• Computing-based enhancement of human physical or mental
capabilities, perhaps embedded in or attached to human bodies
or serving as alternate robotic hosts for (portions of) human
bodies.

Examples of books describing these capabilities are Kurzweil’s The
Age of Spiritual Machines [86] and Drexler’s books Engines of
Creation and Unbounding the Future: The Nanotechnology
Revolution [57][58]. They identify major benefits that can
potentially be derived from such capabilities, such as artificial labor,
human shortfall compensation (the five senses, healing, life span,
and new capabilities for enjoyment or self-actualization), adaptive
control of the environment, or redesigning the world to avoid
current problems and create new opportunities.
On the other hand, these books and other sources such as Dyson’s
Darwin Among the Machines: The Evolution of Global Intelligence
[61] and Joy’s article, “Why the Future Doesn’t Need Us” [83],
identify major failure modes that can result from attempts to
redesign the world, such as loss of human primacy over computers,
over-empowerment of humans, and irreversible effects such as
plagues or biological dominance of artificial species. From a
software process standpoint, processes will be needed to cope with
autonomy software failure modes such as undebuggable self-
modified software, adaptive control instability, interacting agent
commitments with unintended consequences, and commonsense
reasoning failures.

As discussed in Dreyfus and Dreyfus’ Mind Over Machine [59], the
track record of artificial intelligence predictions shows that it is easy
to overestimate the rate of AI progress. But a good deal of AI
technology is usefully at work today and, as we have seen with the
Internet and World Wide Web, it is also easy to underestimate rates
of IT progress as well. It is likely that the more ambitious
predictions above will not take place by 2020, but it is more
important to keep both the positive and negative potentials in mind
in risk-driven experimentation with emerging capabilities in these
wild-card areas between now and 2020.

4. Conclusions
4.1 Timeless Principles and Aging Practices
For each decade, I’ve tried to identify two timeless principles
headed by plus signs; and one aging practice, headed by a minus
sign.

From the 1950’s
+ Don’t neglect the sciences. This is the first part of the

definition of “engineering”. It should not include just
mathematics and computer science, but also behavioral
sciences, economics, and management science. It should also
include using the scientific method to learn through experience.

+ Look before you leap. Premature commitments can be
disastrous (Marry in haste; repent at leisure – when any leisure
is available).

− Avoid using a rigorous sequential process. The world is getting
too tangeable and unpredictable for this, and it’s usually
slower.

From the 1960’s
+ Think outside the box. Repetitive engineering would never

have created the Arpanet or Engelbart’s mouse-and-windows
GUI. Have some fun prototyping; it’s generally low-risk and
frequently high reward.

+ Respect software’s differences. You can’t speed up its
development indefinitely. Since it’s invisible, you need to find
good ways to make it visible and meaningful to different
stakeholders.

− Avoid cowboy programming. The last-minute all-nighter
frequently doesn’t work, and the patches get ugly fast.

From the 1970’s
+ Eliminate errors early. Even better, prevent them in the future

via root cause analysis.
+ Determine the system’s purpose. Without a clear shared vision,

you’re likely to get chaos and disappointment. Goal-question-
metric is another version of this.

− Avoid Top-down development and reductionism. COTS, reuse,
IKIWISI, rapid changes and emergent requirements make this
increasingly unrealistic for most applications.

From the 1980’s
+ These are many roads to increased productivity, including

staffing, training, tools, reuse, process improvement,
prototyping, and others.

+ What’s good for products is good for process, including
architecture, reusability, composability, and adaptability.

24

− Be skeptical about silver bullets, and one-size-fits-all solutions.

From the 1990’s
+ Time is money. People generally invest in software to get a

positive return. The sooner the software is fielded, the sooner
the returns come – if it has satisfactory quality.

+ Make software useful to people. This is the other part of the
definition of “engineering.”

− Be quick, but don’t hurry. Overambitious early milestones
usually result in incomplete and incompatible specifications
and lots of rework.

From the 2000s
+ If change is rapid, adaptability trumps repeatability.
+ Consider and satisfice all of the stakeholders’ value

propositions. If success-critical stakeholders are neglected or
exploited, they will generally counterattack or refuse to
participate, making everyone a loser.

