PCS 3115 (PCS2215) Sistemas Digitais I

Módulo 03a - Aritmética Binária

Prof. Dr. Marcos A. Simplicio Jr.

versão: 3.0 (Jan/2016)

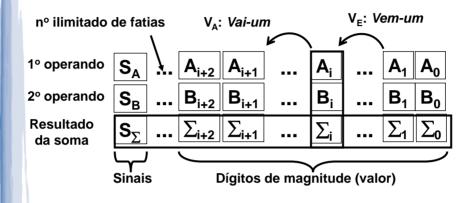
Conteúdo

Aritmética Binária

- Soma e Subtração com Números Decimais e Binários
 - Aritmética Modular
- Representação de números negativos
 - Sinal e magnitude
 - Complemento de base → complemento de 2
 - Complemento de base diminuída → complemento de 1
- Soma e Subtração com complemento de 1 e 2
 - Overflow

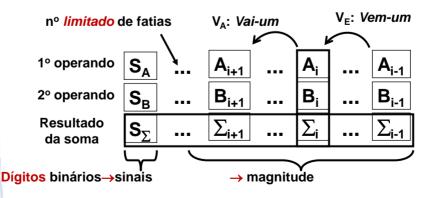
Operações com números decimais (no papel):

 O resultado da operação (ex.: soma) pode ser decidido calculando-se os resultados parciais em fatias individuais:



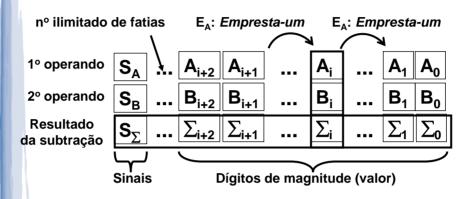
1. Soma e Subtração com Números Decimais e Binários

Operações com números binários (no computador): O resultado da operação (ex.: soma) também pode ser decidido calculando-se os resultados parciais em fatias individuais, porém:



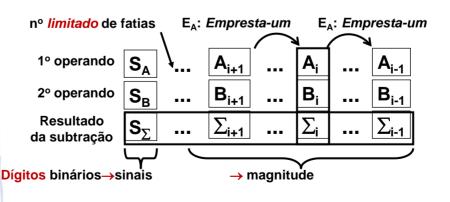
Operações com números decimais (no papel):

 O resultado da operação (ex.: subtração) pode ser decidido calculando-se os resultados parciais em fatias individuais:



1. Soma e Subtração com Números Decimais e Binários

Operações com números binários (no computador): O resultado da operação (ex.: subtração) também pode ser decidido calculando-se os resultados parciais em fatias individuais, porém:



- Tabela 1.1.: Resultado de operações de soma (adição) e subtração (diferença) de uma fatia de números em binário:
 - Vem-um, (Carry-in; c_{IN}); Vai-um (Carry-out, c_{OUT});
 - Empresta-um (Borrow-in; b_{IN}) A ser subtraído desta fatia, que é mais significativa, e somada na anterior, que precisou pegar emprestado;
 - Emprestou-um (Borrow-out, b_{OUT}) A ser subtraído da fatia seguinte, que é mais significativa que esta, e somado nesta, que precisou pegar emprestado.

_		
entradas	saídas: +	saídas: -

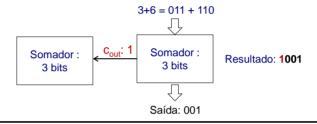
c _{IN} [b _{IN}]	X	у	∑ (soma)	C OUT	d (diferença)	b _{out}
0	0	0	0	0	0	0
0	0	1	1	0	1	1
0	1	0	1	0	1	0
0	1	1	0	1	0	0
1	0	0	1	0	1	1
1	0	1	0	1	0	1
1	1	0	0	1	0	0
1	1	1	1	1	1	1

1. Soma e Subtração com Números Decimais e Binários

Desafio:

Desenvolver técnicas de realização de operações: elas fundamentalmente estarão baseadas na escolha do tipo de representação que se utilizará para os números binários, a fim de resolver os empecilhos e problemas das operações de soma e subtração em binário.

