PDAs Accept Context-Free Languages

Theorem:

$\left\{\begin{array}{c}\text { Context-Free } \\ \text { Languages } \\ \text { (Grammars) }\end{array}\right\}$
 Languages Accepted by $\}$ PDAs

Proof - Step 1:

$\left\{\begin{array}{c}\text { Context-Free } \\ \text { Languages } \\ \text { (Grammars) }\end{array}\right\}=\left\{\begin{array}{c}\text { Languages } \\ \text { Accepted by } \\ \text { PDAs }\end{array}\right\}$

Convert any context-free grammar G to a PDA M with: $L(G)=L(M)$

Proof - Step 2:

$\left\{\begin{array}{c}\text { Context-Free } \\ \text { Languages } \\ \text { (Grammars) }\end{array}\right\} \rightleftharpoons\left\{\begin{array}{c}\text { Languages } \\ \text { Accepted by } \\ \text { PDAs }\end{array}\right\}$

Convert any PDA M to a context-free grammar G with: $L(G)=L(M)$

Proof - step 1

Convert

Context-Free Grammars to
 PDAs

Take an arbitrary context-free grammar G

 We will convert G to a PDA M such that:$$
L(G)=L(M)
$$

Conversion Procedure:

For each production in G

For each

 terminal in G

Grammar
$S \rightarrow a S T b$
$S \rightarrow b$
$T \rightarrow T a$
$T \rightarrow \varepsilon$

Example

PDA

$$
\begin{aligned}
& \varepsilon, S \rightarrow a S T b \\
& \varepsilon, S \rightarrow b
\end{aligned}
$$

$$
\varepsilon, T \rightarrow T a \quad a, a \rightarrow \varepsilon
$$

$$
\varepsilon, T \rightarrow \varepsilon \quad b, b \rightarrow \varepsilon
$$

$$
\rightarrow q_{0} \varepsilon, \varepsilon \rightarrow S \xrightarrow[\substack{\text { Cosas bsen-svi}}]{ } \varepsilon, \$ \rightarrow \$
$$

PDA simulates leftmost derivations

Grammar

 Leftmost DerivationS
$\Rightarrow \cdots$
$\Rightarrow \sigma_{1} \cdots \sigma_{k} X_{1} \cdots X_{m}$

$$
\Rightarrow \sigma_{1} \cdots \partial_{k} \sigma_{k+1} \cdots \sigma_{y}
$$

$$
>\left(q_{1}, \sigma_{1} \cdots \sigma_{k} \sigma_{k+1} \cdots \sigma_{n}, S \$\right)
$$

PDA Computation

$$
\left(q_{0}, \sigma_{1} \cdots \sigma_{k} \sigma_{k+1} \cdots \sigma_{n}, \$\right)
$$

$$
\succ \cdots
$$

$$
\succ\left(q_{1}, \sigma_{k+1} \cdots \sigma_{n}, X_{1} \cdots X_{m} \$\right)
$$

$$
\begin{aligned}
& >\cdots \\
& >\left(q_{2}, \varepsilon, \$\right)
\end{aligned}
$$

Stack
contents

Grammar
 Leftmost Derivation

 $\Rightarrow X \sigma_{i} \cdots \sigma_{j} B z y$

Production applied

Terminals Variable

Grammar
 Leftmost Derivation

PDA Computation

\Rightarrow …
$\Rightarrow x A y$
$\Rightarrow X \sigma_{i} \cdots \sigma_{j} B z y$

Production applied $A \rightarrow \sigma_{i} \cdots \sigma_{j} B z$

$$
\begin{aligned}
& >\cdots \\
& >\left(q_{1}, \sigma_{i} \cdots \sigma_{n}, A y \$\right) \\
& >\left(q_{1}, \sigma_{i} \cdots \sigma_{n}, \sigma_{i} \cdots \sigma_{j} B z y \$\right)
\end{aligned}
$$