− Avoid falling in love with your slogans. YAGNI (you aren’t
going to need it) is not always true.

For the 2010’s
+ Keep your reach within your grasp. Some systems of systems

may just be too big and complex.
+ Have an exit strategy. Manage expectations, so that if things go

wrong, there’s an acceptable fallback.

− Don’t believe everything you read. Take a look at the
downslope of the Gartner rollercoaster in Figure 10.

4.2 Some Conclusions for Software
Engineering Education
The students learning software engineering over the next two
decades will be participating their profession well into the 2040’s,
2050’s, and probably 2060’s. The increased pace of change
continues to accelerate, as does the complexity of the software-
intensive systems or systems of systems that need to be perceptively
engineered. This presents many serious but exciting challenges to
software engineering education, including:

• Keeping courses and courseware continually refreshed
and up-to-date;

• Anticipating future trends and preparing students to deal
with them;

• Monitoring current principles and practices and
separating timeless principles from out-of-date practices;

• Packaging smaller-scale educational experiences in ways
that apply to large-scale projects;

• Participating in leading-edge software engineering
research and practice, and incorporating the results into
the curriculum;

• Helping students learn how to learn, through state-of-the-
art analyses, future-oriented educational games and
exercises, and participation in research; and

• Offering lifelong learning opportunities as software
engineers continue to practice their profession.

Acknowledgements and Apologies
This work was partly supported by NSF grants CCF-0137766 for
the IMPACT project, my NSF “Value-Based Science of Design”
grant, and the Affiliates of the USC Center for Software
Engineering.
I also benefited significantly from interactions with software
pioneers and historians at the 1996 Dagstuhl History of Software
Engineering seminar, the SD&M Software Pioneers conference, and
the NSF/ACM/IEE (UK) IMPACT project.
Having said this, I am amazed at how little I learned at those events
and other interactions that has made it into this paper. And just
glancing at my bookshelves, I am embarrassed at how many
significant contributions are not represented here, and how much the
paper is skewed toward the U.S. and my own experiences. My
deepest apologies to those of you that I have neglected.

5. REFERENCES
[1] ISO. Standard for Information Technology – Software Life

Cycle Processes. ISO/IEC 12207, 1995.

[2] ISO. Systems Engineering – System Life Cycle Processes.
ISO/IEC 15288, 2002.

[3] FCIO (Federal CIO Council), A Practical Guide to Federal
Enterprise Architecture, Version 1.0, FCIO, Washington,
DC, February 2001. zaqi4.

[4] Alford, M.W., Software Requirements Engineering
Methodology (SREM) at the Age of Four, COMPSAC 80
Proceedings, (October 1980) pp 366-374.

[5] Anthes, G., The Future of IT. Computerworld, (March 7,
2005) 27-36

[6] Aron, J. Software Engineering, NATO Science Committee
Report, January 1969.

[7] Arthur, W. B., Increasing Returns and the New World of
Business. Harvard Business Review (July/August, 1996)
100-109

[8] Baker, F. T. Structured programming in a production
programming environment. In Proceedings of the
international Conference on Reliable Software. Los
Angeles, California, April 21 - 23, 1975.

[9] Balzer, R.M. A Global View Of Automatic Programming,
Proc. 3rd Joint Conference On Artificial Intelligence,
August, 1973, pp. 494-499.

[10] Balzer, R. M., T. E. Cheatham, and C. Green, Software
Technology in the 1990's: Using a New Paradigm,
Computer, Nov. 1983, pp. 3945.

[11] Basili V. R. and M. V. Zelkowitz, Analyzing medium scale
software development, Third International Conf. On
Software Engineering, Atlanta, Ga. (May, 1978) 116-123.

[12] Bass, L., Clements, P., and Kazman, R. Software
Architecture in Practice, Addison-Wesley, 1998.

[13] Bass, L. and Coutaz, J., Developing Software for the User
Interface, Addison Wesley, 1991

[14] Beck, K. Extreme Programming Explained, Addison-
Wesley, 2000

25

[15] Belady, L. A. and Lehman, M. M., Characteristics of large
systems, in Research Directions in Software Technology,
P.Wegner (editor), MIT-Press, Cambridge, Massachusetts,
1979

[16] Benington, H. D., Production of Large Computer Programs,
Proceedings of the ONR Symposium on Advanced Program
Methods for Digital Computers, June 1956, pp. 15 - 27.
Also available in Annals of the History of Computing,
October 1983, pp. 350 - 361.