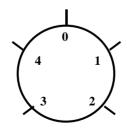
- Problema 1: limitação no número de fatias
 - Nem todos os números podem ser representados: existem faixas de representações possíveis
 - Ex.: 000 a 999 com 3 dígitos decimais;
 - Ex.: 00000000 a 11111111 com 8 dígitos binários (bits)
 - Podem ocorrer overflows: resultado de operação aritmética não cabe na representação
 - Ex.: 100 * 10 = 1000 (não representável com 3 dígitos decimais)
 - Problema deve ser tratado: geração de carry, ligado a outro somador ou a circuito que indica erro



1. Soma e Subtração com Números Decimais e Binários

- Aritmética modular:
 - Resultado natural de cenários com limitação do espaço de representação de números
 - Aritmética "módulo n": toma-se "o resto da divisão por n"

Aritmética
Convencional
Dígitos = conjunto dos
números Naturais = N
4 + 0 = 4
4 + 1 = 5
4 + 2 = 6
4 + 3 = 7
4 + 4 = 8
4 + 5 = 9
4 + 6 = 10
4 + 7 = 11
4 + 8 = 12
4 + =



(módulo 5)	
Dígitos = $\{0,1,2,3,4\}$	
4 + 0 = 4	
4 + 1 = 0	
4 + 2 = 1	
4 + 3 = 2	_
4 + 4 = 3	
(4+4)+1=4	
(4+4)+2=0	_
(4+4)+3=1	
(4+4)+4=2	_
((4+4)+4)+=	
	_

Aritmética modular

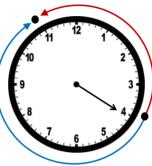
Aritmética modular:

- Leva a equivalências entre algumas operações de adição e subtração: subtrair x é equivalente a somar (n – x)
 - Formalmente: $(a x) \mod n = (a + n x) \mod n$, pois $(n \mod n) = 0$

Subtrair: movimento do ponteiro no sentido antihorário

Somar: movimento do ponteiro no sentido

horário



Subtrair 5 intervalos de 4 horas da tarde ...

...é equivalente a somar 7 intervalos de 4 horas da tarde

Obs.: aritmética "**módulo 12**" (5+7 = **12**)

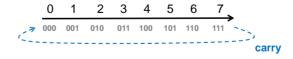
11

1. Soma e Subtração com Números Decimais e Binários

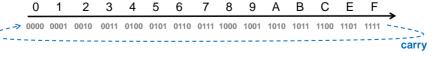
Aritmética modular:

 Módulos para soma binária operam com aritmética modular: somadores de n bits realizam somas módulo 2ⁿ

Somador de 3 bits: somas módulo 8



Somador de 4 bits: somas módulo 16



- Problema 1: limitação no número de fatias
 - Nem todos os números podem ser representados: existem faixas de representações possíveis
 - Podem ocorrer overflows: resultado de operação aritmética não cabe na representação (gera-se carry)
- Problema 2: números negativos
 - Deve-se adotar alguma forma eficiente de representá-los e de fazer operações aritmética com eles
 - Exercício: propor uma solução para representação de números negativos em binário

13

2. Representação de números negativos

- Representação em sinal e magnitude:
 - 1 bit (mais significativo) para o sinal → 0: positivo; 1: negativo
 - · Bits restantes para a magnitude
 - Ex.: 01010101 = + 85 ; 11010101 = 85
 - Faixa de representação com **n bits**: $[-(2^{n-1}-1), +(2^{n-1}-1)]$
- Simples para humanos entenderem, mas...
 - **Desperdício**: duas representações para o número zero

•
$$00000000 = +0$$
 ; $10000000 = -0$

• Operações de soma e subtração (= soma com inversão do sinal do segundo operando) **pouco eficientes** em hardware:

- Representação em sinal e magnitude:
 - 1 bit (mais significativo) para o sinal → 0: positivo; 1: negativo
 - Bits restantes para a magnitude
 - Ex.: 01010101 = + 85 : 11010101 = 85
 - Faixa de representação com **n bits**: $[-(2^{n-1}-1), +(2^{n-1}-1)]$
- Simples para humanos entenderem, mas...
 - **Desperdício**: duas representações para o número zero
 - 00000000 = +0 : 10000000 = -0
 - Operações de soma e subtração (= soma com inversão do sinal do segundo operando) **pouco eficientes** em hardware:

Algoritmo da soma:

Comparar sinal dos operandos:

if(iguais) {mantém sinal}

else {comparar números e usar sinal do de maior magnitude}

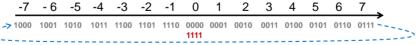
15

2. Representação de números negativos

- Representação em sinal e magnitude:
 - Quando observada em binário, não é muito "natural": sinal inverte a sequência usual encontrada em números positivos

