
1

SCC0602 - Algoritmos e
Estruturas de Dados I

Algorithms

Professor: André C. P. L. F. de Carvalho, ICMC-USP
PAE: Rafael Martins D'Addio
Monitor:

© André de Carvalho - ICMC/USP 1

Today

 History of algorithms

 Importance of algorithms

 Main goal

 Sorting

 Conclusion

© André de Carvalho - ICMC/USP 2

What is this course about?

 Solving problems
 Get me from home to work (and vice-versa)

 Balance my check book

 Know where is the party

 Graduate from USP

 Using a computer to help solve problems
 Design programs (architecture, algorithms)

 Write programs

 Verify programs

 Document programs

© André de Carvalho - ICMC/USP 3

This course is not about

 Programming languages

 Computer architecture

 Software architecture

 Software design and implementation
principles
 Issues concerning small and large scale

programming

 We will only touch upon the theory of
complexity and computability

© André de Carvalho - ICMC/USP 4

History

 Name: Persian mathematician Mohammed
al-Khowarizmi, in Latin became Algorismus

 First algorithm: Euclidean Algorithm,
greatest common divisor, 400-300 B.C.

 19th century – Charles Babbage, Ada
Lovelace

 20th century – Alan Turing, John von
Neumann

© André de Carvalho - ICMC/USP 5

Al-Khwarizmi

 Persian mathematician, lived
around 800AD

 Wrote a book about how to
multiply with Arabic numerals

 His ideas came to Europe in the 12th century

 Originally, “Algorisme” (old French)
referred to just the Arabic number system

 Eventually it came to mean “Algorithm” as
know today

© André de Carvalho - ICMC/USP 6

2

Video

© André de Carvalho - ICMC/USP 7

Video

© André de Carvalho - ICMC/USP 8

Importance of algorithms

 Algorithms were invented by nature

 DNA

 Algorithms are fundamental to
Computing

 Algorithms are useful

 Algorithms can be fun!

© André de Carvalho - ICMC/USP 9

Algorithms are fundamental

Operating Systems

Compilers Networks

Machine Learning

Cryptography

Bioinformatics

The
Computational

Lens

© André de Carvalho - ICMC/USP 10

Algorithms are useful

 Imagine yourself without
them

 As we get more data and
problem sizes get bigger,
algorithms become more
important

 Will help you get a good
job

© André de Carvalho - ICMC/USP 11

Algorithms are fun

 Algorithm design is both an art and a
science

 Many surprises!

 A young area, lots of exciting research
questions and opportunities!

 Will help you get a job you like!

© André de Carvalho - ICMC/USP 12

3

Importance of algorithms

 Consider sorting a file of social insurance
numbers for all population of São Paulo state

 Population (n) = 44,000,000 (n2 ~ 1015)

 An algorithm running in O(n2) in a computer able
to do a billion operations per second will take 106

seconds

 About 11 days

 An algorithm running in O(nlogn) time will take
only about a second on the same file

 Algorithms matter!

© André de Carvalho - ICMC/USP 13

Video

© André de Carvalho - ICMC/USP 14

How algorithms shape our world - Kevin Slavin

Video

© André de Carvalho - ICMC/USP 15

 Algorithm

 Outline, the essence of a computational
procedure, step-by-step instructions

 Program

 An implementation of an algorithm in some
programming language

 Data structure

 Organization of data needed by the program

Data Structures and Algorithms

© André de Carvalho - ICMC/USP 16

Main goals

Correctness

Efficiency

Robustness

Adaptability Reusability

© André de Carvalho - ICMC/USP 17

Quiz

 Mention some measures of efficiency

© André de Carvalho - ICMC/USP 18

4

Algorithmic problem

 Infinite number of input instances satisfying a
specification

 Example:

 A sorted, non-decreasing sequence of natural numbers

 The sequence is of non-zero, finite length:

 1, 20, 908, 909, 100000, 1000000000 (sequence of 6 numbers)

 3. (sequence of 1 number)