[17] Berners-Lee, T., World Wide Web Seminar.
http://www.w3.org/Talks/General.html (1991)

[18] Berners-Lee, T., Cailliau, R., Luotonen, A., Frystyk , H.,
Nielsen, F., and Secret, A.. The World-Wide Web, in
Comm. ACM (CACM), 37(8), 76-82, 1994.

[19] Best Current Practices: Software Architecture Validation,
AT&T Bell Labs, 1990.

[20] Biffl, S., Aurum, A., Boehm, B., Erdogmus, H.,
Gruenbacher, P. (eds.). Value-Based Software Engineering.
Springer Verlag (2005)

[21] Bjorner, D., On the use of formal methods in software
development. In Proceedings of the 9th International
Conference on Software Engineering (Monterey, California,
United States), 1987.

[22] Boehm, B., Software and its impact: a quantitative
assessment. Datamation, pages 48-59, May 1973.

[23] Boehm, B. W., J. R. Brown, H. Kaspar, M. Lipow, G. J.
MacLeod, M. J. Merritt, Characteristics of Software
Quality, TRW Software Series TRW-SS-73-09, December
1973.

[24] Boehm, B., Software engineering. IEEE Trans. Computers,
100(25):1226-1241, 1976.

[25] Boehm, B., Software Engineering: As it is. ICSE 1979: 11-
21.

[26] Boehm, B., Software Engineering Economics, Prentice-Hall
1981

[27] Boehm, B., Standish, T. A. Software Technology in the
1990's: Using an Evolutionary Paradigm. IEEE Computer
16(11): 30-37 (1983)

[28] Boehm, B., A Spiral Model of Software Development and
Enhancement, Computer, May 1988, pp. 61-72.

[29] Boehm B., An Early Application generator and Other
Recollections, in Glass, R. L., In The Beginning:
Recollections of Software Pioneers, IEEE CS Press, 1988

[30] Boehm, B., Software Risk Management, CS Press, Los
Alamitos, Calif., 1989.

[31] Boehm, B. and Ross, R., Theory-W Software Project
Management: Principles and Examples, IEEE Trans. SW
Engineering., July 1989, pp. 902-916.

[32] Boehm, B., A Spiral Model for Software Development and
Enhancement, Computer, vol. 21, May 1988, pp. 61-72.

[33] Boehm, B., Anchoring the Software Process, IEEE
Software, Vol. 13, No. 14, July 1996

[34] Boehm, B., Managing Software Productivity and Reuse.
Computer 32, 9 (Sep. 1999), 111-113

[35] Boehm, B., Brown, A.W, Basili, V. and Turner R., Spiral
Acquisition of Software-Intensive Systems. CrossTalk, May
2004, pp. 4-9.

[36] Boehm, B., Turner, R., Balancing Agility and Discipline,
Addison Wesley (2004)

[37] Boehm, B., Jain, A. An Initial Theory of Value-Based
Software Engineering. In: Aurum, A., Biffl, S., Boehm, B.,
Er-dogmus, H., Gruenbacher, P. (eds.): Value-Based
Software Engineering, Springer Verlag (2005)

[38] Boehm, B., Some Future Trends and Implications for
Systems and Software Engineering Processes, Systems
Engineering, vol. 9, No. 1, 2006, pp 1-19.

[39] Boehm, B. and Lane, J., 21st Century Processes for
Acquiring 21st Century Software Intensive Systems of
Systems, Cross Talk, May 2006 (to appear)

[40] Böhm, C. and Jacopini, G. Flow diagrams, turing machines
and languages with only two formation rules. Comm. ACM
9, 5 (May. 1966), 366-371

[41] Booch, G., Rumbaugh, J. and Jacobson, L. The Unified
Modeling Language User Guide. Addison-Wesley
Longman Inc., 1999.

