
CHAPTER 3 

The probability model of uncertainty 

What we commonly call "probability" is really a formal model of uncertainty 
with only three axioms. These axioms are neither true nor false; they are 
assumed. By applying the rules of logic to these axioms, all of probability 
theory and distribution theory emerges. In what follows, I state these three 
axioms and provide a sense of a portion of the rich theory that developed from 
them. My general purpose is not to provide a complete treatment of any of 
these subsidiary topics, as that would require a library of additional volumes. 
Instead, I concentrate on a review of the fundamental rules and ideas of pri
mary use in statistical modeling and likelihood inference. 

My notation is slightly nontraditional from the perspective of probability 
theory. However, it closely follows the notation introduced in Chapter 1, 
emphasizing the important role of the probability model in specifying the 
complete statistical model. Since I assume most readers have seen some prob
ability theory before, this chapter builds on the basics by demonstrating that 
it is not necessary to fit one's data to an existing, and perhaps inappropriate, 
stochastic model. Instead, we can state first principles at the level of political 
science theory and derive a stochastic model deductively. For the same rea
sons, the organization below does not follow the traditional approach in in
creasing order of complexity (discrete, continuous, compound, multivariate, 
etc.). Instead, this chapter is structured to emphasize how one builds distri
butions and stochastic models of political phenomena, grouping primarily by 
the similarity of substantive problems and data. Aside from that presented in 
this chapter, considerably more probability theory is described and derived in 
the course of the specific methods developed in Part II. 

3.1 The probability model 

The set of all possible outcomes of an experiment is the sample space, :1'. 
The elements of this set are mutually exclusive and exhaustive outcomes of 
the experiment. Sample spaces may be discrete and finite, such as the out
come of presidential elections, :1' = {Democratic, Republican, Other}. They 
may be discrete, but countably infinite, such as the number of Israeli raids 
into Southern Lebanon a year, :1' = {O,I, ... }. Sample spaces may also be 
continuous, where listing events becomes impossible; for example, the dura
tion of a parliamentary coalition is a continuous variable. 
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A random variable is afunction that assigns a real number to every possible 
random output from a particular experiment, that is, to every element in the 
sample space. For example, the random variable for presidential elections 
might assign 1.0 to the event "Democrat wins," 2.0 to "Republican wins," 
and 3.0 to "other party wins." The word "random" in random variable re
fers to the stochastic variation in the outputs across experiments for each 
observation. "Variable" is used to emphasize that in actual runs of the ex
periment, the observed values of this process vary over observations, even 
for a single experiment. By contrast, since the parameter JLi varies over ob
servations but is constant in repeated experiments, it is called a nonrandom 
variable. 1 

Let Yi be the random variable for observation i (i= 1, ... , n). In this 
chapter, only stochastic models of this single observation will be considered. 
Subsequent chapters will tie together all n observations into a single model by 
adding the systematic component. Many of the stochastic models developed 
below are defined as aggregates (sums, counts, means, etc.) of processes 
occurring over time that are observable only at the end of some period. Thus, 
even though stochastic processes occur through time, this entire stochastic 
model for Yi s~ill results in only a single observation. The set of all n obser
vations may still vary over time, across space (as in cross-sectional data), or 
both (as in pooled time series-cross-sectional data). 

I use Yi to denote a realization or hypothetical value of the random variable 
Yi and Yji to denote a real number. The subscript i still refers to the observation 
number (i = 1, ... , n), and j is a symbolic label for one possible outcome 
of the experiment. Furthermore, a set of outcomes is called an event and a 
particular event is labeled Zki. An event of type k may include no outcomes 
(the null set, Zki = {4>}), a single outcome (z={YjJ), several outcomes 
(Zki={Yli,y2i,YSJ), a range of outcomes [Zki E (2,3)], or the entire sample 
space (Zki={9'}). 

The probability model for a particular experiment assigns a measure of 
uncertainty to every possible event. The three axioms of the model of proba
bility are defined on the basis of these definitions: 

1. For any event Zki, Pr(zki) 2:: O. 
2. Pr(9') = 1.0. 
3. If Zli, ... , ZKi are K mutually exclusive events, then 

Pr(zli U Z2i U ... U zx;) = Pr(zli) + Pr(z2;) + ... + Pr(zKi). 

