Java Primer 1

Presentation for use with the textbook Data Structures and
Algorithms in Java, 6 edition, by M. T. Goodrich, R. Tamassia,

and M. H. Goldwasser, Wiley, 2014

Java Primer 1: Types, Classes

and Operators"
T

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 1

‘The Java Compiler

Java is a compiled language.

Programs are compiled into byte-code executable files,
which are executed through the Java virtual machine
(JVM).

= The JVM reads each instruction and executes that instruction.
A programmer defines a Java program in advance and
saves that program in a text file known as source code.

For Java, source code is conventionally stored in a file
named with the .java suffix (e.g., demo.java) and the
byte-code file is stored in a file named with a .class
suffix, which is produced by the Java compiler.

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 2

3/18/14

Java Primer 1

An Example Program

all code in a Java
program must

belong to a class

this says anyone can
run this program

curly brace for .

the opening of dﬂ"s method
the class body oesn’t rjeTur‘n
anything

the name of
this class the name of The parameters passed to
this method this method (in this case the
arguements on the command
line as an array of strings)

anyone can | Public class: Universe: {
run this

method *;publicé static void. émaingg(String[]‘args)ié {

: curly brace for the opening
(L — of the method body
this method —————=¥.) -
belongs to the :System.out.printlni("Hello Universe!"); <¢—— semicolon
class, not an i . i (i
object (more ;-

indicating the end

of this statement
the name of the method we the parameter passed to this
curly brace ... want to call (in this case the method (in this case the
closing the } method for printing strings

string we want to print)
class Prgrl on the screen)

on this later) i }

curly brace for closing
the method body

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1

© 2014 Goodrich, Tamassia, Goldwasser

Components of a Java Program

o In Java, executable statements are placed in
functions, known as methods, that belong
to class definitions.

o The static method named main is the first

method to be executed when running a Java
program.

o Any set of statements between the braces
“{" and “}" define a program block.

Java Primer 1

3/18/14

Java Primer 1

Identifiers

a The name of a class, method, or variable in
Java is called an identifier, which can be any
string of characters as long as it begins with a
letter and consists of letters.

. Reserved Words

a Except|0n5: abstract default goto package synchronized
assert do if private this
boolean double implements protected throw
break else import public throws
byte enum instanceof return transient
case extends int short true
catch false interface static try
char final long strictfp void
class finally native super volatile
const float new switch while
continue for null

Java Primer 1 5

© 2014 Goodrich, Tamassia, Goldwasser

Base Types

o Java has several base types, which are basic ways of

storing data.

o An identifier variable can be declared to hold any
base type and it can later be reassigned to hold
another value of the same type.

boolean aboolean value: true or false

double 64-bit floating-point number (IEEE 754-1985)

boolean flag = true;
boolean verbose, debug;

char 16-bit Unicode character o
byte 8-bit signed two’s complement integer char grade = 'A';
short 16-bit signed two’s complement integer byte b = 12;

int 32-bit signed two’s complement integer _sho_rt s= 24;
long 64-bit signed two’s complement integer int i, j, k=257,
float 32-bit floating-point number (TEEE 754-1985) long | = 890L;

float pi = 3.1416F;

© 2014 Goodrich, Tamassia, Goldwasser

double e = 2.71828, a = 6.022e23;

Java Primer 1 6

3/18/14

Java Primer 1

Classes and Objects

o Every object is an instance of a class, which serves as the

type of the object and as a blueprint, defining the data which
the object stores and the methods for accessing and modifying
that data. The critical members of a class in Java are the
following:

= Instance variables, which are also called fields, represent the data

associated with an object of a class. Instance variables must have a type,
which can either be a base type (such as int, float, or double) or any class

type.

= Methods in Java are blocks of code that can be called to perform actions.

Methods can accept parameters as arguments, and their behavior may
depend on the object upon which they are invoked and the values of any
parameters that are passed. A method that returns information to the
caller without changing any instance variables is known as an accessor
method, while an update method is one that may change one or more
instance variables when called.

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1

Another Example

public class Counter {

private int count; // a simple integer instance variable
public Counter() { } // default constructor (count is 0)

public Counter(int initial) { count = initial; } // an alternate constructor
public int getCount() { return count; } // an accessor method
public void increment() { count++; } // an update method
public void increment(int delta) { count += delta; } // an update method
public void reset() { count = 0; } // an update method

a This class includes one instance variable, named count,

which will have a default value of zero, unless we
otherwise initialize it.

o The class includes two special methods known as
constructors, one accessor method, and three update

methods.