[42] Brooks, F. P., The Mythical Man-Month, Addison Wesley,
1975.

[43] Brooks, F. P., No silver bullet: Essence and accidents of
software engineering. IEEE Computer, 20(4):10-19, April
1987.

[44] Buxton J. N. and Randell B. (Eds.) Software Engineering
Techniques: Report on a Conference Sponsored by the
NATO Science Committee, Rome, Italy, 27-31 Oct. 1969.
Scientific Affairs Division, NATO, Brussels (May 1970).

[45] PDL/74 Program Design Language Reference Guide
(Processor Version 3), Caine Farber Gordon Inc., 1977

[46] Charette, R. N., Software Engineering Risk Analysis and
Management, McGraw-Hill, 1989.

[47] Clemm, G., The Workshop System - A Practical
Knowledge-Based Software Environment, Proceedings of
the ACM SIGSOFT/SIGPLAN Software Engineering
Symposium on Practical Software Development
Environments, ACM SIGPLAN Notices, 13, 5, pp. 55-64
(Nov 1988).

[48] Constantine, L. L. The Programming Profession,
Programming Theory, and Programming Education.
Computers and Automation 17,2 (Feb. 1968) pp. 14-19.

[49] Crawford, D. Editorial Pointers. Comm. ACM (October,
2001) 5.

[50] Cooper, J. D., Characteristics of the Average Coder,
personal communication, May 1975.

[51] Conrow, E. H., Risk Management for Systems of Systems,
CrossTalk, v. 18, n. 2 (February 2005), pages 8-12.

[52] Cusumano, M. A. The Software Factory: A Historical
Interpretation. IEEE Softw. 6, 2 (Mar. 1989), 23-30.

26

[53] Cusumano, M., Selby, R.: Microsoft's Secrets.
HarperCollins (1996)

[54] Dahl, O., and Nygaard, K. Simula: a language for
programming and description of discrete event systems.
Tech. rep., Norwegian Computing Center, 1967.

[55] DeMarco, T., Structured analysis and system specification.
Prentice Hall, 1978.

[56] Dijkstra, E. Cooperating Sequential Processes. Academic
Press, 1968

[57] Drexler, E.K.: Engines of Creation. Anchor Press (1986)

[58] Drexler, K.E., Peterson, C., Pergamit, G.: Unbounding the
Future: The Nanotechnology Revolution. William Morrow
& Co. (1991)

[59] Dreyfus, H., Dreyfus, S.: Mind over Machine. Macmillan
(1986)

[60] Druffel, L.E.. and Buxton, J.N. Requirements for an Ada
programming support environment: Rationale for
STONEMAN. In Proceedings of COMPSAC 80. IEEE
Computer Society, (Oct. 1980), 66-72.

[61] Dyson, G. B.: Darwin Among the Machines: The Evolution
of Global Intelligence, Helix Books/Addison Wesley (1997)

[62] Ehn, P. (ed.): Work-Oriented Design of Computer Artifacts,
Lawrence Earlbaum Assoc. (1990)

[63] Elssamadisy, A. and Schalliol, G., Recognizing and
Responding to ‘Bad Smells’ in Extreme Programming,
Proceedings, ICSE 2002, pp. 617-622

[64] Estublier, J., Leblang, D., Hoek, A., Conradi, R., Clemm,
G., Tichy, W., and Wiborg-Weber, D. Impact of software
engineering research on the practice of software
configuration management. ACM Trans. Softw. Eng.
Methodol. 14, 4 (Oct. 2005), 383-430.

[65] Fagan, M.E., Design and Code inspections to reduce errors
in program development, 1976, IBM Systems Journal, Vol.
15, No 3, Page 258-287

[66] Friedman, T. L., The World Is Flat: A Brief History of the
Twenty-First Century. Farrar, Straus & Giroux. New York.
2005

[67] Gamma, E., Helm, R., Johnson, R., and Vlissides, J., Design
Patterns: Elements of Reusable Object Oriented Software.
Addison-Wesley, Reading, MA. (1994)

[68] Grant, E., and H. Sackman., An Exploratory Investigation of
Programmer Performance Under On-Lineand Off-Line
Conditions. Report SP-2581, System Development Corp.,
September 1966.

