PDAs Accept Context-Free Languages

Context-Free Languages (Grammars) Languages Accepted by PDAs

Convert any context-free grammarGto a PDA M with: L(G) = L(M)

Convert any PDA M to a context-free grammar G with: L(G) = L(M)

Proof - step 1 Convert

Context-Free Grammars to PDAs

Take an arbitrary context-free grammarG

We will convert G to a PDA M such that:

L(G) = L(M)

PDA simulates leftmost derivations

Grammar Leftmost Derivation

Grammar Leftmost Derivation

PDA Computation

- $\Rightarrow \cdots$
- $\Rightarrow xAy$
- $\Rightarrow \mathbf{x}\sigma_i\cdots\sigma_j\mathbf{B}\mathbf{z}\mathbf{y}$

 $\succ \cdots$ $\succ (q_1, \sigma_i \cdots \sigma_n, Ay \$)$ $\succ (q_1, \sigma_i \cdots \sigma_n, \sigma_i \cdots \sigma_j Bzy \$)$

Production applied $A \rightarrow \sigma_i \cdots \sigma_j Bz$

Transition applied $\varepsilon, A \rightarrow \sigma_i \cdots \sigma_j Bz$ $\varepsilon, \varepsilon \rightarrow S$ $\varepsilon, \varepsilon \rightarrow S$ $\varepsilon, \varepsilon \rightarrow S$

Grammar Leftmost Derivation

PDA Computation

 $\Rightarrow \cdots$

- $\Rightarrow xAy$
- $\Rightarrow \mathbf{X}\sigma_i\cdots\sigma_j\mathbf{B}\mathbf{Z}\mathbf{Y}$

$$> (q_1, \sigma_i \cdots \sigma_n, Ay \$)$$

> $(q_1, \sigma_i \cdots \sigma_n, \sigma_i \cdots \sigma_j Bzy \$)$
> $(q_1, \sigma_{i+1} \cdots \sigma_n, \sigma_{i+1} \cdots \sigma_j Bzy \$)$

Read σ_i from input and remove it from stack $\neg q_0$ $\varepsilon, \varepsilon \rightarrow S$ q_1 $\varepsilon, \$ \rightarrow \$$ q_2

Grammar

Leftmost Derivation $\Rightarrow \cdots$

- $\Rightarrow xAy$
- $\Rightarrow \mathbf{x}\sigma_{i}\cdots\sigma_{j}\mathbf{B}\mathbf{z}\mathbf{y}$

All symbols $\sigma_i \cdots \sigma_j$ have been removed from top of stack

PDA Computation $\succ \cdots$ $>(q_1, \sigma_i \cdots \sigma_n, Ay\$)$ $>(q_1, \sigma_i \cdots \sigma_n, \sigma_i \cdots \sigma_i Bzy\$)$ $> (q_1, \sigma_{i+1} \cdots \sigma_n, \sigma_{i+1} \cdots \sigma_i Bzy\$)$ $\succ \cdots$ $>(q_1, \sigma_{i+1} \cdots \sigma_n, Bzy\$)$ Last Transition applied $\sigma_i, \sigma_i \to \varepsilon$ $\varepsilon, \$ \rightarrow \$$ $\varepsilon, \varepsilon \to S$

The process repeats with the next leftmost variable

- $\Rightarrow xAy$ $\Rightarrow x\sigma_{i}\cdots\sigma_{j}Bzy$
- $\Rightarrow \mathbf{X}\sigma_{i}\cdots\sigma_{j}\sigma_{j+1}\cdots\sigma_{k}C\mathbf{P}\mathbf{Z}\mathbf{Y}$
- $\succ \cdots$ $\succ (q_1, \sigma_{j+1} \cdots \sigma_n, Bzy\$)$ $\succ (q_1, \sigma_{j+1} \cdots \sigma_n, \sigma_{j+1} \cdots \sigma_k Cpzy\$)$ $\succ \cdots$

$$\succ (q_1, \sigma_{k+1} \cdots \sigma_n, Cpzy\$)$$

Production applied $B \rightarrow \sigma_{j+1} \cdots \sigma_k Cp$

And so on.....