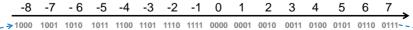


Algo um pouco mais "natural" (ainda com desperdício):



"Complemento de 1": bits de x e -x são invertidos

Algo mais "natural" e sem desperdício:



"Complemento de 2": complemento de 1, mais 1

- Representação em complemento de base:
 - Aplica-se a ideia de aritmética modular: a representação de número negativo é dada pelo seu complemento no espaço de valores possíveis
- Mais formalmente:
 - Número D representado com n dígitos (notação posicional) :

$$D = d_{n-1}d_{n-2}...d_1d_0$$

- Complemento na base r (do inglês, radix) do número D: obtido como rⁿ – D
 - Nota: r
 ⁿ tem n+1 dígitos → se D = 0, então exclui-se o dígito extra, de modo que 0 é representado simplesmente como n zeros
- Decimal: complemento de 10; binário: complemento de 2
 - Ex: Base r = 10 (decimal); n = 3 (3 dígitos); D = 345:
 - $r^n D = 10^3 345 = :1000 345 = 655:$
 - · Logo, o complemento na base 10 de 345 é 655!

45

2. Representação de números negativos

- Representação em complemento de base:
 - Faixa de representação na base \mathbf{r} : $\left[-\left(\left\lfloor \frac{r^n}{2} \right\rfloor_{CHÃO} \right), + \left(\left\lceil \frac{r^n}{2} \right\rceil^{1ETO} 1 \right) \right]$
 - Faixa de representação com n bits: [-(2ⁿ⁻¹), +(2ⁿ⁻¹ 1)]
 - Perceba que há um número negativo a mais do que os números positivos
- Para calcular "-D" a partir de "D" (ou vice-versa)
 - · Sinal e magnitude: basta trocar sinal
 - · Números binários: inverter bit mais significativo
 - Complemento de base: calcular (rⁿ D)
 - Números binários (r = 2): calcular (2ⁿ D)

- Representação em complemento de base:
 - É necessária uma operação de subtração para calcular os complementos da base de um número D?
 - Resposta: Não → basta calcular o complemento de cada dígito naquela base e somar 1 ao resultado
- Explicação:

D =
$$d_{n-1}d_{n-2}...d_1d_0$$
, onde $0 \le d_i \le r-1$

Complemento de D =
$$(r^n - D)$$
 = $[(r^n - 1 + 1) - D]$
= $[(r^n - 1) - D] + 1$

- Número (rⁿ 1) é da forma <u>{mm...mm</u>_→, onde m = r 1.
 n vezes
 - Exemplo: r = 10; $n = 3 \rightarrow r^n = 1000 = 999 + 1 = (r^n 1) + 1$.
- Logo: $[(r^n 1) D] + 1 = \begin{pmatrix} m & m & \dots & m & m \\ d_{n-1} d_{n-2} & \dots & d_1 & d_0 \end{pmatrix} + 1$

10

2. Representação de números negativos

• Representação em complemento de base:

	Complemento					
Dígito	Binário	Octal	Decimal	Hexa		
0	1	7	9	F		
1	0	6	8	E		
3	-	5	7	D		
3	-	4	6	С		
4	-	3	5	В		
5	-	2	4	Α		
6	-	1	3	9		
7	-	0	2	8		
8	-	-	1	7		
9	-	-	0	6		
Α	-	-	-	5		
В	-	-	-	4		
С	-	-	-	3		
D	-	-	-	2		
Е	-	-	-	1		
F	-	-	-	0		

Exemplos

• Comp
$$(1849_{10}) = 8150 + 1$$

= 8151_{10}

•
$$Comp(0F36_{16}) = F0C9 + 1$$

= $F0CA_{16}$

• Comp
$$(1010_2) = 0101 + 1$$

= 0110_2

$$\nabla$$

Complemento de 2: inverter bits e somar 1 ao resultado

2.1. Números binários: Complemento de 2

- Números positivos: idem a notação sinal-módulo;
- Para inverter o sinal:
 - 1) Invertem-se todos os bits (equivale a <u>complementar de 1</u> cada um dos bits) e então
 - 2) Soma-se 1 ao resultado.

 $-27_{10} = 1 1 1 0 0 1 0 1$

. .