[69] Gosling, J., Joy, B., Steele, G., The Java Language
Specification, Sun Microsystems, Inc. (1989)

[70] Hoare, C. A. R., An axiomatic basis for computer
programming. Comm. ACM, 12:576--583, 1969.

[71] Hoare, C. A. R., Assertions: A Personal Perspective, IEEE
Annals of the History of Computing, v.25 n.2, p.14-25,
April 2003

[72] Floyd, C. Records and References in Algol-W, Computer
Science Department, Stanford University, Stanford,
California, 1969

[73] Freiman, F. R. and Park, R. E., The PRICE Software Cost
Model, RCA Price Systems, Cherry Hill, NJ, Feb. 1979.

[74] Highsmith, J. Adaptive Software Development. Dorset
House (2000)

[75] Guttag, J. V., The Specification and Application to
Programming of Abstract Data Types, Ph.D. dissertation,
Computer Science Department, University of Toronto,
Canada, 1975.

[76] Halstead, M., Elements of Software Science, North Holland,
1977

[77] Harned, D., Lundquist, J. “What Transformation Means for
the Defense Industry”. The McKinsey Quarterly, November
3, 2003: 57-63.

[78] Holtzmann, G, The SPIN Model Checker, Addison Wesley,
2004

[79] Hofstede, G., Culture and Organizations. McGraw Hill
(1997)

[80] Hosier, W. A., Pitfalls and Safeguards in Real-Time Digital
Systems with Emphasis on Programming, IRE Trans.
Engineering Management, EM-8, June, 1961.

[81] Humphrey, W. S., Managing the Software Process.
Reading, MA: Addison-Wesley, 1989

[82] Jackson M. A., Principle of Program Design, Acad. Press,
1975

[83] Jacobson, I., Griss, M., Jonsson, P., Software Reuse:
Architecture, Process and Organization for Business
Success, Addison Wesley, 1997

[84] Jacobson, I., Booch, G. and Rumbaugh, J., Unified Software
Development Process, Addison-Wesley, 1999

[85] Joy, B.: Why the Future Doesn’t Need Us: Wired (April,
2000)

[86] Kurzweil, R., The Age of Spiritual Machines. Penguin
Books (1999)

[87] Kruchten, P. B., The Rational Unified Process (An
Introduction). Addison Wesley 1999

[88] Larman, C., Agile and Iterative Development: A Manager's
Guide, Addison-Wesley, 2004.

[89] Lane, J., Valerdi, R. “Synthesizing System-of-Systems
Concepts for Use in Cost Estimation,” IEEE SMC, 2005.

[90] Levy, S., Hackers: Heroes of the Computer Revolution,
Anchor Press/Doubleday, 1984

[91] Lientz, B.P. and E.B. Swanson, Software Maintenance
Management, Addison-Wesley, Reading, Mass., 1980

[92] Lim, W.C., Managing Software Reuse, Prentice Hall, 1998

[93] Liskov, B. and Zilles, S. N., Programming with abstract data
types. In Proceedings of Symposium on Very High Level
Programming Languages, 1974

27

[94] Littlewood, B. and Verrall, J. L., A Bayesian Reliability
Growth Model for Computer Software, Appl. Statist., Vol.
22, pp. 332-346 (1973)

[95] Maier, M., Architecting Principles for Systems of Systems,
Proceedings of the Sixth Annual International Symposium,
International Council on Systems Engineering, Boston,
1996, pages 567-574.

[96] Marca, D. and Bock, G. eds., Groupware, IEEE CS Press,
1992

[97] Maranzano, J. F., Sandra A. Rozsypal, Gus H. Zimmerman,
Guy W. Warnken, Patricia E. Wirth, David M. Weiss,
Architecture Reviews: Practice and Experience, IEEE
Software, vol. 22, no. 2, pp. 34-43, Mar/Apr, 2005.

[98] Martin, J., Rapid Applications Development, Macmillan,
1991

[99] Maslow, A., Motivation and Personality, Harper and Row
(1954)

[100] Matsumoto, Y., Evaluation of the digital prediction filter
applied to control a class of sevomotor by microcomputers,
IEEE Transactions on IECI, Vol.IECI-23,No.4,pp.359-
363(Nov. 1976)

[101] McCabe, T., A Software Complexity Measure, IEEE Trans.
Software Engineering Vol 2, No 12, 1976.

