Chemical Shift

- magnetic induction of the pi electrons in an aromatic ring (Fig. 13.11)

Induced circulation of pi electrons in the aromatic ring

Induced local magnetic field of the circulating pi electrons reinforces the applied field and provides part of the field necessary to bring aromatic hydrogens into resonance

Applied field

Anisotropy of Aromatic compounds: in plane and above

$$
\begin{aligned}
& \delta_{\text {ring }} \rightarrow 8.14-8.64 \mathrm{ppm} \\
& \delta_{\mathrm{Me}} \rightarrow-4.25 \mathrm{ppm}
\end{aligned}
$$

$\delta_{\text {OUTSIDE }} \rightarrow \mathbf{9 . 2 8} \mathbf{~ p p m}$
$\delta_{\text {INSIDE }} \rightarrow-2.99 \mathrm{ppm}$

Anisotropy: Aromatic

Figure 4.11 Correlation between the relative chemical shifts of the proton resonances in naphthalene and anthracene and the distance R_{i} of the proton from the centre of a specific benzene ring

Electronic effects

Deshielded

6.28 ppm

Electronic effects: conjugation with carbonyl

Electronic effects: conjugation with carbonyl

Electronic effects: conjugation with heteroatom

5.81 ppm

Electronic effects: no conjugation with heteroatom

Electronic effects: conjugation with heteroatom

Electronic effects: conjugation with carbonyl

Electronic effects: conjugation with heteroatom

Electronic effects: conjugation with heteroatom

Aromatic: inductive effect and resonance effect

Calculating Shifts for aromatic compounds

Chemical Shift Calculation for Aromatic compounds

$\delta=7.27+\Sigma S(\delta)$

Substituent	$S(\delta)$ (ppm)		
	Ortho	Meta	Para
NO_{2}	0.95	0.17	0.33
CHO	0.58	0.21	0.27
COCl	0.83	0.16	0.3
COOH	0.8	0.14	0.2
COOCH_{3}	0.74	0.07	0.20
COCH_{3}	0.64	0.09	0.3
CN	0.27	0.11	0.3
$\mathrm{C}_{6} \mathrm{H}_{5}$	0.18	0.00	0.08
CCl_{3}	0.8	0.2	0.2
CHCl_{2}	0.1	0.06	0.1
$\mathrm{CH}_{2} \mathrm{Cl}$	-0.0	0.01	0.0
CH_{3}	-0.17	-0.09	-0.18
$\mathrm{CH}_{2} \mathrm{CH}_{3}$	-0.15	-0.06	-0.18
$\mathrm{CH}\left(\mathrm{CH}_{3}\right)_{2}$	-0.14	-0.09	-0.18
$\mathrm{C}\left(\mathrm{CH}_{3}\right)_{3}$	0.01	-0.10	-0.24
$\mathrm{CH}_{2} \mathrm{OH}$	-0.1	-0.1	-0.1
$\mathrm{CH}_{2} \mathrm{NH}_{2}$	-0.0	-0.0	-0.0
F	-0.30	-0.02	-0.22
Cl	0.02	-0.06	-0.04
Br	0.22	-0.13	-0.03
1	0.40	-0.26	-0.03
OCH_{3}	-0.43	-0.09	-0.37
OCOCH_{3}	-0.21	-0.02	-
OH	-0.50	-0.14	-0.4
$p-\mathrm{CH}_{3} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SO}_{3}$	-0.26	-0.05	
NH_{2}	-0.75	-0.24	-0.63
SCH_{3}	-0.03	-0.0	-
$\mathrm{N}\left(\mathrm{CH}_{3}\right)_{2}$	-0.60	-0.10	-0.62

$$
\begin{aligned}
& \delta\left(\mathrm{H}_{\mathrm{s}}\right)=7.27+0.22+0.95=8.44 \\
& \delta\left(\mathrm{H}_{b}\right)=7.27+0.22+0.33=7.82 \\
& \delta\left(\mathrm{H}_{\mathrm{c}}\right)=7.27-0.13+0.17=7.31 \\
& \delta\left(\mathrm{H}_{d}\right)=7.27-0.03+0.95=8.19
\end{aligned}
$$