Example:

Derivation: S

Derivation: $S \Rightarrow aSTb$

Derivation: $S \Rightarrow aSTb$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb$

Derivation: $S \Rightarrow aSTb \Rightarrow abTb \Rightarrow abTab$

Grammar **PDA** Computation Leftmost Derivation $(q_0, abab, \$)$ S \succ (*q*₁, *abab*, *S*\$) $\Rightarrow aSTb$ $>(q_1, bab, STb\$)$ $>(q_1, bab, bTb\$)$ $\Rightarrow abTb$ $>(q_1, ab, Tb\$)$ \Rightarrow *abTab* $>(q_1, ab, Tab\$)$ \Rightarrow abab \succ (*q*₁, *ab*, *ab*\$) $>(q_1,b,b\$)$ $\succ(q_1, \varepsilon, \$)$ $\succ (q_2, \varepsilon, \$)$

In general, it can be shown that:

Grammar G generates string w * $S \Rightarrow W$ PDA M PDA Maccepts w $(q_0, w, \$) \succ (q_2, \varepsilon, \$)$

Therefore L(G) = L(M)

Proof - step 2 Convert

PDAs to Context-Free Grammars

Take an arbitrary PDA M

We will convert M to a context-free grammar G such that:

L(M) = L(G)

First modify PDA M so that:

- 1. The PDA has a single accept state
- 2. Use new initial stack symbol #
- 3. On acceptance the stack contains only stack symbol # (this symbol is not used in any transition)
- Each transition either pushes a symbol or pops a symbol but not both together

L. The PDA has a single accept state

2. Use new initial stack symbol # Top of stack

M_1 still thinks that Z is the initial stack

Costas Busch - LSU

3. On acceptance the stack contains only stack symbol # (this symbol is not used in any transition)

I. Each transition either pushes a symbol or pops a symbol but not both together

PD M_4 (q_i) $\sigma, \varepsilon \to \delta$ $\varepsilon, \delta \to \varepsilon$ (q_j) A δ is a symbol of the stack alphabet

PDA M_4 is the final modified PDA

Note that the new initial stack symbol # is never used in any transition

Grammar Construction

Kind 1: for each state

Grammar

PDA

Kind 2: for every three states

Grammar

 $A_{pq} \rightarrow A_{pr}A_{ra}$

PDA

Kind 3: for every pair of such transitions

 $(\mathbf{S}) \xrightarrow{b,t \to \varepsilon} (\mathbf{q})$

Grammar

 $A_{pq} \rightarrow a A_{rs} b$

Grammar

Start variable

Example:

Grammar

Kind 1: from single states

Kind 2: from triplets of states

$$\begin{array}{l} A_{q_{0}q_{0}} \rightarrow A_{q_{0}q_{0}}A_{q_{0}q_{0}} \mid A_{q_{0}q_{1}}A_{q_{1}q_{0}} \mid A_{q_{0}q_{2}}A_{q_{2}q_{0}} \mid A_{q_{0}q_{3}}A_{q_{3}q_{0}} \mid A_{q_{0}q_{4}}A_{q_{4}q_{0}} \mid A_{q_{0}q_{5}}A_{q_{5}q_{0}} \\ A_{q_{0}q_{1}} \rightarrow A_{q_{0}q_{0}}A_{q_{0}q_{1}} \mid A_{q_{0}q_{1}}A_{q_{1}q_{1}} \mid A_{q_{0}q_{2}}A_{q_{2}q_{1}} \mid A_{q_{0}q_{3}}A_{q_{3}q_{1}} \mid A_{q_{0}q_{4}}A_{q_{4}q_{1}} \mid A_{q_{0}q_{5}}A_{q_{5}q_{1}} \\ \vdots \\ A_{q_{0}q_{5}} \rightarrow A_{q_{0}q_{0}}A_{q_{0}q_{5}} \mid A_{q_{0}q_{1}}A_{q_{1}q_{5}} \mid A_{q_{0}q_{2}}A_{q_{2}q_{5}} \mid A_{q_{0}q_{3}}A_{q_{3}q_{5}} \mid A_{q_{0}q_{4}}A_{q_{4}q_{5}} \mid A_{q_{0}q_{5}}A_{q_{5}q_{5}} \\ \vdots \\ A_{q_{5}q_{5}} \rightarrow A_{q_{5}q_{0}}A_{q_{0}q_{5}} \mid A_{q_{5}q_{1}}A_{q_{1}q_{5}} \mid A_{q_{5}q_{2}}A_{q_{2}q_{5}} \mid A_{q_{5}q_{3}}A_{q_{3}q_{5}} \mid A_{q_{5}q_{4}}A_{q_{4}q_{5}} \mid A_{q_{5}q_{5}}A_{q_{5}q_{5}} \\ \vdots \\ A_{q_{5}q_{5}} \rightarrow A_{q_{5}q_{0}}A_{q_{0}q_{5}} \mid A_{q_{5}q_{1}}A_{q_{1}q_{5}} \mid A_{q_{5}q_{2}}A_{q_{2}q_{5}} \mid A_{q_{5}q_{3}}A_{q_{3}q_{5}} \mid A_{q_{5}q_{4}}A_{q_{4}q_{5}} \mid A_{q_{5}q_{5}}A_{q_{5}q_{5}} \\ \vdots \\ A_{q_{5}q_{5}} \rightarrow A_{q_{5}q_{0}}A_{q_{0}q_{5}} \mid A_{q_{5}q_{1}}A_{q_{1}q_{5}} \mid A_{q_{5}q_{2}}A_{q_{2}q_{5}} \mid A_{q_{5}q_{3}}A_{q_{3}q_{5}} \mid A_{q_{5}q_{4}}A_{q_{4}q_{5}} \mid A_{q_{5}q_{5}}A_{q_{5}q_{5}} \\ \vdots \\ A_{q_{5}q_{5}} \rightarrow A_{q_{5}q_{0}}A_{q_{0}q_{5}} \mid A_{q_{5}q_{1}}A_{q_{1}q_{5}} \mid A_{q_{5}q_{2}}A_{q_{2}q_{5}} \mid A_{q_{5}q_{3}}A_{q_{3}q_{5}} \mid A_{q_{5}q_{4}}A_{q_{4}q_{5}} \mid A_{q_{5}q_{5}}A_{q_{5}q_{5}} \\ \vdots \\ A_{q_{5}q_{5}} \rightarrow A_{q_{5}q_{0}}A_{q_{0}q_{5}} \mid A_{q_{5}q_{1}}A_{q_{1}q_{5}} \mid A_{q_{5}q_{2}}A_{q_{2}q_{5}} \mid A_{q_{5}q_{3}}A_{q_{3}q_{5}} \mid A_{q_{5}q_{4}}A_{q_{4}q_{5}} \mid A_{q_{5}q_{5}}A_{q_{5}q_{5}} \\ \vdots \\ A_{q_{5}q_{5}} \rightarrow A_{q_{5}q_{6}}A_{q_{6}q_{5}} \mid A_{q_{5}q_{5}}A_{q_{5}q_{5}} \mid A_{q_{5}q_{5}}A_{q_{5}q_{5}} \mid A_{q_{5}q_{5}}A_{q_{5}q_{5}} \\ \vdots \\ A_{q_{5}q_{5}} \rightarrow A_{q_{5}q_{6}}A_{q_{6}q_{5}} \mid A_{q_{5}q_{5}}A_{q_{5}q_{5}} \mid A_{q_{5}q_{5}}A_{q_{5}q_{5}} \mid A_{q_{5}q_{5}}A_{q_{5}q_{5}} \mid A_{q_{5}q_{5}}A_{q_{5}q_{5}} \mid A_{q_{5}q_{5}}A_{q_{5}}A_{q_{5}}A_{q_{5}} \mid A_{q_{5}q_{5}}A_{q_{5}}A_{$$

Kind 3: from pairs of transitions

 $\rightarrow aA_{q_2q_4}$ $\rightarrow A_{q_1q_4}$ $A_{q_2q_4}$ $q_0 q_5$ $A_{q_2q_2}$ $aA_{q_2q_2}b$ $q_2 q_4$ $q_2 q_4$ $|_{3}q_{3}$ ightarrow a / $q_2 q_3$

