Properties of Context-Free languages

Union

Context-free languages are closed under: Union

 L_1 is context free $L_1 \cup L_2$ L_2 is context free is context-free

Example

Language

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a \mid bS_2b \mid \lambda$$

Union

$$L = \{a^n b^n\} \cup \{ww^R\}$$

$$S \rightarrow S_1 \mid S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the union $L_1 \cup L_2$ has new start variable S and additional production $S \to S_1 \mid S_2$

Costas Busch - LSU

Concatenation

Context-free languages are closed under: **Concatenation**

 L_1 is context free L_1L_2 is context free is context-free

Example

Language

Grammar

$$L_1 = \{a^n b^n\}$$

$$S_1 \rightarrow aS_1b \mid \lambda$$

$$L_2 = \{ww^R\}$$

$$S_2 \rightarrow aS_2a | bS_2b | \lambda$$

Concatenation

$$L = \{a^n b^n\} \{ww^R\}$$

$$S \rightarrow S_1 S_2$$

In general:

For context-free languages L_1 , L_2 with context-free grammars G_1 , G_2 and start variables S_1 , S_2

The grammar of the concatenation L_1L_2 has new start variable S and additional production $S \to S_1S_2$

Star Operation

Context-free languages are closed under: **Star-operation**

L is context free $\stackrel{*}{\Longrightarrow}$ L^* is context-free

Example

Language

Grammar

$$L = \{a^n b^n\}$$

$$S \rightarrow aSb \mid \lambda$$

Star Operation

$$L = \{a^n b^n\}^*$$

$$S_1 \rightarrow SS_1 \mid \lambda$$

In general:

For context-free language L with context-free grammar G and start variable S

The grammar of the star operation L^* has new start variable S_1 and additional production $S_1 \to SS_1 \mid \lambda$

Negative Properties of Context-Free Languages

Intersection

Context-free languages are **not** closed under: **intersection**

 L_1 is context free $L_1 \cap L_2$ L_2 is context free $\begin{array}{c} & & \\ &$

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Intersection

$$L_1 \cap L_2 = \{a^n b^n c^n\}$$
 NOT context-free

Complement

Context-free languages are **not** closed under: **complement**

L is context free \longrightarrow \overline{L} $rac{ extbf{not}}{ ext{context-free}}$

Example

$$L_1 = \{a^n b^n c^m\}$$

$$L_2 = \{a^n b^m c^m\}$$

Context-free:

Context-free:

$$S \rightarrow AC$$

$$S \rightarrow AB$$

$$A \rightarrow aAb \mid \lambda$$

$$A \rightarrow aA \mid \lambda$$

$$C \rightarrow cC \mid \lambda$$

$$B \rightarrow bBc \mid \lambda$$

Complement

$$\overline{L_1 \cup L_2} = L_1 \cap L_2 = \{a^n b^n c^n\}$$

Intersection of Context-free languages and Regular Languages

The intersection of a context-free language and a regular language is a context-free language

 L_1 context free $L_1 \cap L_2$ L_2 regular context-free

Machine M_1

NPDA for L_1 context-free

Machine M_2

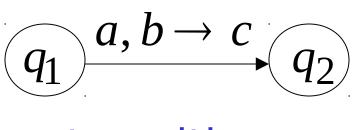
DFA for L_2 regular

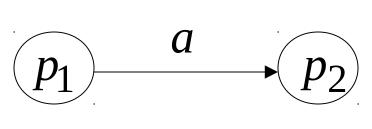
Construct a new NPDA machine M that accepts $L_1 \cap L_2$

M simulates in parallel M_1 and M_2

NPDA M_1

DFA M_2





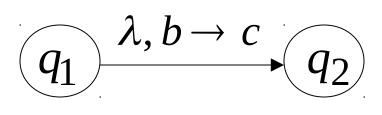
transition

NPDA M

$$(q_1, p_1)$$
 $\xrightarrow{a, b \rightarrow c} (q_2, p_2)$ transition

NPDA
$$M_1$$

DFA M_2



 (p_1)