1 Strictly speaking, a random variable is neither random - because the probability 
model is extrinsic to this function - nor variable - since the function remains con
stant over observations. However, I adopt the somewhat less formal and more intu
iti ve usage in the text. 
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Axiom 1 requires that for any event, all numerical values produced by the 
function Pr(') be greater than or equal to zero. If an event is not in the set of 
possible events ::t, its probability is zero. Axiom 2 is the obvious requirement 
that something must happen in every run of the experiment (if you flip a coin, 
either heads or tails must appear). Since events outside the sample space ::t 
occur with probability zero, the event ::t must occur with probability one. 
Axioms 1 and 2 combine to require that any probability range only between 
zero and one, 02:: Pr(zkJ 2:: 1, for any event Zki. Axiom 3 provides the basic 
additive rule for calculating the probabilities of mutually exclusive events. 

Together, these three axioms define a probability model on the sample space 
::t, as the real valued function, Pr(·). From these axioms one can derive all 
the rules of probability theory. Before moving on to complete stochastic models 
for a single observation, I mention three particularly important results here: 
First, probabilities of events ZiJ and Zk2 that are not necessarily mutually ex
clusive (i.e., may have one or more outcomes in common) may be calculated 
as: 

Pr(Zli U Z2i) = Pr(zli) + Pr(z2;) - Pr(zli n Z2;), 

where "Zli n Z2;" represents the intersections of events Zli and Z2i. This is 
derived from Axiom 3, since the overlapping part is subtracted out in the last 
term. If Zli and Z2i are mutually exclusive, the last term drops out and this rule 
reduces to Axiom 3. Second, if two random variables, Y1i and Y2i , are sto
chastically independent, the probability law governing one has no influence 
on the probabilities governing the other. Accordingly, one can calculate their 
joint probability (of both occurring) from their marginal probabilities (of each 
occurring separately): 

Pr(Y1i = Yji,Y2i = Yu) = Pr(Y1i = Yji)Pr(Y2i = Yli). 

Since this applies for all possible events, it may also be written more conve
nientlyas 

Pr(Yli ,Y2;) = Pr(YIi)Pr(Y2;). (3.1) 

For example, if we were to assume that elections to Congress and the Presi
dency are independent, we could calculate the probability of undivided Dem
ocratic government by multiplying the probability that the Democrats win 
control of the majority of both houses of Congress by the probability that they 
will win the Presidency. 

The final result, on conditional probability, was already used in Chapter 1: 

Pr(YI · Y2·) 
Pr(Y.IY.)= I' I. 

II 21 Pr(Y2i) 
(3.2) 

By combining this result with Equation (3.1), one can see that independence 
also implies that Y2i has no influence on the probability of Y H , 
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Pr(YuIY2i) = Pr(Yli) , and Yli has no influence on the probability of Y2i , 
Pr(Y2iIYli) = Pr(Y2;). 

3.2 Univariate probability distributions 

The probability distribution of a random variable Yi is a complete accounting 
of the probability of Yi taking on any conceivable value Yi. Several different 
methods exist for representing these probabilities. 

For example, the random variable Yi is assigned 1 for heads and 0 for tails 
in a coin tossing experiment. To specify a probability distribution in this case, 
one only needs to write 

Pr(Yj = 1) = 7T, 

Pr(Yi=O) = 1-7T, 

Pr(Y#O,I)=O. 

7T is the parameter of this distribution, where 7T= 0.5 when the coin is fair. 
The range of possible values of a parameter is called the parameter space and 
is usually denoted e. In this example, the parameter space for 7T is the range 
from 0 to 1 inclusive (Le., 7T E e = [0,1]). 

In this simple example, merely listing or graphing the probabilities of each 
outcome in the sample space is relatively convenient. For most interesting 
examples, however, the number of possible events is very large or infinite. 
For example, the random variables representing income (in dollars and cents), 
public approval of the president (in percentages) and occupation can each 
produce very large numbers of events with nonzero probability. Further analysis 
thus requires a more concise means of representation. 

A mathematical formula is the solution. As most readers know, the usual 
method of presenting these formulas is merely as a list. However, although 
not often discussed in introductory books, each distribution was originally 
derived from a very specific set of theoretical assumptions. These assump
tions may be stated in abstract mathematical form, but they may also be in
terpreted as political assumptions about the underlying process generating the 
data. The ultimate mathematical form for most distributions is usually not 
very intuitive, but the first principles from which they were originally derived 
represent models of interesting political science situations and are much closer 
to both data and theory. When a list of these first principles is known, under
standing them is critical to the correct application of a particular probability 
distribution. If at any time in this chapter, the mathematics become too diffi
cult, the reader should pay close attention to the first principles (usually ap
pearing in italics) and final form of each distribution. The intervening steps 
of the derivation may be considered a black box. 