2.1. Números binários: Complemento de 2

- Extensão de sinal (sign extension):
 - Ao aumentar o número de bits de D, deve-se tomar cuidado para manter o sinal correto!
 - Regra prática
 - Se D é positivo: adicionar 0s à esquerda
 - Se D é negativo: adicionar 1s à esquerda
- Truncagem
 - Diminuir o número de bits de D, cortando bits "sobrando" à esquerda: 0s se D é positivo; 1s se D é negativo
 - Resultado só é válido se o sinal do número se mantém

$$+1_{10} = 1_2 = 00000001_2$$
 $-8_{10} = 1000_2 = 11111000_2$
 $-7_{10} = 1001_2 = 11111001_2$ $-9_{10} = 10111_2 = 11110111_2$

- Complemento de Base Diminuída (Base Menos Um):
 - Equivalente ao complemento de base sem o "mais 1"
- Mais formalmente:
 - Número D representado com n dígitos (notação posicional) :

$$D = d_{n-1}d_{n-2}...d_1d_0$$

- Complemento na base r de D: obtido como (rⁿ − 1) − D
- Regra prática
 - Números positivos: idem a notação sinal-módulo;
 - Para inverter o sinal: Complementar todos os dígitos d_i com relação a (r – 1)

21

2. Representação de números negativos

• Representação em complemento de base diminuída:

	Complemento					
Dígito	Binário	Octal	Decimal	Hexa		
0	1	7	9	F		
1	0	6	8	Е		
2	-	5	7	D		
3	-	4	6	С		
4	-	3	5	В		
5	-	2	4	Α		
6	-	1	3	9		
7	-	0	2	8		
8	-	-	1	7		
9	-	-	0	6		
Α	-	-	-	5		
В	-	-	-	4		
С	-	-	-	3		
D	-	-	-	2		
Е	-	-	-	1		
F	-	-	-	0		

- Exemplos
 - Comp $(1849_{10}) = 8150_{10}$
 - Comp $(0F36_{16}) = F0C9$
 - Comp $(1010_2) = 0101$

57

Complemento de 1: só inverter bits

- Complemento de base diminuída:
 - Faixa de representação na base \mathbf{r} : $\left[-\left(\left\lfloor\frac{r^n}{2}\right\rfloor_{CHÃO}^{\mathbf{-1}}\right), + \left(\left\lceil\frac{r^n}{2}\right\rceil^{\mathsf{TETO}} 1\right)\right]$
 - Há tantos números negativos quanto números positivos
 - Duas representações para o número zero:
 - Faixa de representação com n bits: [-(2ⁿ⁻¹ 1), +(2ⁿ⁻¹ 1)]
 - Também conhecido como complemento de 1



"Complemento de 1": bits de x e -x são invertidos

26

3. Aritmética: Adição e Subtração

- Complemento de 2: contagem "natural"
 - Adição n + m: equivale a contar m a partir de n no sentido da esquerda para a direita

• Ex.:
$$(-5 + 6)_{10} = 1011_2 + 0110_2 = "1011_2 + 6 \text{ p/ direita"} = 0001_2 = 1_{10}$$

 Subtração n – m: equivale a contar m a partir de n no sentido da direita para a esquerda

• Ex.:
$$(4-2)_{10} = 0100_2 - 0010_2 = "0100_2 + 2 \text{ p/ esquerda"} = 0010_2 = 2_{10}$$

- Overflow: operação ultrapassa fronteira entre +7 e −8,
 - Ex.: $(6 + 4)_{10} = 0110_2 + 0100_2 = "0110_2 + 4 \text{ p/ direita"} = 1010_2 = -6$

Overflow se cruzar fronteira em qualquer direção

- Complemento de 2: adição
 - Pode-se usar as regras usuais da soma, ignorando o "vai-um" no bit mais significativo, se houver
- Exemplos:

+6 0110 +4 0100 + -3 +1101 +-7 +1001 +3 10011 -3 1101

27

Ignorar "vai-um"

3. Aritmética: Adição e Subtração

- Complemento de 2: overflow na adição
 - Nunca ocorre se sinais dos operandos são diferentes
 - Detecção de ocorrência: duas regras equivalentes
 - Soma de dois números com o mesmo sinal produz resultado de sinal diferente
 - "Vem-um" (c_{IN}) que chega na posição de sinal é diferente do "vai-um" (c_{OUT}) que sai da posição do sinal.