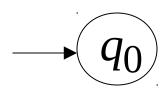
transition

NPDA M

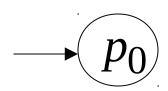
$$(q_1, p_1)$$
 $\lambda, b \rightarrow c$ (q_2, p_1)

transition

DFA M_2

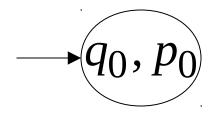


initial state



initial state

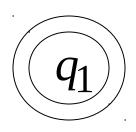
NPDA M

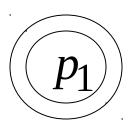


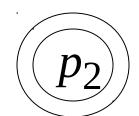
Initial state

NPDA M_1

DFA M_2



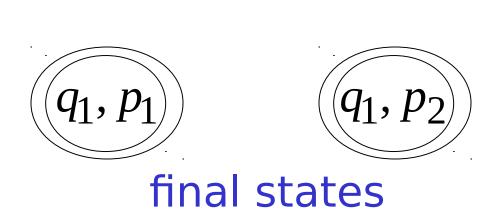




final state

final states

NPDA M

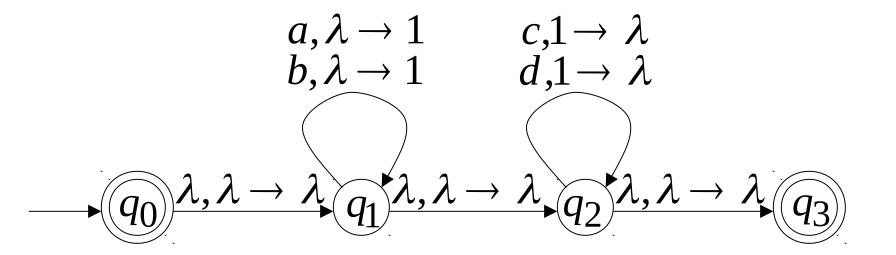


Example:

context-free

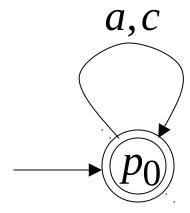
$$L_1 = \{w_1w_2 : |w_1| \neq w_2 |, w_1 \in \{a,b\}^*, w_2 \in \{c,d\}^*\}$$

NPDA M_1



regular
$$L_2 = \{a, c\}^*$$

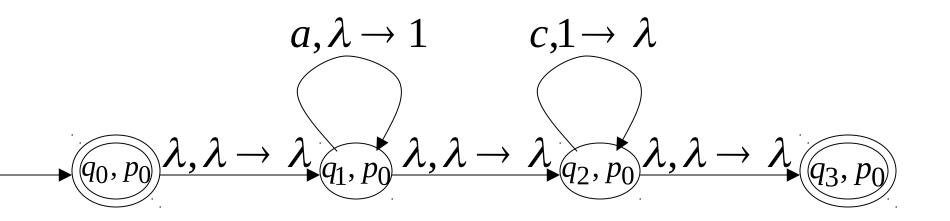
DFA M_2



context-free

Automaton for: $L_1 \cap L_2 = \{a^n c^n : n \ge 0\}$

NPDA M



In General:

M simulates in parallel M_1 and M_2

M accepts string w if and only if

 M_1 accepts string w and M_2 accepts string w

$$L(M) = L(M_1) \cap L(M_2)$$

Costas Busch - LSU

Therefore:

M is NPDA

 $L(M_1) \cap L(M_2)$ is context-free

 $L_1 \cap L_2$ is context-free

Applications of Regular Closure

The intersection of a context-free language and a regular language is a context-free language

 L_1 context free $L_1 \cap L_2$ L_2 regular L_2 regular context-free

An Application of Regular Closure

Prove that:
$$L = \{a^n b^n : n \neq 100, n \geq 0\}$$

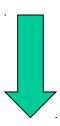
is context-free

We know:

$$\{a^nb^n: n \ge 0\}$$
 is context-free

We also know:

$$L_1 = \{a^{100}b^{100}\}$$
 is regular



$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$
 is regular

$$\{a^nb^n\}$$

$$\overline{L_1} = \{(a+b)^*\} - \{a^{100}b^{100}\}$$

context-free

regular

(regular closure) $\{a^nb^n\}\cap \overline{L_1}$ context-free

$$\{a^nb^n\} \cap \overline{L_1} = \{a^nb^n: n \neq 100, n \geq 0\} = L$$

is context-free

Another Application of Regular Closure

Prove that:
$$L = \{w: n_a = n_b = n_c\}$$

is **not** context-free

If
$$L = \{w: n_a = n_b = n_c\}$$
 is context-free

(regular closure)

Then
$$L \cap \{a*b*c*\} = \{a^nb^nc^n\}$$

context-free regular context-free

Impossible!!!

Therefore, L is **not** context free