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Today

 History of algorithms

 Importance of algorithms

 Main goal

 Sorting

 Conclusion
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What is this course about?

 Solving problems
 Get me from home to work (and vice-versa)

 Balance my check book

 Know where is the party

 Graduate from USP

 Using a computer to help solve problems
 Design programs (architecture, algorithms)

 Write programs

 Verify programs

 Document programs
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This course is not about

 Programming languages

 Computer architecture

 Software architecture

 Software design and implementation 
principles
 Issues concerning small and large scale 

programming

 We will only touch upon the theory of 
complexity and computability
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History

 Name: Persian mathematician Mohammed 
al-Khowarizmi, in Latin became Algorismus

 First algorithm: Euclidean Algorithm, 
greatest common divisor, 400-300 B.C.

 19th century – Charles Babbage, Ada 
Lovelace

 20th century – Alan Turing, John von 
Neumann 
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Al-Khwarizmi

 Persian mathematician, lived 
around 800AD 

 Wrote a book about how to 
multiply with Arabic numerals

 His ideas came to Europe in the 12th century

 Originally, “Algorisme” (old French) 
referred to just the Arabic number system

 Eventually it came to mean “Algorithm” as 
know today
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Video
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Video
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Importance of algorithms

 Algorithms were invented by nature

 DNA

 Algorithms are fundamental to 
Computing

 Algorithms are useful

 Algorithms can be fun!
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Algorithms are fundamental

Operating Systems

Compilers Networks

Machine Learning

Cryptography

Bioinformatics

The 
Computational 

Lens
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Algorithms are useful

 Imagine yourself without 
them

 As we get more data and 
problem sizes get bigger, 
algorithms become more 
important

 Will help you get a good 
job
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Algorithms are fun

 Algorithm design is both an art and a 
science

 Many surprises!

 A young area, lots of exciting research 
questions and opportunities!

 Will help you get a job you like!
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Importance of algorithms

 Consider sorting a file of social insurance 
numbers for all population of São Paulo state 

 Population (n) = 44,000,000 (n2 ~ 1015)

 An algorithm running in O(n2) in a computer able 
to do a billion operations per second will take 106 

seconds

 About 11 days 

 An algorithm running in O(nlogn) time will take 
only about a second on the same file

 Algorithms matter! 
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Video
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How algorithms shape our world - Kevin Slavin

Video
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 Algorithm

 Outline, the essence of a computational 
procedure, step-by-step instructions

 Program 

 An implementation of an algorithm in some 
programming language 

 Data structure

 Organization of data needed by the program

Data Structures and Algorithms
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Main goals

Correctness

Efficiency

Robustness

Adaptability Reusability

© André de Carvalho - ICMC/USP 17

Quiz

 Mention some measures of efficiency
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Algorithmic problem

 Infinite number of input instances satisfying a 
specification

 Example:

 A sorted, non-decreasing sequence of natural numbers

 The sequence is of non-zero, finite length:

 1, 20, 908, 909, 100000, 1000000000 (sequence of 6 numbers)

 3. (sequence of 1 number)

?
Specification of 
output as 
function of input

Specification of 
input
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Algorithmic problem

 Algorithm describes actions on the input 
instances

 There are infinitely many correct algorithms for 
the same algorithmic problem 

Output related 
to the input as 
required

Input instance, 
obeying problem 
specification

Algorithm
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Example: sorting

 Correctness
 For any given input, the algorithm 

halts with the output:

 b1 < b2 < b3 < …. <  bn

 b1, b2, b3, …., bn is a 
permutation of a1, a2, a3,….,an

Output: 
Permutation of 
the sequence

Input:
Sequence of
numbers

2   5   4  10  7                                                   2    4   5   7  10
a1 a2  a3   a4   an b1 b2   b3   b4   bn

 Running time 
 Depends on

 Number of elements (n)

 How (partially) sorted they are

 Algorithm used
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Insertion Sort

 Initial partially sorted vector has first vector 
item

 Insert one item at a time

 In the correct position of a partially sorted vector 

 Example

 Suppose all elements are different

 How to sort, using insertion sort, the vector 
below?
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6 4 3 8 5

Example: Insertion Sort
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46 3 8 5

6 4 3 8 5

64 3 8 5

Start with the second element (the first 
element is sorted within itself…)

Pull “4” back until it is in the 
right place

64 3 8 5 Now look at “3”

4 63 8 5
Pull “3” back until it is in the right place

43 6 8 5 “8” is good…look at 5

43 6 85 Fix “5” and the sequence sorted

Insertion Sort

A
1 nj

3 6 84 9 7 2 5 1

i

Strategy

• Start with one card in your   
hand

• Insert a card in the correct
position of the already sorted
hand

• Continue until all cards are
inserted/sorted

Strategy

• Start with one card in your   
hand

• Insert a card in the correct
position of the already sorted
hand

• Continue until all cards are
inserted/sorted

for j=2 to length(A)
do key=A[j]
“insert A[j] into the
sorted sequence A[1..j-1]”

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key

for j=2 to length(A)
do key=A[j]
“insert A[j] into the
sorted sequence A[1..j-1]”

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key
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Analysis of algorithms

 Efficiency:

 Running time

 Space used

 Efficiency as a function of input size:

 Number of data elements (numbers, 
points)

 Number of bits in an input number 

 Number of vertices and edges (graphs)
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The RAM model

 Very important to choose the level of 
detail

 The RAM model:

 Instructions (each taking constant time):

 Arithmetic (add, subtract, multiply, etc.)