Transition applied

$$
\varepsilon, A \rightarrow \sigma_{i} \cdots \sigma_{j} B z
$$

Grammar

Leftmost Derivation

PDA Computation

$$
\begin{array}{ll}
\Rightarrow \cdots & \\
\Rightarrow \cdots \\
\Rightarrow x A y & \\
\Rightarrow \text { x } \sigma_{i} \cdots \sigma_{j} B z y & \\
& \\
& >\left(q_{1}, \sigma_{i} \cdots \sigma_{n}, \sigma_{i} \cdots \sigma_{n}, \sigma_{i} \cdots \sigma_{j} B z y \$\right) \\
& >\left(q_{1}, \sigma_{i+1} \cdots \sigma_{n}, \sigma_{i+1} \cdots \sigma_{j} B z y \$\right)
\end{array}
$$

Transition applied

Read σ_{i} from input and remove it from stack

$$
\sigma_{i}, \sigma_{i} \rightarrow \varepsilon
$$

Grammar

Leftmost Derivation

PDA Computation

$\Rightarrow x A y$

$$
\begin{aligned}
& >\left(q_{1}, \sigma_{i} \cdots \sigma_{n}, A y \$\right) \\
& >\left(q_{1}, \sigma_{i} \cdots \sigma_{n}, \sigma_{i} \cdots \sigma_{j} B z y \$\right) \\
& >\left(q_{1}, \sigma_{i+1} \cdots \sigma_{n}, \sigma_{i+1} \cdots \sigma_{j} B z y \$\right) \\
& >\cdots
\end{aligned}
$$

$$
>\left(q_{1}, \sigma_{j+1} \cdots \sigma_{n}, B z y \$\right)
$$

Last Transition applied
All symbols $\sigma_{i} \cdots \sigma_{j}$ have been removed from top of stack

The process repeats with the next leftmost variable

$$
\begin{aligned}
& \Rightarrow \cdots \\
& \Rightarrow x A y \\
& \Rightarrow x \sigma_{i} \cdots \sigma_{j} B z y \\
& \Rightarrow x \sigma_{i} \cdots \sigma_{j} \sigma_{j+1} \cdots \sigma_{k} C p z y
\end{aligned}
$$

$$
>\left(q_{1}, \sigma_{j+1} \cdots \sigma_{n}, B z y \$\right)
$$

$$
>\left(q_{1}, \sigma_{j+1} \cdots \sigma_{n}, \sigma_{j+1} \cdots \sigma_{k}\right. \text { Cpzy\$) }
$$

$$
\succ \cdots
$$

$$
>\left(q_{1}, \sigma_{k+1} \cdots \sigma_{n}, C p z y \$\right)
$$

Production applied
$B \rightarrow \sigma_{j+1} \cdots \sigma_{k} C p$
And so on......

Example:

Input | a | b | a | b |
| :--- | :--- | :--- | :--- |

Time 0

$$
\varepsilon, S \rightarrow a S T b
$$

$$
\varepsilon, S \rightarrow b
$$

Stack

$$
\begin{array}{ll}
\varepsilon, T \rightarrow T a & a, a \rightarrow \varepsilon \\
\varepsilon, T \rightarrow \varepsilon & b, b \rightarrow \varepsilon
\end{array}
$$