Ultimately, political scientists will benefit from learning considerably more 
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about stochastic modeling. This will enable scholars to develop probability 
distributions that closely match whatever social science processes they desire 
to model. Fortunately, enormous numbers of distributions have already been 
developed by statisticians and others.2 Although often developed for other 
purposes, analysts can marshal this wealth of raw material for modeling prob
lems in political science. In so doing, researchers need not get bogged down 
in understanding precisely how every probability distribution is derived from 
first principles, but we must completely understand these initial substantive 
assumptions and be able to apply the final distributions. For each distribution 
in this chapter, I present the first principles and final distribution form. For 
some, I also present the full derivation. Chapter 4 demonstrates how to apply 
these distributions in problems of inference. 

Bernoulli distribution 

The simplest distribution represents the situation where a random variable has 
only two possible events with nonzero probability. A coin flip can be repre
sented easily with the Bernoulli distribution. More generally, this distribution 
can represent one observation of any dichotomous random variable. Vote choice 
for Bush or Dukakis, employed or unemployed, and developing or industri
alized nations are a few of the many possible examples. 

The two first principles required to derive the Bernoulli probability distri
bution are quite simple: the random variable Yi must have two mutually exclu
sive outcomes, Yi=O and Yi= I, that are exhaustive. This distribution is usu
ally written so that zero and one are the outcomes, but any other coding of a 
dichotomous variable could be mapped onto this representation. These are 
the only first principles required. Mutual exclusivity indicates that 
Pr(Yi= IIYi=O)=O. If voters were permitted to vote for both Bush and Du
kakis, the Bernoulli distribution would not apply. Being exhaustive indicates 
that the probability of one event occurring is the complement of the probabil
ity of the other happening: 

Pr(Y;= 1)= I-Pr(Yi=O). 

Hence, the Bernoulli distribution is a better approximation to the underlying 
process generating election outcomes, for example, when no popular third 
party candidates are in the race. Many binary variables fit these two simple 
assumptions. 

From these first principles, deriving a single probability distribution is 
straightforward. To begin, define a parameter 'TT, such that 

2 The four volumes written by Johnson and Kotz (1969, 1970a, 1970b, 1972) are the 
standard references on these matters. Rothschild and Logothetis (1987) is a more 
affordable paperback. See also Shapiro and Gross (1981). 
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Pr(Y;= 1) = 7T 

A direct consequence of the events being mutually exclusive and exhaustive 
is that: 

PreY; = 0) = 1 - 7T. 

The full probability distribution is then a way of putting together these two 
separate parts into a single equation: 

for Yi=O, 1, 
otherwise. 

(3.3) 

In combination with an appropriate systematic component, this simple distri
bution will provide a useful model of dichotomous random variables. 

Since this is a discrete probability distribution,f(Y;!7T) = Pr(Yi!7T); the same 
is obviously not true for continuous distributions. Once a probability distri
bution is completely specified, any feature of the random variable of interest 
may be calculated. For example, the mean of Yi is calculated by taking the 
expected value: 

E(Y;) = L y;J(Yi) 
all Yi 

=0/;(0)+ 1/;(1) 
=0+7T 
=7T. 

Hence, if heads is 1 and tails is 0, then one flip of the coin will yield, on 
average, the number 7T. If a vote for Dukakis is assigned a 1 and Bush a 0, 
then individual i will have a 7T probability of voting for Dukakis. 

Binomial distribution 

Suppose a series of N Bernoulli random variables exists, but we only observe 
the sum of these variables. A political scientist might still be interested in 
these unobserved binary random variables, but the only data available are 
based on this sum. For example, data might exist on the number of elections, 
out of the last five, in which a survey respondent recalled voting. The survey 
researcher might not have had the time or money to include separate questions 
about voting participation in each election. Indeed, this aggregate recall ques
tion may be subject to fewer recall problems since positive and negative errors 
in the individual (unobserved) binary questions would tend to cancel out. 

By assuming that the unobserved binary variables (e.g., the five decisions 
to vote or not) are independent and identically distributed, one can derive a 
binomial distribution to model this situation. Thus, we suppose that the same 
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Table 3.1. Deriving the binomial distribution 

fli f2i f3i 2.J~ I fji == fi Pr(f,) 

0 0 0 0 (i-'lIi 
0 0 17"(1 -1T)2 

0 1 0 1T(i-1Tf 

0 0 1 1T(I-1Tf 

0 2 1T 2(i-1T) 

0 2 1T 2(i-1T) 

0 2 1T 2(i-1T) 

3 1T3 

Bernoulli distribution, with the same parameter 7T, describes each of the five 
constituent elections. A constant 7T implies that the probability of individual i 
voting is the same for each election. The independence assumption, as inter
preted here, means that participation by individual i in one election is unre
lated to participation by that individual in other elections, except that 7T is the 
same in each election. 