[102] McCracken, D.D. A maverick approach to systems analysis
and design. In System Analysis and Design: A Foundation
for the 1980's, W.W. Cotterman, J.D. Gouger, N.L. Enger,
and F. Harold, Eds. North-Holland, Amsterdam, 1981, pp.
446-451.

[103] McConnell, S. Rapid Development. Microsoft Press, 1996

[104] Meller, S. J., Clark, A. N., and Futagami, T., Model-Driven
Development, IEEE Software, (Special Issue on Model-
Driven Development) Vol. 20, No. 5, 2003, 14-18

[105] Meyer, B. Object-Oriented Software Construction, Second
Edition. Prentice Hall, 1997

[106] Myers, G., Reliable Systems through Composite Design.
New York: Petrocelli/Charter, 1975.

[107] National Institute of Standards and Technology,
Gaithersberg. Reference Model for Frameworks of Software
Engineering Environments, draft version 1.5 edition, 1991.

[108] Naur, P. and Randell, B. (Eds.). Software Engineering:
Report of a conference sponsored by the NATO Science
Committee (7–11 Oct. 1968), Garmisch, Germany. Brussels,
Scientific Affairs Division, NATO, 1969.

[109] Neighbors, J.M., The Draco Approach to constructing
Software from reusable components, IEEE Trans. Software
Engineering, vol.SE-10, No.5, pp.564-574, September,
1984

[110] Nelson, E., Management Handbook for the Estimation of
Computer Programming Costs, Systems Development
Corporation, Oct. 1966

[111] Nunamaker, J. et. al., “Lessons from a Dozen years of
Group Support Systems Research: A Discussion of lab and

Field Findings,” J.MIS, vol. B, no.3 (1996-1997), pp. 163-
207

[112] Osterweil, L., Software Processes are Software Too.
Proceedings, In Ninth International Conference on
Software Engineering, (Monterey, CA, 1987), ACM, IEEE,
LosAlamitos, CA, 2-13.

[113] Osterweil, L., Ghezzi, C., Kramer, J., and Wolf, A. 2005.
Editorial. ACM Trans. Softw. Eng. Methodol. 14, 4 (Oct.
2005), 381-382.

[114] Paulk, M., Weber, C., Curtis, B., Chrissis, M., The
Capability Maturity Model. Addison Wesley (1994)

[115] Paulk, M. C., Weber, C. V., Curtis B, Chrissis M. B. et al.,
The Capability Maturity Model: Guidelines for Improving
the Software Process. Addison Wesley, 1995.

[116] Parnas, D.L. On the Criteria To Be Used in Decomposing
Systems Into Modules, Comm. ACM, Vol. 5, No. 12,
December 1972, pp. 1053-1058.

[117] Parnas, D. L. On the design and development of program
families, IEEE Trans. Software Engineering 2(1), 1-9,
1976.

[118] Parnas, D. L. Designing software for ease of extension and
contraction, IEEE Trans. Software Engineering SE-5(2),
128-138, 1979.

[119] Patterson, D.: 20th Century vs. 21st Century C&C: The
SPUR Manifesto. ACM Comm. (March, 2005) 15-16

[120] Penedo, M. H. and Stuckle, E. D., PMDB--A Project Master
Database for Software Engineering Environments. In
Proceedings of the 8th International Conference on
Software Engineering, pages 150--157. IEEE Computer
Society, August 1985.

[121] Perry, D. E. and Wolf, A. L., Foundations for the study of
software architecture. Software Engineering Notes, vol 17,
no 4, October 1992

[122] Phongpaibul, M., Boehm, B.: Improving Quality Through
Software Process Improvement in Thailand: Initial Analysis.
Proceedings, ICSE 2005 Workshop on Software Quality
(May, 2005)

[123] PITAC (President’s Information Technology Advisory
Committee), Report to the President: Information
Technology Research: Investing in Our Future (1999)

[124] Poore, J. H. and Carmen J. Trammell, Bringing Respect to
Testing Through Statistical Science, American
Programmer, Vol. 10, No. 8, August, 1997.