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1

3/18/14

Java Primer 1

Creating and Using Objects

o Classes are known as reference types in Java, and a variable
of that type is known as a reference variable.

o A reference variable is capable of storing the location (i.e.,
memory address) of an object from the declared class.

= S0 we might assign it to reference an existing instance or a newly
constructed instance.

= A reference variable can also store a special value, null, that represents the
lack of an object.
o InJava, a new object is created by using the new operator
followed by a call to a constructor for the desired class.

o A constructor is a method that always shares the same name
as its class. The new operator returns a reference to the newly
created instance; the returned reference is typically assigned to
a variable for further use.

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 9

Continued Example

public class CounterDemo {
public static void main(String[] args) {
Counter c; // declares a variable; no counter yet constructed
¢ = new Counter(); // constructs a counter; assigns its reference to ¢
c.increment(); // increases its value by one
c.increment(3); // increases its value by three more
int temp = c.getCount(); // will be 4
c.reset(); // value becomes 0
Counter d = new Counter(5);// declares and constructs a counter having value 5
d.increment(); // value becomes 6
Counter e = d; // assigns e to reference the same object as d
temp = e.getCount(); // will be 6 (as e and d reference the same counter)
e.increment(2); // value of e (also known as d) becomes 8
}
}

a Here, a new Counter is constructed at line 4, with its reference
assigned to the variable c. That relies on a form of the
constructor, Counter(), that takes no arguments between the
parentheses.

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 10

3/18/14

Java Primer 1

The Dot Operator

o One of the primary uses of an object
reference variable is to access the members
of the class for this object, an instance of its
class.

o This access is performed with the dot (*.”)
operator.

o We call a method associated with an object
by using the reference variable name,
following that by the dot operator and then
the method name and its parameters.

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 11

Wrapper Types

o There are many data structures and
algorithms in Java’s libraries that are
specifically designed so that they only work
with object types (not primitives).

o To get around this obstacle, Java defines a
wrapper class for each base type.

= Java provides additional support for implicitly
converting between base types and their wrapper
types through a process known as automatic
boxing and unboxing.

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 12

3/18/14

Java Primer 1

Example Wrapper Types

Base Type | Class Name | Creation Example Access Example
boolean Boolean obj = new Boolean(true); obj.booleanValue()
char Character | obj = new Character('Z’); obj.charValue()
byte Byte obj = new Byte((byte) 34); obj.byteValue()
short Short obj = new Short((short) 100); | obj.shortValue()
int Integer obj = new Integer(1045); obj.intValue()
long Long obj = new Long(10849L); obj.longValue()
float Float obj = new Float(3.934F); obj.floatValue()
double Double obj = new Double(3.934); obj.doubleValue()
intj=28;
Integer a = new Integer(12);
int k = a; // implicit call to a.intValue()
intm=j + a; // a is automatically unboxed before the addition
a=3xm; // result is automatically boxed before assignment

Integer b = new Integer("-135"); // constructor accepts a String
int n = Integer.parselnt("2013"); // using static method of Integer class

© 2014 Goodrich, Tamassia, Goldwasser

Java Primer 1

13

Signatures

o If there are several methods with this same name
defined for a class, then the Java runtime system
uses the one that matches the actual number of
parameters sent as arguments, as well as their
respective types.

o A method’s name combined with the number and

types of its parameters is called a method’s
signature, for it takes all of these parts to determine
the actual method to perform for a certain method

call.

o A reference variable v can be viewed as a “pointer”

to some object o.

© 2014 Goodrich, Tamassia, Goldwasser

Java Primer 1

14

3/18/14

Java Primer 1

Defining Classes

o A class definition is a block of code,
delimited by braces “{"” and “}" , within
which is included declarations of instance
variables and methods that are the members
of the class.

o Immediately before the definition of a class,
instance variable, or method in Java,
keywords known as modifiers can be placed
to convey additional stipulations about that
definition.

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 15

Access Control Modifiers

o The public class modifier designates that all classes
may access the defined aspect.

o The protected class modifier designates that access
to the defined aspect is only granted to classes that
are designated as subclasses of the given class through
inheritance or in the same package.

o The private class modifier designates that access to a
defined member of a class be granted only to code
within that class.

o When a variable or method of a class is declared as
static, it is associated with the class as a whole, rather
than with each individual instance of that class.

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 16

3/18/14

Java Primer 1 3/18/14

Parameters

o A method’s parameters are defined in a comma-separated list
enclosed in parentheses after the name of the method.
= A parameter consists of two parts, the parameter type and the
parameter name.
= If @ method has no parameters, then only an empty pair of
parentheses is used.

o All parameters in Java are passed by value, that is, any time
we pass a parameter to a method, a copy of that parameter is
made for use within the method body.

