Chemical Shift

magnetic induction of the pi electrons in an aromatic ring (Fig. 13.11)

Induced local magnetic field of the circulating pi electrons reinforces the applied field and provides part of the field necessary to bring aromatic hydrogens into resonance

Anisotropy of Aromatic compounds: in plane and above

Figure 4.11 Correlation between the relative chemical shifts of the proton resonances in naphthalene and anthracene and the distance R_i of the proton from the centre of a specific benzene ring

Electronic effects: conjugation with carbonyl

Electronic effects: conjugation with carbonyl

Electronic effects: conjugation with heteroatom

Electronic effects: no conjugation with heteroatom

Electronic effects: conjugation with heteroatom

Electronic effects: conjugation with carbonyl

Electronic effects: conjugation with heteroatom

Electronic effects: conjugation with heteroatom

Aromatic: inductive effect and resonance effect

Chemical Shift Calculation for Aromatic compounds

Calculating Shifts for aromatic compounds

 $\delta = 7.27 + \Sigma S(\delta)$

Table 4.6 $S(\delta)$ values for substituted benzenes (after Ref. 9)

Substituent	<i>S(δ)</i> (ppm)		
	Ortho	Meta	Para
NO ₂	0.95	0.17	0.33
CHO	0.58	0.21	0.27
COCI	0.83	0.16	0.3
COOH	0.8	0.14	0.2
COOCH ₃	0.74	0.07	0.20
COCH,	0.64	0.09	0.3
CN	0.27	0.11	0.3
C6H3	0.18	0.00	0.08
CCI ₃	0.8	0.2	0.2
CHCl ₂	0.1	0.06	0.1
CH ₂ Cl	-0.0	0.01	0.0
CH ₃	-0.17	-0.09	-0.18
CH ₂ CH ₃	-0.15	-0.06	-0.18
CH(CH ₃) ₂	-0.14	-0.09	-0.18
C(CH ₃) ₃	0.01	-0.10	-0.24
CH₂OH	-0.1	-0.1	-0.1
CH ₂ NH ₂	-0.0	-0.0	-0.0
F	-0.30	-0.02	-0.22
Cl	0.02	-0.06	-0.04
Br	0.22	-0.13	-0.03
1	0.40	-0.26	-0.03
OCH ₃	-0.43	-0.09	-0.37
OCOCH3	-0.21	-0.02	_
OH	-0.50	-0.14	-0.4
p-CH ₃ C ₆ H ₄ SO ₃	-0.26	-0.05	_
NH ₂	-0.75	-0.24	-0.63
SCH ₃	-0.03	-0.0	_
N(CH ₃) ₂	-0.60	-0.10	-0.62

$$\begin{split} \delta(\mathrm{H_{a}}) &= 7.27 + 0.22 + 0.95 = 8.44 \\ \delta(\mathrm{H_{b}}) &= 7.27 + 0.22 + 0.33 = 7.82 \\ \delta(\mathrm{H_{c}}) &= 7.27 - 0.13 + 0.17 = 7.31 \\ \delta(\mathrm{H_{d}}) &= 7.27 - 0.03 + 0.95 = 8.19 \end{split}$$

NMR

Common Aromatic Patterns

5/14/2013

NMR

 "Activating" and "Deactivating" groups and the impact of the changing electron density in the Benzene ring on Chemical Shift of ortho, meta, para protons

Hydrogen Bond

Figure 4.19 Concentration dependence of the proton resonance frequency of the hydroxyl protons of salicylaldehyde and ethanol: (a) neat; (b) 5% by volume in CCl_4

Hydrogen bond

meta bromo nitro benzene

Calculated shifts $\delta H_A = 8.44 \quad \delta H_B = 7.82 \quad \delta H_C = 7.31 \quad \delta H_D = 8.19$

Aromatic substitution pattern: ortho

AA' XX'

Typical spectra for ortho (symmetrical)

NMR

 "Activating" and "Deactivating" groups and the impact of the changing electron density in the Benzene ring on Chemical Shift of ortho, meta, para protons

5/14/2013

AB-Spectra

Figure 5.4 ¹H n.m.r. spectrum of 1-amino-3,6-dimethyl-2-nitrobenzene at 60 MHz

Figure 5.5 Dependence of the AB system on the ratio $J/v_0\delta$; spectra illustrated are for values of $J/v_0\delta$ of (a) 1:3, (b) 1:1, (c) 5:3, and (d) 5:1.

Figure 2.14 Signal splitting due to spin-spin coupling in the 100 MHz proton magnet resonance spectrum of 2,4-dinitrophenol. One finds $J_{bc} = 9.1$ Hz and $J_{ab} = 2.8$ Hz. J_{ac} is no observed (rule 4)

AMX

Fig. 2.7. ¹H NMR spectrum of 3,4-dimethoxybenzaldehyde (6) [aromatic shift range, CDCl₃, 25 °C, (a) 100 MHz (b) 200 MHz]

Fig. 2.8. 'H NMR spectrum of 3-bromopyridine (8) (CDCl₃, 25 °C, 90 MHz)

Aromatic substituent pattern

Aromatic substituent pattern