	entradas			saídas: +		
	C _{IN}	x	у	Σ (soma)	C OUT	
	0	0	0	0	0	_
	0	0	1	1 /	0	regra 1
	0	1	0	1 /	0	
	0	1	1	0	1	П
	1	0	0	1	0	
1000	1	0	1	0	1	
1	1	1	0	0	1	
(1	1	1	1	1	i
regra 2						

- Complemento de 2: subtração
 - Pode ser feita como se fosse uma adição, e depois verificamse os sinais para detectar overflow
 - Na prática: nega-se subtraendo e faz-se soma normal, verificando overflow usando as regras da adição
 - Operação m n equivale a: 1) Complementar bit-a-bit n
 2) Somar m e n com c_{IN} = 1

+7

templos:

$$c_{IN} = 1$$

 $c_{IN} = 1$
 $c_{IN} = 1$

+7

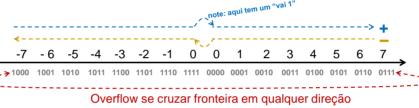
0111

3. Aritmética: Adição e Subtração

0111

• Exercícios: Soma e subtração em complemento de 2

- Complemento de 1: contagem "natural", exceto pelo zero extra (1111)
 - Adição n + m: contar m a partir de n para a direita, somando 1 se for feita a transição de 1111 para 0000
 - Ex.: $(-5 + 6)_{10} = 1010_2 + 0110_2 = "1010_2 + 6 + 1 p / direita" = 0001_2 = 1_{10}$
 - Subtração n m: contar m a partir de n para a esquerda, subtraindo 1 se for feita a transição de 0000 para 1111
 - Ex.: $(4-6)_{10} = 0100_2 0110_2 = "0100_2 + 6+1 \text{ p/ esquerda"} = 1101_2 = -2_{10}$
 - Overflow: mesmas regras do complemento de 2



3. Aritmética: Adição e Subtração

- Complemento de 1: adição
 - Pode-se usar as regras usuais da soma, somando-se o "vaium" no bit mais significativo ao resultado
- Exemplos:

- Complemento de 1: subtração
 - Complementar parcela sendo subtraída e realizar a soma
- **Exemplos/Exercícios:**

+1

3. Aritmética: Adição e Subtração

- Complemento de 1: subtração
 - Complementar parcela sendo subtraída e realizar a soma
- **Exemplos/Exercícios:**

0001

1 0111 +7

+9

1001 -6

 Exercício 10.8.1. Faca as operações com 6 bits (inclui o bit de sinal) em Complemento de 2. Indique a ocorrência de Transbordo:

a)
$$+ 19 + (-12)$$

b)
$$-19 + (-12)$$

c)
$$+ 19 + (+12)$$

e)
$$+21 + (-11)$$
 f) $-21 + (-11)$

$$f) - 21 + (-11)$$

g)
$$+21 + (+11)$$
 h) $-21 + (+11)$

$$h) - 21 + (+11)$$

Exercício 10.8.2. Idem a anterior para a notação Complemento de 10 (base 10) usando 3 dígitos.

3. Aritmética: Adição e Subtração

 Exercício 11.2.1. Faça as operações com 6 bits (inclui o bit de sinal) em Complemento de 1. Indique a ocorrência de Transbordo:

$$a) + 19 + (-12)$$

a) +
$$19 + (-12)$$
 b) $-19 + (-12)$

c)
$$+ 19 + (+12)$$

c) +
$$19 + (+12)$$
 d) $- 19 + (+12)$

e)
$$+21 + (-11)$$
 f) $-21 + (-11)$

f)
$$-21 + (-11)$$

g)
$$+21+(+11)$$
 h) $-21+(+11)$

 Exercício 11.2.2. Idem a anterior para a notação Complemento de 9 (base 10) usando 3 dígitos.

Lição de Casa

- Leitura Obrigatória:
 - Capítulo 2 do Livro Texto.
- Exercícios Obrigatórios:
 - Capítulo 2 do Livro Texto;
 - Lista de Exercícios do Módulo 3.

Livro Texto

 Wakerly, J.F.; Digital Design – Principles & Practices; Fourth Edition, ISBN: 0-13-186389-4, Pearson & Prentice-Hall, Upper Saddle, River, New Jersey, 07458, 2006.