$$
\varepsilon, \varepsilon \rightarrow S
$$

Derivation: S

Input | a | b | a | b |
| :--- | :--- | :--- | :--- |

Time 1

$$
\varepsilon, S \rightarrow a S T b
$$

$$
\varepsilon, S \rightarrow b
$$

Stack
$a, a \rightarrow \varepsilon$

$$
\varepsilon, T \rightarrow \varepsilon \quad b, b \rightarrow \varepsilon
$$

Derivation: $S \Rightarrow a S T b$

a
S
T
b
$\$$

Time 2

$$
\varepsilon, S \rightarrow a S T b
$$

Stack

$$
\varepsilon, S \rightarrow b
$$

$$
\varepsilon, T \rightarrow T a
$$

$$
a, a \rightarrow \varepsilon
$$

$$
\varepsilon, T \rightarrow \varepsilon
$$

$$
b, b \rightarrow \varepsilon
$$

$$
\varepsilon, \varepsilon \rightarrow S
$$

$$
\varepsilon, \$ \rightarrow \$
$$

Derivation: $S \Rightarrow a S T b$

$$
\begin{array}{|c|}
\hline a \\
\hline S \\
\hline T \\
\hline b \\
\hline \$ \\
\hline
\end{array}
$$

$$
\varepsilon, S \rightarrow b
$$

Stack

$$
\varepsilon, T \rightarrow T a
$$

$$
a, a \rightarrow \varepsilon
$$

$$
\varepsilon, T \rightarrow \varepsilon
$$

$$
b, b \rightarrow \varepsilon
$$

$$
\rightarrow q_{0} \varepsilon, \varepsilon \rightarrow S
$$

$$
\begin{aligned}
& \text { Input } \begin{array}{|l|l|l|l|}
\hline a & b & a & b \\
\hline & & & \\
\hline
\end{array} \\
& \text { Time } 3 \\
& \varepsilon, S \rightarrow a S T b
\end{aligned}
$$

Derivation: $S \Rightarrow a S T b \Rightarrow a b T b$

Input | a | b | a | b |
| :--- | :--- | :--- | :--- |
| | | | |
| | | | |

Time 4

$$
\varepsilon, S \rightarrow a S T b
$$

$$
\varepsilon, S \rightarrow b
$$

$$
\varepsilon, T \rightarrow T a \quad a, a \rightarrow \varepsilon
$$

$$
\varepsilon, T \rightarrow \varepsilon \quad b, b \rightarrow \varepsilon
$$

$$
\rightarrow q_{0}-\varepsilon, \varepsilon \rightarrow \underset{\substack{\text { Cossas Busn } n \text { Lisu }}}{(q 2)} \varepsilon, \$ \rightarrow \$
$$

Derivation: $S \Rightarrow a S T b \Rightarrow a b T b$

Input
Time 5

$$
\varepsilon, S \rightarrow a S T b
$$

$$
\varepsilon, S \rightarrow b
$$

$$
\varepsilon, T \rightarrow T a
$$

$$
\varepsilon, T \rightarrow \varepsilon
$$

$$
\varepsilon, \varepsilon \rightarrow S
$$

$$
\varepsilon, \$ \rightarrow \$
$$

Derivation: $S \Rightarrow a S T b \Rightarrow a b T b \Rightarrow a b T a b$

Time 6

$$
\varepsilon, S \rightarrow a S T b
$$

$$
\begin{array}{|c|}
\hline T \\
\hline a \\
\hline b \\
\hline \$ \\
\hline
\end{array}
$$

$$
\varepsilon, S \rightarrow b
$$

Derivation: $S \Rightarrow a S T b \Rightarrow a b T b \Rightarrow a b T a b \Rightarrow a b a b$

Input | a | b | a | b | |
| :--- | :--- | :--- | :--- | :---: |
| \uparrow | | | | |

Time $7 \quad \varepsilon, S \rightarrow a S T b$

$$
\varepsilon, S \rightarrow b
$$

$$
\varepsilon, T \rightarrow T a
$$

$$
a, a \rightarrow \varepsilon
$$

$$
\varepsilon, T \rightarrow \varepsilon
$$

$$
b, b \rightarrow \varepsilon
$$

$$
\varepsilon, \varepsilon \rightarrow S
$$

$$
\varepsilon, \$ \rightarrow \$
$$

Derivation: $S \Rightarrow a S T b \Rightarrow a b T b \Rightarrow a b T a b \Rightarrow a b a b$