NMR

- Common Aromatic Patterns

R - Alkyl Group
Produces a Singlet because all remaining ring protons have identical chemical shifts.
X - Electron Donating Group Produces more electron density around the OIP protons than the Meta protons, producing separate signals.
X - Electron Withdrawing Group Decreases electron density around the OIP protons more than the Meta protons, producing separate signals.
$X=Y$ - Withdrawing groups such as Nitro, Carbonyl, or other Double Bonds influenced by anisotropy produce a more pronounced withdrawing effect on the Ortho protons than the M/P protons.
E.

NMR

- "Activating" and "Deactivating" groups and the impact of the changing electron density in the Benzene ring on Chemical Shift of ortho, meta, para protons

P-Chloroaniline ($\mathrm{C}_{6} \mathrm{H}_{6} \mathrm{CIN}$)

Figure 4.19 Concentration dependence of the proton resonance frequency of the hydroxyl protons of salicylaldehyde and ethanol: (a) neat; (b) 5% by volume in CCl_{4}

meta bromo nitro benzene

Calculated shifts $\delta \mathrm{H}_{\mathrm{A}}=8.44 \quad \delta \mathrm{H}_{\mathrm{B}}=7.82 \quad \delta \mathrm{H}_{\mathrm{C}}=7.31 \quad \delta \mathrm{H}_{\mathrm{D}}=8.19$
H_{A}

H_{B}

Aromatic substitution pattern: ortho

$\mathbf{A A}^{\prime} \mathbf{X X}$,

Typical spectra for ortho (symmetrical)

NMR

- "Activating" and "Deactivating" groups and the impact of the changing electron density in the Benzene ring on Chemical Shift of ortho, meta, para protons

Figure $5.4{ }^{1} \mathrm{H}$ n.m.r. spectrum of 1-amino-3,6-dimethyl-2-nitrobenzene at 60 MHz

Figure 5.5 Dependence of the AB system on the ratio $J / v_{0} \delta$; spectra illustrated are for values of $J / v_{0} \delta$ of (a) $1: 3$, (b) 1:1, (c) 5:3, and (d) $5: 1$.

Figure 2.14 Signal splitting due to spin-spin coupling in the 100 MHz proton magnet resonance spectrum of 2,4-dinitrophenol. One finds $J_{b c}=9.1 \mathrm{~Hz}$ and $J_{\mathrm{ab}}=2.8 \mathrm{~Hz}$. J_{ac} is m observed (rule 4)

AMX

${ }^{3} J_{A M}=3.5$ (ortho)
${ }^{4} J_{M X}=2.5$ (meta)
${ }^{5} J_{A X}=0.8$ (para)

Fig. 2.7. ${ }^{1} H$ NMR spectrum of 3,4-dimethoxybenzaldehyde (6) [aromatic shift range, CDCl_{3}, $25^{\circ} \mathrm{C}$, (a) 100 MHz (b) 200 MHz]

AFMX

$$
\delta \text { EEO }
$$

$$
\mathrm{J}
$$

Fig. 28. ${ }^{I} \mathrm{H}$ NMR spectrum of 3-bromopyridine (8) $\left(\mathrm{CDCl}_{3}, 25^{\circ} \mathrm{C}, 90 \mathrm{MHz}\right)$

$$
\begin{aligned}
& \text { C5 H4 N Br } \\
& \mathrm{I}=5-4 / 2-1 / 2+1 / 2+1 \\
& \mathrm{I}=4 \text { (aromatic ring) } \\
& \begin{array}{l}
88 \\
68 \\
07 \mathrm{~Hz}
\end{array}
\end{aligned}
$$

Aromatic substituent pattern

$$
\underset{\mathrm{J}=7.7,1.5}{\mathrm{dt}}
$$

ddd
$\mathbf{J}=\mathbf{8 . 1}, \mathbf{2 . 2}, 1.1$

Aromatic substituent pattern