?
Specification of
output as
function of input

Specification of
input

© André de Carvalho - ICMC/USP 19

Algorithmic problem

 Algorithm describes actions on the input
instances

 There are infinitely many correct algorithms for
the same algorithmic problem

Output related
to the input as
required

Input instance,
obeying problem
specification

Algorithm

© André de Carvalho - ICMC/USP 20

Example: sorting

 Correctness
 For any given input, the algorithm

halts with the output:

 b1 < b2 < b3 < …. < bn

 b1, b2, b3, …., bn is a
permutation of a1, a2, a3,….,an

Output:
Permutation of
the sequence

Input:
Sequence of
numbers

2 5 4 10 7 2 4 5 7 10
a1 a2 a3 a4 an b1 b2 b3 b4 bn

 Running time
 Depends on

 Number of elements (n)

 How (partially) sorted they are

 Algorithm used

© André de Carvalho - ICMC/USP 21

Insertion Sort

 Initial partially sorted vector has first vector
item

 Insert one item at a time

 In the correct position of a partially sorted vector

 Example

 Suppose all elements are different

 How to sort, using insertion sort, the vector
below?

© André de Carvalho - ICMC/USP 22

6 4 3 8 5

Example: Insertion Sort

© André de Carvalho - ICMC/USP 23

46 3 8 5

6 4 3 8 5

64 3 8 5

Start with the second element (the first
element is sorted within itself…)

Pull “4” back until it is in the
right place

64 3 8 5 Now look at “3”

4 63 8 5
Pull “3” back until it is in the right place

43 6 8 5 “8” is good…look at 5

43 6 85 Fix “5” and the sequence sorted

Insertion Sort

A
1 nj

3 6 84 9 7 2 5 1

i

Strategy

• Start with one card in your
hand

• Insert a card in the correct
position of the already sorted
hand

• Continue until all cards are
inserted/sorted

Strategy

• Start with one card in your
hand

• Insert a card in the correct
position of the already sorted
hand

• Continue until all cards are
inserted/sorted

for j=2 to length(A)
do key=A[j]
“insert A[j] into the
sorted sequence A[1..j-1]”

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]
“insert A[j] into the
sorted sequence A[1..j-1]”

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

© André de Carvalho - ICMC/USP 24

5

Analysis of algorithms

 Efficiency:

 Running time

 Space used

 Efficiency as a function of input size:

 Number of data elements (numbers,
points)

 Number of bits in an input number

 Number of vertices and edges (graphs)

© André de Carvalho - ICMC/USP 25

The RAM model

 Very important to choose the level of
detail

 The RAM model:

 Instructions (each taking constant time):

 Arithmetic (add, subtract, multiply, etc.)

 Data movement (load, storage copy)

 Control (conditional/unconditional branch,
subroutine call, return)

 Data types – integers and floats
© André de Carvalho - ICMC/USP 26

Analysis of Insertion Sort

for j=2 to length(A)
do key=A[j]
“insert A[j] into the
sorted sequence A[1..j-1]”

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

cost
c1
c2
0

c3
c4
c5
c6
c7

times
n
n-1
n-1

n-1

n-1

2

n

jj
t


2
(1)

n

jj
t




2
(1)

n

jj
t




 Time to compute the running time as
a function of the input size

© André de Carvalho - ICMC/USP 27

n: length(A)
ti: #times the

while loop
is tested in
in line 5 for
the value of j

Analysis of Insertion Sort

© André de Carvalho - ICMC/USP 28

T(n) = c1 n + c2 (n-1) + c3 (n-1)
+ c4 (n(n+1)/2 - 1) +

= c5 [n(n-1)/2] + c6 [n(n-1)/2]
+ c7 (n-1)

= a * n2 + b * n + c
(quadratic function of n)

Why c1 occurs n times?

times
n
n-1
n-1

n-1

n-1

2

n

jj
t


2
(1)

n

jj
t




2
(1)

n

jj
t




cost
c1
c2
0

c3
c4
c5
c6
c7

Best/Worst/Average Case

 Best case:

 Elements already sorted  tj=1, running time
= f(n), i.e., linear time

 Worst case:

 Elements are sorted in inverse order  tj=j,
running time = f(n2), i.e., quadratic time

 Average case:

 tj=j/2, running time = f(n2), i.e., quadratic
time

© André de Carvalho - ICMC/USP 29

Best/Worst/Average Case (3)

1n

2n

3n

4n

5n

6n

Input instance size

R
un

ni
ng

 t
im

e

1 2 3 4 5 6 7 8 9 10 11 12 …..