To get a feel for how the binomial distribution is derived from these first 
principles, take the case of N = 3 binary variables. Whereas a Bernoulli vari
able has two possible outcomes, a binomial with N = 3 has 23 = 8. Table 3.1 
lists each of these eight outcomes with their associated probabilities, calcu
lated using the three first principles. For example, the first line in the table 
records the outcome that all three binary random variables (YIi,Y2i,Y3i) were 
realized as zeros. Since the three variables are independent, their probabilities 
may be multiplied to derive the probability of the sum taking on the value 
zero [see Equation (3.1)]. Since they are identically distributed, the same 
probability in each case (1 - 7T) is multiplied. Probabilities for the other rows 
are calculated similarly. 

Suppose one is interested in calculating the probability that the sum of the 
three variables, Y i , is equal to one. The second, third, and fourth rows of 
Table 3.1 each have outcomes with a sum equal to one. Since these outcomes 
are mutually exclusive, they may be added: 

Pr(Yi= 2)= pr(± Yji = 1) 
J=I 

= Pr(Yli= 1, Y2i=O, Y3i =O) 
+ Pr(YIi=O, Y2i = 1, Y3i =O) 
+ Pr(YIi=O, Y2i =O, Y3i = 1) 

= 7T(I- 7T)2 + 7T(I- 7T)2 + 7T(l-7T)2 

= 37T(1- 7Tf. 

(3.4) 
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If 7T = 0.5, as in the case of a fair coin, the probability that only one of three 
coins would tum up heads is 37T(l- 7T)2 = 3(0.5)(1-0.5)2 =0.375. 

In order to derive a single formula, instead of always listing all possible 
outcomes and associated probabilities, note that the last line in Equation (3.4) 
has two parts: the number of outcomes (3) and the probability of each of these 
outcomes [7T(l- 7T)2]. In this case, the probability of Y; is calculated by tak
ing the product of these two parts. Indeed, regardless of the number ot pos
sible events (N), the binomial probability always has these two parts. The first 
part may be generalized with a little knowledge of combinatorics as (~). The 
second part is simply 7TY{l-7Ty<-Yi. The result is the familiar binomial dis
tribution: 

for y;=O, 1, ... ,n, 

otherwise 

={OYi!(:~Yi)! 7TY{l-7T)N-Yi fory;=O, 1, ... ,n, 
otherwise, 

(3.5) 

N! 
where (~) is shorthand for Yi!(N-Yi)! . If the Bernoulli assumptions of mutually 
exclusive and exhaustive binary events hold, and the additional assumptions 
that the N binary random variables are independent and identically distributed 
also hold, one can use this formula to calculate the probability that the random 
sum Y; equals y;, which may be between zero and N. 

Extended beta-binomial distribution 

Many situations exist in political science where data on the sums of random 
binary variables are available, but the binomial assumptions of independence 
and identical distributions are questionable. The number of members of the 
U.S. Senate (out of a total of 100) who vote for a particular bill, or the number 
of school districts in a state banning The Catcher in the Rye, are good ex
amples. Although unobserved, one can reasonably hypothesize that the prob
ability 7T of each senator voting for a particular bill is not identical. In addi
tion, school districts, as well as senators, are likely to influence each other 
rather than be totally independent random variables. 

I begin by weakening the binomial assumption that the unobserved binary 
random variables making up Y; have constant 7T. To derive an alternative 
distribution, one cannot let 7T vary haphazardly. Instead, we must choose a 
specific distribution that governs the variation in 7T across these individual 
binary variables within the single observation, Y;. Although 7T is a fixed pa
rameter in the binomial distribution, it becomes a random variable in this 
derivation of a new probability distribution. The choice of possible distribu
tions is limited to those where the random variable is bounded as is the param-
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eter space for 7T', between zero and one. A variety have been proposed, some 
leading to intractable expressions, others somewhat less intuitive. The most 
commonly used distribution for 7T' is the beta density. Thus, in addition to the 
assumptions required to derive the binomial distribution, the key first princi
ple required to derive the extended beta-binomial distribution is that 7T' varies 
according to a beta density. 