$$
\varepsilon, S \rightarrow a S T b
$$

Time 8

$$
\varepsilon, S \rightarrow b
$$

Stack

$$
\varepsilon, T \rightarrow T a
$$

$$
a, a \rightarrow \varepsilon
$$

$$
\varepsilon, T \rightarrow \varepsilon
$$

$$
b, b \rightarrow \varepsilon
$$

$$
\varepsilon, \$ \rightarrow \$
$$

Derivation: $S \Rightarrow a S T b \Rightarrow a b T b \Rightarrow a b T a b \Rightarrow a b a b$

$$
\varepsilon, S \rightarrow b
$$

Stack

$$
\varepsilon, T \rightarrow T a \quad a, a \rightarrow \varepsilon
$$

$$
\varepsilon, T \rightarrow \varepsilon \quad b, b \rightarrow \varepsilon
$$

Derivation: $S \Rightarrow a S T b \Rightarrow a b T b \Rightarrow a b T a b \Rightarrow a b a b$

Input | a | b | a | b |
| :--- | :--- | :--- | :--- |
| | | | |

Time 10

$$
\varepsilon, S \rightarrow a S T b
$$

$$
\varepsilon, S \rightarrow b
$$

Stack

$$
\varepsilon, T \rightarrow T a
$$

$$
a, a \rightarrow \varepsilon
$$

$$
\varepsilon, T \rightarrow \varepsilon \quad b, b \rightarrow \varepsilon
$$

Grammar
 Leftmost Derivation

PDA Computation

$$
\left.\left.\begin{array}{ll}
S & \left\{\begin{array}{l}
\left(q_{0}, a b a b, \$\right) \\
>\left(q_{1}, a b a b, S \$\right)
\end{array}\right. \\
\Rightarrow a S T b & \left\{\begin{array}{l}
>\left(q_{1}, b a b, S T b \$\right)
\end{array}\right. \\
\Rightarrow a b T b \\
\Rightarrow a b T a b & \left\{\begin{array}{l}
>\left(q_{1}, b a b, b T b \$\right) \\
>\left(q_{1}, a b, T b \$\right)
\end{array}\right. \\
\Rightarrow a b a b
\end{array}\right\}\left\{\begin{array}{l}
>\left(q_{1}, a b, T a b \$\right)
\end{array}\right\} \begin{array}{l}
>\left(q_{1}, a b, a b \$\right) \\
>\left(q_{1}, b, b \$\right) \\
>\left(q_{1}, \varepsilon, \$\right) \\
>\left(q_{2}, \varepsilon, \$\right)
\end{array}\right) .
$$

In general, it can be shown that:

$$
\left.\begin{array}{ll}
\begin{array}{l}
\text { Grammar } G \\
\text { generates } \\
\text { string } w \\
\\
\hline *
\end{array} & \begin{array}{l}
\\
S \rightarrow w
\end{array} \\
\text { If and } \\
\text { Only if }
\end{array}\right\rangle \begin{aligned}
& \text { PDA } M \\
& \text { accepts } w \\
& \left.\left(q_{0}, w, \$\right)\right)^{*}\left(q_{2}, \varepsilon, \$\right)
\end{aligned}
$$

Therefore $L(G)=L(M)$

Proof - step 2

Convert

PDAs
to
Context-Free Grammars

Take an arbitrary PDA M

We will convert M to a context-free grammar G such that:

$$
L(M)=L(G)
$$

First modify PDA M so that:

1. The PDA has a single accept state
2. Use new initial stack symbol \#
3. On acceptance the stack contains only stack symbol \# (this symbol is not used in any transition)
4. Each transition either pushes a symbol or pops a symbol but not both together

L. The PDA has a single accept state

2. Use new initial stack symbol \# Top of stack

Z	initial stack symbol of M
$@$	auxiliary stack symbol
$\#$	new initial stack symbol