Best-case

Average-case

 For inputs of all sizes:
Worst-case

© André de Carvalho - ICMC/USP 30

6

Best/Worst/Average Case (4)

 Worst case is usually used:
 It is an upper-bound

 In some applications knowing the worst-case
time complexity is of crucial importance

 E.g., air traffic control, surgery

 For some algorithms worst case occurs
fairly often

 The average case is often as bad as the
worst case

 Finding the average case can be very
difficult

© André de Carvalho - ICMC/USP 31 © André de Carvalho - ICMC/USP 32

O(1) – constant time, the time is independent of n, e.g.
array look-up
O(log n) – logarithmic time, usually the log is base 2,
e.g. binary search
O(n) – linear time, e.g. linear search
O(n*log n) – e.g. efficient sorting algorithms
O(n2) – quadratic time, e.g. selection sort
O(nk) – polynomial (where k is a constant)
O(2n) – exponential time, very slow!

Order of growth of some common functions
O(1) < O(log n) < O(n) < O(n * log n) < O(n2) < O(n3) < O(2n)

Complexities

Growth Functions

© André de Carvalho - ICMC/USP 33

Growth Functions

© André de Carvalho - ICMC/USP 34

Growth Functions

© André de Carvalho - ICMC/USP 35

Growth rates

© André de Carvalho - ICMC/USP 36

7

That’s it?

 Is insertion sort the best approach for
sorting?

 Alternative strategy based on divide and
conquer
 MergeSort

 Sorting the numbers <4, 1, 3, 9> is split into
 sorting <4, 1> and <3, 9> and

 merging the results

 Running time f(n log n)

© André de Carvalho - ICMC/USP 37

Example 2: Searching

a1, a2, a3,….,an; q j

2 5 4 10 7; 5 2

2 5 4 10 7; 9 NIL

© André de Carvalho - ICMC/USP 38

Output
 Index of the number

found or NIL

Input
 A sequence of numbers

(database)

 A single number (query)

Searching (2)

 Worst-case running time: f(n)

 Average-case: f(n/2)

 We cannot do better

 This is a lower bound for the problem of
searching in an arbitrary sequence

© André de Carvalho - ICMC/USP 39

j=1
while j<=length(A) and A[j]!=q

do j++
if j<=length(A) then return j
else return NIL

j=1
while j<=length(A) and A[j]!=q

do j++
if j<=length(A) then return j
else return NIL

Example 3: Searching

© André de Carvalho - ICMC/USP 40

a1, a2, a3,….,an; q j

2 5 4 7 10; 5 2

2 5 4 7 10; 9 NIL

Output
 Index of the number

found or NIL

Input
 Sorted non-decreasing

sequence of numbers
(database)

 A single number (query)

Binary search

 Idea: Divide and conquer, one of the
key design techniques

© André de Carvalho - ICMC/USP 41

left=1
right=length(A)
do

j=(left+right)/2
if A[j]==q then return j
else if A[j]>q then right=j-1
else left=j+1

while left<=right
return NIL

left=1
right=length(A)
do

j=(left+right)/2
if A[j]==q then return j
else if A[j]>q then right=j-1
else left=j+1

while left<=right
return NIL

Binary search – analysis

 How many times the loop is executed?

 With each execution its length is cult in
half

 How many times do you have to cut n in
half to get 1?

 lg n

 Complexity: O(lg n)

© André de Carvalho - ICMC/USP 42

8

Animations

© André de Carvalho - ICMC/USP 43

http://cs.armstrong.edu/liang/animation/web/InsertionSort.html

http://www.algomation.com/algorithm/insertion-sort-animated

Conclusion

 Algorithms

 Sorting

 Insertion sort

 Merge sort

 Binary search

© André de Carvalho - ICMC/USP 44

Next Week

 Correctness of algorithms

 Asymptotic analysis, big O notation

© André de Carvalho - ICMC/USP 45

Acknowledgement

 A large part of this material were
adapted from

 Simonas Šaltenis, Algorithms and Data
Structures, Aalborg University, Denmark

 Mary Wootters, Design and Analysis of
Algorithms, Stanford University, USA

© André de Carvalho - ICMC/USP 46

Questions

© André de Carvalho - ICMC/USP 47