The beta distribution has 7T' as a random variable and two parameters p and 
-y (in my parameterization) and may be written as follows: 

f(p-y-I+(1_p)-y-I) _I -I 

ftl 7T'lp, -y) = 7T'P'Y -1(1- 7T')O -ph -I (3.6) 
r(p-y-I)f[(1_p)-y-I] 

for 0 < 7T'< 1, and zero otherwise, and where rex) is the gamma function: 

f(x)= J: zx-Ie-zdz. (3.7) 

One can calculate values of the gamma function for particular values of x 
either directly from this integral (with z as the integration dummy) or from 
tables designed for this purpose (see Johnson and Kotz, 1970a: Chapter 17). 
For integer values of x, f(x+ 1) =x! =x(x-l)(x- 2) ... 1. Noninteger values 
of x produce a continuous interpolation. 

The beta distribution is relatively flexible, and, depending on different val
ues of p and -y, it can be unimodal, bimodal, or skewed. This distribution is 
assumed here not because it was derived from some set of first principles 
about how 7T' varies over the individual binary variables, but rather because it 
is a first principle. The benefit of assuming this distribution is its flexibility in 
handling a variety of interesting cases. It is also mathematically simple, par
ticularly in combination with the binomial distribution. 3 Substantively, p == E( 7T') 
is the mean of the distribution of 7T', and -y is an index for how much variation 
exists in 7T' across the binary random variables. 

The goal now is to derive the extended beta-binomial probability distribu
tion. The procedure will be to modify the binomial distribution [!h(Yil7T', N)] 
by letting 7T'vary according to a beta distribution [ff3( 7T'lp, -y)]. This procedure 
is generally called compounding a probability distribution with another distri
bution. Two steps are required. 

First, the joint distribution (fj) of Yi and 7T' is derived by using the basic 
equation for conditional probability. Thus, Equation (3.2) may also be pre
sented as this: 

3 See Sheps and Menken (1973) on the beta density's mathematical properties and 
Heckman and Willis (1977: Appendix) for an interesting justification of the appli
cation of the beta density to the probability of labor force participation by mar
ried women. 
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Pr(AB) = Pr(AIB)Pr(B). 

Thus, I take the product of the binomial and beta distributions: 

!/Yi, 7Tlp;y) =.h(Yil7T)frl7Tlp, 'Y), 
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(3.8) 

where 'Y is just carried through as a conditioning parameter, unaffected by the 
procedure. 4 

Second, the extended beta-binomial distribution (febb) is derived by col
lapsing this joint distribution over 7T: 

Since a distribution was substituted for it, 7T no longer appears on the left 
hand side of this equation. In the extended beta-binomial distribution p is now 
the mean probability of the unobserved binary variables, as was 7T in the 
binomial distribution. To make clearer the relationship between the two dis
tributions, I reparameterize the extended beta-binomial by substituting each 
occurrence of p with 7T. For y;=O, ... ,N, the extended beta-binomial dis
tribution is thus defined as 

(3.9) 
y-I N-v-I N-I 

N!' .. , . . 
=y;!(N-y;)! Po (7T+'Y}) Po (l-7T+'Y})/ Po(1+'Y})' 

where one adopts the convention that n1=o C;= 1 for any X<0.5 This equation 
may appear more complicated than the ultimate form of the binomial and 
other distributions, but it is only algebraically complicated. Conceptually, it 
is just like any other traditional probability. One sets N, and the parameters 7T 
and 'Y, at specific values; then one can easily use arithmetic to determine the 
probability that Yi takes on any particular value Yi. 

In the extended beta-binomial distribution, 7T is an average probability of a 
binary variable equaling 1.0. In the binomial, 7T is the same for each binary 
variable and is thus also the same average. However, this distribution has an 
additional unknown parameter, 'Y, which governs the degree to which 7T varies 
across the unobserved binary variables making up each observation. When 
'Y=O, this distribution reduces to the binomial and all the 7TS are constant. 
Larger amounts of variation in 7T lead to larger values of 'Y. 

4 Ifff3 were reconceptualized as the degree of belief about a constant parameter 7T, and 
p and y were fixed to specific numbers representing the prior expectations about 7T, 

then this procedure is equivalent to Bayesian analysis, withfll as the prior and the 
left hand side of Equation (3.8) as the posterior distribution. 