PDA M_{2}

$$
\operatorname{PDA} M_{1}
$$

M_{1} still thinks that Z is the initial stack
3. On acceptance the stack contains only stack symbol \#
(this symbol is not used in any transition)
$\operatorname{PDA} M_{3}$
Empty stack
$\forall x \in \Gamma-\{@ \#\}$
Old
New
accept
state
state

$\underbrace{\varepsilon, x \rightarrow \varepsilon}$| accep |
| :--- |
| state |

Each transition either pushes a symbol or pops a symbol but not both together

PDAM ${ }_{3}$

$\mathrm{PD} \quad \mathrm{M}_{4} \rightarrow \mathrm{q}_{i} \xrightarrow{\sigma, \varepsilon \rightarrow \delta} \bigcirc \stackrel{\varepsilon, \delta \rightarrow \varepsilon}{\left(q_{j}\right)}$ A

Where
$\boldsymbol{\delta}$ is a symbol of the stack alphabet

PDA M_{4} is the final modified PDA

Note that the new initial stack symbol \# is never used in any transition

Example:

M $\quad a, \varepsilon \rightarrow a$

Grammar Construction

Variables: $A_{q_{i}, q_{j}}$ $\hat{\jmath}$
 States of PDA

PDA

Kind 1: for each state

Grammar

$$
A_{q q} \rightarrow \varepsilon
$$

Kind 2: for every three states

Grammar

$$
A_{p q} \rightarrow A_{p r} A_{r q}
$$

Kind 3: for every pair of such transitions

Grammar

$$
A_{p q} \rightarrow a A_{s} b
$$

PDA

Grammar

Start variable $\quad A_{q_{0} q_{f}}$

Example:

PDA

Grammar

Kind 1: from single states

$$
A_{q_{0} q_{0}} \rightarrow \varepsilon
$$

$$
A_{q_{1} q_{1}} \rightarrow \varepsilon
$$

$$
A_{q_{2} q_{2}} \rightarrow \varepsilon
$$

$$
A_{q_{3} q_{3}} \rightarrow \varepsilon
$$

$$
A_{q_{4} q_{4}} \rightarrow \varepsilon
$$

$$
A_{q_{5_{5}}} \rightarrow \varepsilon
$$

Kind 2: from triplets of states

$A_{q_{0} q_{0}} \rightarrow A_{q_{0} q_{0}} A_{q_{0} q_{0}}\left|A_{q_{0} q_{1}} A_{q_{1} q_{0}}\right| A_{q_{0} q_{2}} A_{q_{2} q_{0}}\left|A_{q_{0} q_{3}} A_{q_{3} q_{0}}\right| A_{q_{0} q_{4}} A_{q_{4} q_{0}} \mid A_{q_{0} q_{5}} A_{q_{5} q_{0}}$ $A_{q_{0} q_{1}} \rightarrow A_{q_{0} q_{0}} A_{q_{0} q_{1}}\left|A_{q_{0} q_{1}} A_{q_{1} q_{1}}\right| A_{q_{0} q_{2}} A_{q_{2} q_{1}}\left|A_{q_{0} q_{3}} A_{q_{3} q_{1}}\right| A_{q_{0} q_{4}} A_{q_{4} q_{1}} \mid A_{q_{0} q_{5}} A_{q_{5} q_{1}}$
$A_{q_{0} q_{5}} \rightarrow A_{q_{0} q_{0}} A_{q_{0} q_{5}}\left|A_{q_{0} q_{1}} A_{q_{1} q_{5}}\right| A_{q_{0} q_{2}} A_{q_{2} q_{5}}\left|A_{q_{0} q_{3}} A_{q_{3} q_{5}}\right| A_{q_{0} q_{4}} A_{q_{4} q_{5}} \mid A_{q_{0} q_{5}} A_{q_{5} q_{5}}$
$A_{q_{5} q_{5}} \rightarrow A_{q_{5} q_{0}} A_{q_{0} q_{5}}\left|A_{q_{5} q_{1}} A_{q_{1} q_{5}}\right| A_{q_{5} q_{2}} A_{q_{2} q_{5}}\left|A_{q_{5} q_{3}} A_{q_{3} q_{5}}\right| A_{q_{5} q_{4}} A_{q_{4} q_{5}} \mid A_{q_{5} q_{5}} A_{q_{5} q_{5}}$