[125] Poulin, J.S., Measuring Software Reuse, Addison Wesley,
1997.

[126] Putnam, L. H., A General Empirical Solution to the Macro
Software Sizing and Estimating Problem, IEEE Trans.
Software Engineering, Vol 4, No 4, 1978

[127] Putman, J. Architecting with RM-ODP. Prentice Hall, 2001.

[128] Raymond, E.S, The Cathedral and the Bazaar, O'Reilly,
1999

[129] Reifer, D.J., Practical Software Reuse, Wiley, 1997

28

[130] Redwine, S. and Riddle, W., Software Technology
maturation, Proceedings of the 8th ICSE, 1985.

[131] Ross, D. Structured Analysis (SA): A Language for
Communicating Ideas. IEEE Trans. Software Engineering,
SE-3, 1 (Jan. 1977). 16-34.

[132] Royce, W. W., Managing the Development of Large
Software Systems: Concepts and Techniques, Proceedings
of WESCON, August 1970

[133] Royce, W., Software Project Management - A Unified
Framework, Addison Wesley 1998

[134] Ryder, B. G., Soffa, M. L., and Burnett, M. 2005. The
impact of software engineering research on modern
progamming languages. ACM Trans. Softw. Eng. Methodol.
14, 4 (Oct. 2005)

[135] Sage, A., Cuppan, C., On the Systems Engineering and
Management of Systems of Systems and Federations of
Systems, Information, Knowledge, and Systems
Management, v. 2 (2001), pages 325-345.

[136] Schmidt, D. C., Model-Driven Engineering, IEEE
Computer, 39(2), February 2006.

[137] Shaw, M. and Garlan, D., Software Architecture.
Perspectives on an emerging discipline, Prentice Hall,
Upper Saddle River, NJ 07458, (1996).

[138] Shneiderman, B., Software psychology: human factors in
computer and information systems. 1980: Cambridge, Mass,
Winthrop Publishers. 320.

[139] Shooman, M.L., Probabilistic Models for Software
Reliability Prediction. Statistical Computer Performance
Evaluation, Academic Press, New York, pp. 485-502
(1972)

[140] Stallman, R. M., Free Software Free Society: Selected
Essays of Richard M. Stallman, GNU Press, 2002

[141] Standish Group, Extreme Chaos,
http://www.standishgroup.com (2001)

[142] Stroustrup, B., The C++ Programming Language. Addison-
Wesley, 1986

[143] Teichroew, D. and Sayani, H. Automation of system
building. Datamation 17,16 (August 15, 1971), 25-30.

[144] The Open Road: A History of Free Software,
http://www.sdmagazine.com/opensourcetimeline/sources.ht
m

[145] Toulmin, S., Cosmopolis, University of Chicago Press
(1992)

[146] Tracz, W., Test and analysis of Software Architectures, In
Proceedings of the international Symposium on software
Testing and Analysis (ISSTA '96), ACM press, New York,
NY, pp 1-3.

[147] Webster’s Collegiate Dictionary, Merriam-Webster, 2002.

[148] Weinberg, G.M., The Psychology of Computer
Programming, New York: Van Nostrand Reinhold (1971)

[149] Wirth, N. The programming language Pascal. Acta
Infformatica, 1:35--63, 1971.

[150] Wirth, N. Programming in Modula-2. Springer, 1974.

[151] Wulf, W. A., London, R., and Shaw, M., An Introduction to
the Construction and Verification of Alphard Program.
IEEE Trans. Software Engineering, SE-2, 1976, pp. 253-
264

[152] Yang, Y., Bhuta, J., Port, D., and Boehm, B.: Value-Based
Processes for COTS-Based Applications. IEEE Software
(2005)

[153] Yang, Y., Boehm, B., and Port, D. A Contextualized Study
of COTS-Based E-Service Projects. Proceedings, Software
Process Workshop 2005 (May, 2005)

[154] Yourdon E. and Constantine, L. L., Structured Design.
Yourdon Press, 1975.

[155] Zachman, J. “A Framework for Information Systems
Architecture.” IBM Systems Journal, 1987.

29