5 The symbol II 7= I means "the product from i = 1 to n." It is an analog to the sum
mation symbol, L,7 = I . 
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Although this derivation weakened only the binomial assumption of iden
tical distributions of the individual binary variables, one can prove that certain 
types of dependence among the individual binary variables lead to exactly the 
same extended beta-binomial distribution. Thus, heterogeneity (in 7T) and de
pendence are both modeled in this new distribution by 1- The different ranges 
of y have implications for both the underlying binary variables and the aggre
gate observed count (YJ. 

Thus, when y=O, the binary variables are independent and identically dis
tributed and the extended beta-binomial distribution reduces exactly to the 
binomial. When y> 0, either positive correlation among the binary variables 
or heterogeneity among the 7TS causes overdispersion in the aggregate vari
able Yi. When Yi is overdispersed, its variance is larger than one would expect 
under the binomial distribution's assumption of binary variate independence. 
Finally, y < ° indicates negative correlations among the binary variables and 
results in underdispersion. 6 ,7 

Since one observes only the total count, and not the individual binary vari
ables, determining which of the possible causes is responsible for observed 
over- or underdispersion is not possible: dependence among the binary vari
ables and heterogeneity among their expected values have the same observed 
effect on Yi. Indeed, this is a classic problem of identification. The data con
tain insufficient information at this aggregated level to distinguish between 
these two substantively different cases. If one collected data on the individual 
binary variables, this distinction would be possible. An estimated value of y 
different from zero should nevertheless alert a researcher to potentially inter
esting information. On this basis, one could decide whether collecting more 
disaggregated data is worthwhile. 

Poisson distribution 

Another important discrete probability distribution is for a count with no up
per bound. The Poisson distribution is theoretically appropriate when the oc
currence of one event has no influence on the expected number of subsequent 

6 A somewhat more intuitive interpretation of y is that the correlation among the bi
nary variables is a direct function of this parameter: 0= y/(1 + y). Hence, one could 
reparameterize the extended beta-binomial model by solving for y= 0/(1 - 0) and 
substituting 0/(1- 0) into the distribution for every occurrence of y. Due to the 
invariance property of ML, estimating y and transforming afterwards, if desired, is 
as easy. 

7 Because the possible binary variables are always constrained in the extent to which 
they can be negatively correlated, y is constrained such that 

y2': max[ - 7T(N -1)-', - (1- 7T)(N -1)-']. 

See Prentice (1986) for details. 
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events, A. With three other first principles, the full Poisson probability distri
bution may be derived. 8 

Consider the time interval for observation i in which events are occurring. 
Although the random variable Yi is a count of the total number of events that 
have occurred at the end of period i, the assumptions required to derive the 
Poisson distribution are about the generation of events during this unobserved 
period. As usual, the underlying data generation process is not observed, only 
its consequences (the total count). 

To begin, denote the random variable representing the number of events 
that have occurred up to time t during observation period i as Yti . Then write 
the probability of an addition, and of no addition, respectively, to the total 
count during the interval from t to t + ilt as: 

(3.10) 

and 

(3.11) 

where o(ilt) is the probability that more than one event occurs during ilt and 
which, when divided by ilt, tends to zero as ilt gets smaller. We can then 
write the unconditional probability Pr(Y(t+.1t)i= Yti+ 1) as the sum of two mu
tually exclusive situations: (1) Yti events have occurred by time t and one 
additional event occurs over the next ilt interval, and (2) Yti + 1 events have 
occurred at time t and no new events occur from t to t + ilt: 

(3.12) 

Although Equations (3.10) and (3.11) are axiomatic, deriving Equation (3.12) 
from these equations requires two first principles. First, assuming that two 
events cannot occur at precisely the same instant, one can drop the o(ilt) 
terms. In addition, by assuming that the probability of an event occurring 
during the period from t to t + ilt is independent of any events occurring 
prior to time t, each of the two terms in Equation (3.12) may be written as 
the product of their respective marginal probabilities. 

From Equation (3.12), observe how Pr(Yti=Yti+ 1) changes with respect to 
time as ilt gets smaller and smaller: 

aPr(Yti=Yti + 1) _ 1. Pr(Y(t+.1t) = Yti + 1) - Pr(Yti = Yti + 1) 
1m a t .1t-->O il t 

(3.13) 

= {A [Pr(Yti = Yti) - Pr(Yti = Yti + 1)] for Yti + 1 > 1, 
- APr(Yti=O) for Yti+ 1 = 1. 