Costas Busch - LSU

Suppose that a PDA M is converted to a context-free grammar G

We need to prove that L(G) = L(M)

or equivalently

 $L(G) \subseteq L(M) \qquad \qquad L(G) \supseteq L(M)$

$L(G) \subseteq L(M)$

We need to show that if G has derivation:

$$A_{q_0q_f} \stackrel{*}{\Rightarrow} W$$
 (string of terminals)

hen there is an accepting computation in ${\cal M}$

$$(q_0, w, \#) \stackrel{*}{\succ} (q_f, \varepsilon, \#)$$

with input string W

Ve will actually show that if G has derivation

$$A_{pq} \stackrel{*}{\Rightarrow} W$$

Then there is a computation in M :

$$(p, w, \varepsilon) \stackrel{*}{\succ} (q, \varepsilon, \varepsilon)$$

Lemma:

If $A_{pq} \stackrel{*}{\Rightarrow} W(\text{string of terminals})$

then there is a computation from state p to state q on string Wwhich leaves the stack empty:

Proof Intuition:

$$A_{pq} \Rightarrow \cdots \Rightarrow W$$

Type 2
Case 1:
$$A_{pq} \Rightarrow A_{pr}A_{rq} \Rightarrow \cdots \Rightarrow W$$

Type 3
Case 2:
$$A_{pq} \Rightarrow aA_{rs}b \Rightarrow \cdots \Rightarrow W$$

Costas Busch - LSU

Formal Proof:

We formally prove this claim by induction on the number of steps in derivation:

$$A_{pq} \Rightarrow \cdots \Rightarrow W$$

number of steps

Induction Basis: $A_{pq} \Rightarrow W$ (one derivation step)

A Kind 1 production must have been used:

$$A_{pp} \rightarrow \mathcal{E}$$

Therefore, $p = q$ and $w = \mathcal{E}$

Λ

This computation of PDA trivially exists: $(p, \varepsilon, \varepsilon) \xrightarrow{*} (p, \varepsilon, \varepsilon)$ Induction Hypothesis:

suppose it holds:

 $(p, w, \varepsilon) \stackrel{*}{\succ} (q, \varepsilon, \varepsilon)$

Induction Step:

 $A_{pq} \Rightarrow \cdots \Rightarrow W$ k + 1 derivation steps

We have to show:

 $(p, w, \varepsilon) \stackrel{*}{\succ} (q, \varepsilon, \varepsilon)$

A_{pq} $\Rightarrow \cdots \Rightarrow W$ k + 1 derivation steps

Type 2 Case 1: $A_{pq} \Rightarrow A_{pr}A_{rq} \Rightarrow \cdots \Rightarrow W$

Type 3 Case 2: $A_{pq} \Rightarrow aA_{rs}b \Rightarrow \cdots \Rightarrow W$

At most k steps

From induction hypothesis, in PDA: $(p, y, \varepsilon) \stackrel{*}{\succ} (r, \varepsilon, \varepsilon)$

At most *k* steps

From induction hypothesis, in PDA: $(r, z, \varepsilon) \stackrel{*}{\succ} (q, \varepsilon, \varepsilon)$

We can write W = ayb $A_{rs} \Rightarrow \cdots \Rightarrow y$ $A_{rs} k \text{ steps}$

 $\begin{array}{c} A_{rs} \Rightarrow \cdots \Rightarrow Y \\ At \mod k \text{ steps} \end{array}$

From induction hypothesis, the PDA has computation: $(r, y, \varepsilon) \stackrel{*}{\succ} (s, \varepsilon, \varepsilon)$

 $(p,ayb,\varepsilon)\succ(r,yb,t)$

 $(s,b,t) \succ (q,\varepsilon,\varepsilon)$

We know $(r, y, \varepsilon) \stackrel{*}{\succ} (s, \varepsilon, \varepsilon) \qquad (r, yb, t) \stackrel{*}{\succ} (s, b, t)$ $(p,ayb,\varepsilon) > (r,yb,t)$ We also know $(s,b,t) \succ (q,\varepsilon,\varepsilon)$

Therefore:

$(p,ayb,\varepsilon) \succ (r,yb,t) \stackrel{*}{\succ} (s,b,t) \succ (q,\varepsilon,\varepsilon)$

$(p,ayb,\varepsilon) > (r,yb,t) > (s,b,t) > (q,\varepsilon,\varepsilon)$

since w =ayb

$(p, w, \varepsilon) \stackrel{*}{\succ} (q, \varepsilon, \varepsilon)$

END OF PROOF

So far we have shown: $L(G) \subseteq L(M)$

With a similar proof we can show $L(G) \supseteq L(M)$

Therefore: L(G) = L(M)