Start variable $A_{q_{0} q_{5}}$

Kind 3: from pairs of transitions

$\begin{array}{ll}A_{q_{0} q_{5}} \rightarrow A_{q_{1} q_{4}} & A_{q_{2} q_{4}} \rightarrow a A_{q_{2} q_{4}}\end{array} \quad \begin{aligned} & A_{q_{2} q_{2}} \rightarrow A_{q_{3} q_{2}} b \\ & A_{q_{1} q_{4}} \rightarrow A_{q_{2} q_{4}}\end{aligned} \quad A_{q_{2} q_{2}} \rightarrow a A_{q_{2} q_{2}} b \quad A_{q_{2} q_{4}} \rightarrow A_{q_{3} q_{3}}$.

Suppose that a PDA M is converted to a context-free grammar G

We need to prove that $L(G)=L(M)$

or equivalently

$$
L(G) \subseteq L(M) \quad L(G) \supseteq L(M)
$$

$$
L(G) \subseteq L(M)
$$

We need to show that if G has derivation:

$$
A_{q_{0} q_{f}} \stackrel{*}{\Rightarrow} W \quad \text { (string of terminals) }
$$

hen there is an accepting computation ir M

$$
\left(q_{0}, w, \#\right) \succ\left(q_{f}, \varepsilon, \#\right)
$$

with input string w

Ve will actually show that if G has derivation

$$
A_{p q} \stackrel{*}{\Rightarrow} w
$$

hen there is a computation in M :

$$
(p, w, \varepsilon) \succ(q, \varepsilon, \varepsilon)
$$

Therefore:

$A_{q_{0} q_{f}} \stackrel{*}{\Rightarrow} W$

$\left(q_{0}, w, \varepsilon\right) \stackrel{*}{\succ}\left(q_{f}, \varepsilon, \varepsilon\right)$

Since there is no transition

 with the \# symbol

Lemma:

*
 If $\quad A_{p q} \Rightarrow W$ (string of terminals)

then there is a computation from state P to state q on string W which leaves the stack empty:

$$
(p, w, \varepsilon) \succ(q, \varepsilon, \varepsilon)
$$

Proof Intuition:

$$
A_{p q} \Rightarrow \cdots \Rightarrow w
$$

Type 2
 Case 1: $A_{p q} \Rightarrow A_{p r} A_{r q} \Rightarrow \cdots \Rightarrow W$

Type 3
Case 2: $A_{p q} \Rightarrow a A_{s} b \Rightarrow \cdots \Rightarrow w$

Type 2
 Case 1: $A_{p q} \Rightarrow A_{p r} A_{r q} \Rightarrow \cdots \Rightarrow W$

Type 3
Case 2: $A_{p q} \Rightarrow a A_{s} b \Rightarrow \cdots \Rightarrow w$

Formal Proof:

We formally prove this claim by induction on the number of steps in derivation:

$$
A_{p q} \underbrace{\Rightarrow \cdots \Rightarrow}_{\text {number of steps }} w
$$

Induction Basis: $A_{p q} \Rightarrow W$
(one derivation step)
A Kind 1 production must have been used:

$$
A_{p p} \rightarrow \varepsilon
$$

Therefore, $p=q$ and $w=\varepsilon$

This computation of PDA trivially exists:

$$
(p, \varepsilon, \varepsilon) \succ(p, \varepsilon, \varepsilon)
$$

Induction Hypothesis:

$$
A_{p q} \underbrace{\Rightarrow \cdots \Rightarrow}_{k \text { derivation steps }} W
$$

suppose it holds:

$$
(p, w, \varepsilon) \stackrel{*}{\succ}(q, \varepsilon, \varepsilon)
$$

Induction Step:

$A_{p q} \underbrace{\Rightarrow \cdots \Rightarrow} w$
 $K+1$ derivation steps

We have to show:

$$
(p, w, \varepsilon) \stackrel{*}{\succ}(q, \varepsilon, \varepsilon)
$$

$A_{p q} \underbrace{\Rightarrow \cdots \Rightarrow} w$ $K+1$ derivation steps

Type 2
 Case 1: $A_{p q} \Rightarrow A_{p r} A_{r q} \Rightarrow \cdots \Rightarrow W$

Type 3
Case 2: $A_{p q} \Rightarrow a A_{s} b \Rightarrow \cdots \Rightarrow w$

Type 2
Case 1: $A_{p q} \Rightarrow A_{p r} A_{r q} \Rightarrow \cdots \Rightarrow W$

$$
k+1 \text { steps }
$$

We can write $w=y z$
$A_{p r} \underbrace{\Rightarrow \cdots \Rightarrow} y$
At most k steps
$A_{\text {ra }} \underbrace{\Rightarrow \cdots \Rightarrow Z}_{\text {At most } k \text { steps }}$

$A_{p r} \underbrace{\Rightarrow \cdots \Rightarrow} y$ At most K steps

$A_{r q} \underbrace{\cdots \cdots} Z$ At most k steps

From induction hypothesis, in PDA:
$(p, y, \varepsilon) \succ(r, \varepsilon, \varepsilon)$
$(p, y, \varepsilon) \stackrel{*}{\succ}(r, \varepsilon, \varepsilon) \quad(r, z, \varepsilon) \stackrel{*}{\succ}(q, \varepsilon, \varepsilon)$

$$
(p, y z, \varepsilon) \succ(r, z, \varepsilon) \succ(q, \varepsilon, \varepsilon)
$$

since $w=y z$

$$
(p, w, \varepsilon) \succ(q, \varepsilon, \varepsilon)
$$

Type 3
Case 2: $A_{p q} \Rightarrow a A_{r s} b \Rightarrow \cdots \Rightarrow W$

We can write $w=a y b$
$A_{r s} \underbrace{\Rightarrow \cdots \Rightarrow} y$
At most K steps

$A_{r s} \underbrace{\Rightarrow \cdots \Rightarrow} y$ At most K steps

From induction hypothesis, the PDA has computation:

$$
(r, y, \varepsilon) \succ(s, \varepsilon, \varepsilon)
$$

Type 3
 $A_{p q} \Rightarrow a A_{s} b \Rightarrow \cdots \Rightarrow W$

 Grammar contains production $A_{p q} \rightarrow a A_{s s} b$
 And PDA Contains transitions

$\rightarrow, t \rightarrow \infty$

We know

$$
(r, y, \varepsilon) \stackrel{*}{\succ}(s, \varepsilon, \varepsilon) \quad \square(r, y b, t) \stackrel{*}{\succ}(s, b, t)
$$

$$
(p, a y b, \varepsilon)>(r, y b, t)
$$

We also know

$$
(s, b, t) \succ(q, \varepsilon, \varepsilon)
$$

Therefore:

$$
(p, a y b, \varepsilon)>(r, y b, t)>(s, b, t)>(q, \varepsilon, \varepsilon)
$$

$$
(p, a y b, \varepsilon)>(r, y b, t)>(s, b, t)>(q, \varepsilon, \varepsilon)
$$

$$
\begin{aligned}
\text { since } w= & a y b \\
& (p, w, \varepsilon) \stackrel{*}{\succ}(q, \varepsilon, \varepsilon)
\end{aligned}
$$

So far we have shown:

$$
L(G) \subseteq L(M)
$$

With a similar proof we can show

$$
L(G) \supseteq L(M)
$$

Therefore: $L(G)=L(M)$