8 The following proof relies on insights into the continuous time, discrete space Mar
kov process outlined by Feller (1968: Chapter 17). See also King (1988a). 
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If we make a third assumption that zero events have occurred at the start of 
the period, t = 0, then Pr(yo/ = 0) = 1. As such, the probability distribution of 
the count emerging from this underlying process can begin to be built. First, 
solve the last part of Equation (3.13) as: 

Pr(Yt/ = 0) = - ( A - I) apr(:t~ = 0) 

=e- At , 

where the last line uses the fact that the exponential function is the only func
tion that is equal to its derivative. 9 Then, substituting into the other part of 
Equation (3. 13) yields the probability of a single event happening between 
time 0 and t: 

Pr(Yti = I) = Ate-At. 

Finally, by successively substituting and solving, one can derive the formula 
for the probability that Yti takes on zero, one, and all other nonnegative inte
gers. The general formula for the Poisson distribution may be written as fol
lows: 

f(IA,t)= -y,-' - fort>?, 1..>0, andy/-O, 1, ... , { 
e-"'(At),i _ 

y, 0 otherwise. (3.14) 

The more usual form of the Poisson distribution emerges from the fourth and 
final assumption that all observation periods (O,t) are of the same length. By 
convention, we let t= 1, for all observations, which yields: 

f( .11..) = {e-y~!A" for A >.0 and Yi = 0, 1, ... , 
y, 0 otherwise. 

(3.15) 

To summarize, three first principles about the dynamics within each obser
vation are required to derive the first form of the Poisson distribution in Equa
tion (3.14): (1) more than one event cannot occur at the same instant; (2) the 
probability of an event occurring in one time is constant and independent of 
all previous events; and (3) zero events have occurred at the start of each 
period. The key substantive assumption here is (2), the other two being more 
technical requirements. To derive the more usual form of the Poisson distri
bution in Equation (3.15), one also must assume (4) that the length of each 
observation period i is identical. An implicit assumption of both distributions 
is that the rate of event occurrence A remains constant, or at least unrespon
sive to Yi, over the observation period. This rate during the observation is also 
the expected count in the complete distribution. Indeed, the variance of the 

9 This equation gives a version of the exponential distribution, which is useful for 
modeling the time between independent events. 
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random count is also A, indicating that the variation around the expected value 
increases as A grows. This is easy to conceptualize when A is very small: 
since the count cannot be negative, the variance must also be small. Social 
science examples include the number of patents a firm is awarded, the number 
of presidential vetoes a year, and the number of news stories about a candidate 
per year. In each case, the actual number of events has no effective maxi
mum. 

Negative binomial distribution 

Two key substantive assumptions required to derive the Poisson distribution 
are that events accumulating during observation period i are independent and 
have a constant (or unresponsive) rate of occurrence, A. If either of these first 
principles does not hold, a different distribution for the total count, Y j , is 
produced. For example, suppose one were counting publications in a cross
sectional survey of new professors. Assuming the rate of publication A is 
constant across these individuals is implausible (Allison, 1987). For another 
example, the number of political kidnappings a year is unlikely to meet the 
independence assumption because successful attempts are likely to breed other 
attempts. 

To derive a new, more appropriate compound distribution (what is called 
the negative binomial), I proceed as in the derivation of the extended beta
binomial distribution from the binomial. Thus, the proof proceeds in two 
steps. First, instead of requiring that A be constant over the observation period 
as in the Poisson distribution, I must now assume a probability distribution 
for A. The choice is not obvious, but the fact that A is restricted to positive 
values limits the possibilities some. Using mathematical tractability and sub
stantive flexibility as criteria, the gamma distribution is the usual choice 
(Greenwood and Yule, 1920). The gamma distribution (in my parameteriza
tion) has E(A) = f/J and V(A) = f/J( (1"2 - 1). Note that as (1"2~ 1, the gamma dis
tribution collapses to a spike over f/J, leaving A constant. Hence, to derive the 
negative binomial distribution, I make all the assumptions of the Poisson dis
tribution with one exception: A is assumed to vary within an observation ac
cording to the gamma distribution. The gamma density, for A> 0, f/J> 0, and 
(1"2> 0, is written as: 

A <!>(u 2 -1)-I_le -A(u2 _I)-I 

f (AlA. (1"2) = 1 
'Y ,/" nf/J«(1"2_l)-I]«(1"2_1)<!>(u2 -1)- , 

(3.16) 

where f(.) is the gamma function in Equation (3.7). With this distribution 
and the Poisson, we can now derive the joint distribution (jj) of Y j and A again 
using the basic equation for conditional probability in Equation (3.2): 
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jj(y;,AIcf>,(]"2) = fP(y;IA)iiAIcf>,(]"2). 