= So if we pass an int variable to a method, then that variable’s
integer value is copied.
= The method can change the copy but not the original.

= If we pass an object reference as a parameter to a method, then
the reference is copied as well.

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 17

The Keyword this

o Within the body of a method in Java, the
keyword this is automatically defined as a
reference to the instance upon which the method
was invoked. There are three common uses:

1. To store the reference in a variable, or send it as a
parameter to another method that expects an
instance of that type as an argument.

2. To differentiate between an instance variable and a
local variable with the same name.

3. To allow one constructor body to invoke another
constructor body.

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 18

Java Primer 1

Expressions and Operators

J

o Existing values can be combined into
expressions using special symbols and
keywords known as operators.

o The semantics of an operator depends
upon the type of its operands.

o For example, when a and b are
numbers, the syntax a + b indicates
addition, while if a and b are strings,
the operator + indicates concatenation.

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 19

Arithmetic Operators

"o Java supports the following arithmetic operators:
+ addition

— subtraction

* multiplication

/ division

% the modulo operator

o If both operands have type int, then the result is an int;
if one or both operands have type float, the result is a
float.

a Integer division has its result truncated.

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 20

3/18/14

10

Java Primer 1

Increment and Decrement Ops

o Java provides the plus-one increment (++)

and decrement (——) operators.

= If such an operator is used in front of a variable
reference, then 1 is added to (or subtracted from)
the variable and its value is read into the
expression.

» If it is used after a variable reference, then the
value is first read and then the variable is
incremented or decremented by 1.

inti =8;
int j = i++; // j becomes 8 and then i becomes 9
int k = ++i; // i becomes 10 and then k becomes 10
intm=i——; // m becomes 10 and then i becomes 9
intn=9+ —i; // i becomes 8 and then n becomes 17

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 21

Logical Operators

o Java supports the following operators for numerical
values, which result in Boolean values:

< less than
<= less than or equal to
== equalto
I= not equal to
>= greater than or equal to
> greater than

o Boolean values also have the following operators:

! not (prefix)
&& conditional and
|| conditional or

o The and and or operators short circuit, in that they
do not evaluate the second operand if the result can

be determined based on the value of the first operand.

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 22

3/18/14

11

Java Primer 1

Bitwise Operators

o Java provides the following bitwise
operators for integers and booleans:

~ bitwise complement (prefix unary operator)
& bitwise and
| bitwise or
" bitwise exclusive-or
<< shift bits left, filling in with zeros
>> shift bits right, filling in with sign bit
>>> shift bits right, filling in with zeros
© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 23
Operator Precedence
Type Symbols
1 | array index | []
method call | ()
dot operator | .
2 | postfixops | exp++ exp——
prefix ops ++4exp ——exp +exp —exp “exp lexp
cast (type) exp
3 | mult./div. x / %
4 | add./subt. + -
5 | shift << S>> >>>
6 | comparison | < <= > >= instanceof
7 | equality == I=
8 | bitwise-and | &
9 | bitwise-xor | ”
10 | bitwise-or \
11 | and &&
12 | or I
13 | conditional | booleanExpression ? valuelfTrue : valuelfFalse
14 [assignment | = += —= x= /= %= <<= >>= >>>= &= "= |=
© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 24

3/18/14

12

Java Primer 1

Casting

o Casting is an operation that allows us to
change the type of a value.

o We can take a value of one type and
cast it into an equivalent value of
another type.

o There are two forms of casting in Java:
explicit casting and implicit casting.

© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 25

Explicit Casting

o Java supports an explicit casting syntax with the
following form:

(type) exp

o Here “type” is the type that we would like the
expression exp to have.

o This syntax may only be used to cast from one
primitive type to another primitive type, or from one
reference type to another reference type.

= Examples' double d1 = 3.2;
double d2 = 3.9999;
int i1 = (int) d1; // il gets value 3
int i2 = (int) d2; // i2 gets value 3
double d3 = (double) i2; // d3 gets value 3.0
© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 26

3/18/14

13

Java Primer 1

Implicit Casting

o There are cases where Java will perform an implicit
cast based upon the context of an expression.

o You can perform a widening cast between primitive
types (such as from an int to a double), without
explicit use of the casting operator.

o However, if attempting to do an implicit narrowing
cast, a compiler error results.

int il = 42;

double d1 = i1; // d1 gets value 42.0

i1 =dl; // compile error: possible loss of precision
© 2014 Goodrich, Tamassia, Goldwasser Java Primer 1 27

3/18/14

14