 Data movement (load, storage copy)

 Control (conditional/unconditional branch, 
subroutine call, return)

 Data types – integers and floats 
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Analysis of Insertion Sort

for j=2 to length(A)
do key=A[j]
“insert A[j] into the
sorted sequence A[1..j-1]”

i=j-1
while i>0 and A[i]>key

do A[i+1]=A[i]
i--

A[i+1]:=key
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 Time to compute the running time as 
a function of the input size
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n: length(A)
ti: #times the

while loop
is tested in 
in line 5 for
the value of j

Analysis of Insertion Sort
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T(n) = c1 n + c2 (n-1) + c3 (n-1) 
+ c4 (n(n+1)/2 - 1) + 

= c5 [n(n-1)/2] + c6 [n(n-1)/2] 
+ c7 (n-1)

= a * n2 + b * n + c 
(quadratic function of n)

Why c1 occurs n times?

times
n
n-1
n-1

n-1

n-1

2

n

jj
t


2
( 1)

n

jj
t




2
( 1)

n

jj
t




cost
c1
c2
0

c3
c4
c5
c6
c7

Best/Worst/Average Case

 Best case: 

 Elements already sorted  tj=1, running time 
= f(n), i.e., linear time

 Worst case: 

 Elements are sorted in inverse order  tj=j, 
running time = f(n2), i.e., quadratic time

 Average case: 

 tj=j/2, running time = f(n2), i.e., quadratic
time
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Best/Worst/Average Case (3)

1n

2n

3n

4n

5n

6n

Input instance size

R
un

ni
ng

 t
im

e

1    2    3    4    5     6    7    8     9   10   11   12  …..

Best-case

Average-case

 For inputs of all sizes:
Worst-case
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Best/Worst/Average Case (4)

 Worst case is usually used:
 It is an upper-bound

 In some applications knowing the worst-case
time complexity is of crucial importance

 E.g., air traffic control, surgery

 For some algorithms worst case occurs 
fairly often

 The average case is often as bad as the 
worst case

 Finding the average case can be very 
difficult
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O(1) – constant time, the time is independent of n, e.g. 
array look-up
O(log n) – logarithmic time, usually the log is base 2, 
e.g. binary search
O(n) – linear time, e.g. linear search
O(n*log n) – e.g. efficient sorting algorithms
O(n2) – quadratic time, e.g. selection sort
O(nk) – polynomial (where k is a constant)
O(2n) – exponential time, very slow!

Order of growth of some common functions
O(1) < O(log n) < O(n) < O(n * log n) < O(n2) < O(n3) < O(2n)

Complexities

Growth Functions 
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Growth Functions 
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Growth Functions 
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Growth rates
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That’s it?

 Is insertion sort the best approach for 
sorting?

 Alternative strategy based on divide and 
conquer
 MergeSort

 Sorting the numbers <4, 1, 3, 9> is split into
 sorting <4, 1> and <3, 9> and 

 merging the results

 Running time f(n log n)
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Example 2: Searching

a1, a2, a3,….,an;  q j

2  5 4  10  7;    5 2

2   5   4    10   7;    9 NIL
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Output
 Index of the number 

found or NIL

Input
 A sequence of numbers 

(database)

 A single number (query)

Searching (2)

 Worst-case running time: f(n)

 Average-case: f(n/2)

 We cannot do better

 This is a lower bound for the problem of 
searching in an arbitrary sequence  
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j=1
while j<=length(A) and A[j]!=q

do j++
if j<=length(A) then return j
else return NIL

j=1
while j<=length(A) and A[j]!=q

do j++
if j<=length(A) then return j
else return NIL

Example 3: Searching
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a1, a2, a3,….,an;  q j

2    5    4    7    10;    5 2

2    5    4    7    10;    9 NIL

Output
 Index of the number 

found or NIL

Input
 Sorted non-decreasing  

sequence of numbers 
(database)

 A single number (query)

Binary search

 Idea: Divide and conquer, one of the 
key design techniques
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left=1
right=length(A)
do

j=(left+right)/2
if A[j]==q then return j
else if A[j]>q then right=j-1
else left=j+1 

while left<=right
return NIL

left=1
right=length(A)
do

j=(left+right)/2
if A[j]==q then return j
else if A[j]>q then right=j-1
else left=j+1 

while left<=right
return NIL

Binary search – analysis

 How many times the loop is executed?

 With each execution its length is cult in 
half

 How many times do you have to cut n in 
half to get 1?

 lg n

 Complexity: O(lg n)
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Animations
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http://cs.armstrong.edu/liang/animation/web/InsertionSort.html

http://www.algomation.com/algorithm/insertion-sort-animated

Conclusion

 Algorithms

 Sorting

 Insertion sort

 Merge sort

 Binary search
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Next Week

 Correctness of algorithms

 Asymptotic analysis, big O notation
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Questions
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