
Object-Oriented Programming 3/18/14

1

Object-Oriented Programming

© 2014 Goodrich, Tamassia, Goldwasser 1 Object-Oriented Programming

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6th edition, by M. T. Goodrich, R. Tamassia,
and M. H. Goldwasser, Wiley, 2014

Object-Oriented Programming 2

Terminology

q  Each object created in a program is an instance of a
class.

q  Each class presents to the outside world a concise and
consistent view of the objects that are instances of
this class, without going into too much unnecessary
detail or giving others access to the inner workings of
the objects.

q  The class definition typically specifies instance
variables, also known as data members, that the
object contains, as well as the methods, also known
as member functions, that the object can execute.

© 2014 Goodrich, Tamassia, Goldwasser

Object-Oriented Programming 3/18/14

2

Goals
q  Robustness

n  We want software to be capable of handling
unexpected inputs that are not explicitly defined
for its application.

q  Adaptability
n  Software needs to be able to evolve over time in

response to changing conditions in its
environment.

q  Reusability
n  The same code should be usable as a component

of different systems in various applications.

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 3

Abstract Data Types
q  Abstraction is to distill a system to its most

fundamental parts.
q  Applying the abstraction paradigm to the design of data

structures gives rise to abstract data types (ADTs).
q  An ADT is a model of a data structure that specifies the

type of data stored, the operations supported on
them, and the types of parameters of the operations.

q  An ADT specifies what each operation does, but not
how it does it.

q  The collective set of behaviors supported by an ADT is
its public interface.

4 © 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming

Object-Oriented Programming 3/18/14

3

Object-Oriented Design Principles
q  Modularity
q  Abstraction
q  Encapsulation

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 5

Interfaces and Abstract Classes

q  The main structural element in Java that enforces an
application programming interface (API) is an interface.

q  An interface is a collection of method declarations with
no data and no bodies.

q  Interfaces do not have constructors and they cannot be
directly instantiated.
n  When a class implements an interface, it must implement all of

the methods declared in the interface.

q  An abstract class also cannot be instantiated, but it can
define one or more common methods that all
implementations of the abstraction will have.

6 © 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming

Object-Oriented Programming 3/18/14

4

Design Patterns
q  Algorithmic patterns:
q  Recursion
q  Amortization
q  Divide-and-conquer
q  Prune-and-search
q  Brute force
q  Dynamic programming
q  The greedy method

q  Software design
patterns:

q  Iterator
q  Adapter
q  Position
q  Composition
q  Template method
q  Locator
q  Factory method

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 7

Object-Oriented Software Design

q  Responsibilities: Divide the work into different
actors, each with a different responsibility.

q  Independence: Define the work for each class
to be as independent from other classes as
possible.

q  Behaviors: Define the behaviors for each class
carefully and precisely, so that the consequences
of each action performed by a class will be well
understood by other classes that interact with it.

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 8

Object-Oriented Programming 3/18/14

5

Unified Modeling Language (UML)
A class diagram has three portions.
1.  The name of the class
2.  The recommended instance variables
3.  The recommended methods of the class.

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 9

Class Definitions
q  A class serves as the primary means for abstraction in

object-oriented programming.
q  In Java, every variable is either a base type or is a

reference to an instance of some class.
q  A class provides a set of behaviors in the form of

member functions (also known as methods), with
implementations that belong to all its instances.

q  A class also serves as a blueprint for its instances,
effectively determining the way that state information
for each instance is represented in the form of
attributes (also known as fields, instance variables,
or data members).

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 10

Object-Oriented Programming 3/18/14

6

Constructors
q  A user can create an instance of a class by

using the new operator with a method
that has the same name as the class.

q  Such a method, known as a constructor,
has as its responsibility is to establish the
state of a newly object with appropriate
initial values for its instance variables.

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming

11

Inheritance
q  A mechanism for a modular and hierarchical

organization is inheritance.
q  This allows a new class to be defined based upon an

existing class as the starting point.
q  The existing class is typically described as the base

class, parent class, or superclass, while the newly
defined class is known as the subclass or child class.

q  There are two ways in which a subclass can
differentiate itself from its superclass:
n  A subclass may specialize an existing behavior by providing a new

implementation that overrides an existing method.
n  A subclass may also extend its superclass by providing brand new

methods.

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 12

Object-Oriented Programming 3/18/14

7

Inheritance and Constructors
q  Constructors are never inherited in Java; hence, every

class must define a constructor for itself.
n  All of its fields must be properly initialized, including any

inherited fields.

q  The first operation within the body of a constructor
must be to invoke a constructor of the superclass,
which initializes the fields defined in the superclass.

q  A constructor of the superclass is invoked explicitly by
using the keyword super with appropriate parameters.

q  If a constructor for a subclass does not make an explicit
call to super or this as its first command, then an
implicit call to super(), the zero-parameter version of
the superclass constructor, will be made.

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 13

An Extended Example
q  A numeric progression is a sequence of numbers,

where each number depends on one or more of the
previous numbers.
n  An arithmetic progression determines the next number

by adding a fixed constant to the previous value.
n  A geometric progression determines the next number by

multiplying the previous value by a fixed constant.
n  A Fibonacci progression uses the formula Ni+1=Ni+Ni-1

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 14

Object-Oriented Programming 3/18/14

8

The Progression Base Class

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 15

The Progression Base Class, 2

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 16

Object-Oriented Programming 3/18/14

9

ArithmeticProgression Subclass

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 17

GeometricProgression Subclass

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 18

Object-Oriented Programming 3/18/14

10

FibonacciProgression Subclass

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 19

Exceptions
q  Exceptions are unexpected events that occur during the

execution of a program.
q  An exception might result due to an unavailable resource,

unexpected input from a user, or simply a logical error on
the part of the programmer.

q  In Java, exceptions are objects that can be thrown by
code that encounters an unexpected situation.

q  An exception may also be caught by a surrounding block
of code that “handles” the problem.

q  If uncaught, an exception causes the virtual machine to
stop executing the program and to report an appropriate
message to the console.

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 20

Object-Oriented Programming 3/18/14

11

Catching Exceptions
q  The general methodology

for handling exceptions is
a try-catch construct in
which a guarded fragment
of code that might throw
an exception is executed.

q  If it throws an exception, then that exception is
caught by having the flow of control jump to a
predefined catch block that contains the code to
apply an appropriate resolution.

q  If no exception occurs in the guarded code, all catch
blocks are ignored.

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 21

Throwing Exceptions
q  Exceptions originate when a piece of Java code finds

some sort of problem during execution and throws an
exception object.

q  This is done by using the throw keyword followed by
an instance of the exception type to be thrown.

q  It is often convenient to instantiate an exception object
at the time the exception has to be thrown. Thus, a
throw statement is typically written as follows:

 throw new exceptionType(parameters);
where exceptionType is the type of the exception and the
parameters are sent to that type’s constructor.

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 22

Object-Oriented Programming 3/18/14

12

The throws Clause
q  When a method is declared, it is possible to explicitly

declare, as part of its signature, the possibility that a
particular exception type may be thrown during a call to
that method.

q  The syntax for declaring possible exceptions in a method
signature relies on the keyword throws (not to be
confused with an actual throw statement).

q  For example, the parseInt method of the Integer class
has the following formal signature:

 public static int parseInt(String s) throws NumberFormatException;

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 23

Casting
q  Casting with Objects allows for conversion

between classes and subclasses.
q  A widening conversion occurs when a type

T is converted into a “wider” type U:
n  T and U are class types and U is a superclass of T.
n  T and U are interface types and U is a

superinterface of T.
n  T is a class that implements interface U.

q  Example:
 CreditCard card = new PredatoryCreditCard(...);

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 24

Object-Oriented Programming 3/18/14

13

Narrowing Conversions
q  A narrowing conversion occurs when a type

T is converted into a “narrower” type S.
n  T and S are class types and S is a subclass of T.
n  T and S are interface types and S is a subinterface

of T.
n  T is an interface implemented by class S.

q  In general, a narrowing conversion of
reference types requires an explicit cast.

q  Example:
 PredatoryCreditCard pc = (PredatoryCreditCard) card;

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 25

Generics
q  Java includes support for writing generic classes and

methods that can operate on a variety of data types
while often avoiding the need for explicit casts.

q  The generics framework allows us to define a class in
terms of a set of formal type parameters, which can
then be used as the declared type for variables,
parameters, and return values within the class
definition.

q  Those formal type parameters are later specified when
using the generic class as a type elsewhere in a
program.

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 26

Object-Oriented Programming 3/18/14

14

Syntax for Generics
q  Types can be declared using generic names:

q  They are then instantiated using actual types:

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 27

Nested Classes
q  Java allows a class definition to be nested inside the

definition of another class.
q  The main use for nesting classes is when defining a

class that is strongly affiliated with another class.
n  This can help increase encapsulation and reduce undesired

name conflicts.

q  Nested classes are a valuable technique when
implementing data structures, as an instance of a
nested use can be used to represent a small portion
of a larger data structure, or an auxiliary class that
helps navigate a primary data structure.

© 2014 Goodrich, Tamassia, Goldwasser Object-Oriented Programming 28