Second, one can derive the negative binomial distribution (fnb) by collaps
ing this joint distribution over A: 

The parameter cf> plays the same role of the mean rate of event occurrence as 
A does in the Poisson distribution. Thus, to maintain comparability, I repara
meterize by substituting A for each occurrence of cf>: 

(3.17) 

where A> 0 and (]"2> 1. In a manner analogous to the extended beta-binomial 
distribution, this distribution was derived by allowing A to vary according to 
a gamma distribution. However, as Thompson (1954) first showed, the same 
negative binomial distribution also results from assuming a particular form of 
contagion among the individual events making up Y;.IO 

In the negative binomial distribution, A is still the expected number of 
events. The more events within observation i that either have heterogeneous 
A or are positively correlated, the larger the parameter (]"2 will be. Although 
(]"2 cannot equal one in this distribution, the smaller (]"2 is, the closer the 
negative binomial distribution is to the Poisson. In Chapter 5, I use a gener
alization of the negative binomial and Poisson distributions, called the gen
eralized event count distribution, to derive a more universal statistical model 
for data of this sort. 

The beta and gamma distributions were used in this section only to derive 
the extended beta-binomial and negative binomial compound distributions, 
respectively, but they can also be used directly to model certain continuous 
processes. For example, the gamma distribution can be used to model the 
time between events as a generalization of the exponential distribution (see 
Footnote 9) rather than counts of events. Gamma distributions, being non
negative everywhere and skewed, might also be of use to model variation 
across individuals without a group. The beta distribution might be appropriate 
for modeling a proportion, since it varies between zero and one. 

\0 More specifically, Thompson (1954) showed that a limiting form of the contagious 
Polya-Eggenberger distribution and Neyman's contagious distributions is the nega
tive binomial. See also Neyman (1965). 
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The most familiar continuous probability distribution is the Normal or Gaus
sian distribution: 

!,v(YillL, u) = (27TU 2) -1/2 e-(Yi-p.)2/2u2 (3.18) 

for u>o, -00<1L<00, -oo<Yi<oo. 

The Normal distribution has two parameters, the mean IL and the variance u 2• 

7T is the mathematical constant 3.14159 ... and is not a parameter here. Many 
different axiomatic developments of this distribution have been derived, so a 
variety of different assumptions can be made in order to apply it appropriately 
in a substantive example. 

The Normal distribution has been applied in the social sciences countless 
numbers of times. The primary reason for its initial adoption is that its use 
leads to very simple mathematical and statistical calculations (least squares, 
linear relationships, etc.). Of course, if computational issues are treated as 
transparent, as they should now be because of dramatically decreased cost, 
this justification is no longer adequate. Another reason for using the Normal 
distribution is the unquestioning application of a version of the central limit 
theorem (the theorem establishing the first principles required to derive Nor
mality): scholars often argue that their disturbance term is the sum of a large 
number of independent but unobserved factors. If this is the process actually 
driving the data and a number of other conditions hold, then the Normal 
distribution is appropriate, but this case must be explicitly made. If the pro
cess being modeled is the sum of a number of unobserved variables, then 
researchers ought to speculate what these might be and state exactly how the 
central limit theorem applies. The specific limit theorems that enable one to 
derive the Normal distribution from this type of situation are often no more 
plausible than similar limit theorems that lead to other distributions (Bartels, 
1977; Koenker, 1982). The simplest proof of the central limit theorem I am 
aware of requires only three-quarters of a page, but still relies on concepts 
beyond of the scope of this book (see Tardiff, 1981; see also Spanos, 1986, 
for an interesting historical presentation). 

When some version of the central limit theorem or other set of first princi
ples leads one to adopt the Normal distribution, the data have certain recog
nizable characteristics. For example, the distribution is continuous. Hence, a 
discrete random variable cannot be directly generated by the Normal distri
bution. This is a critical point, since so many researchers have wasted signif
icant amounts of information by assuming a Normal distribution when more 
specific information exists. Furthermore, the distribution is symmetric about 
IL. This means that a skewed random variable also could not be generated by 
the Normal distribution. Finally, a random variable that is Normally distrib-
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uted has events with nonzero probabilities occurring everywhere on the real 
number line. This has particular consequences if a variable is bounded (both 
theoretically and empirically). For example, most measures of income are 
both bounded below at zero and positively skewed (with fewer people making 
very large amounts of money). 

The idea that the Normal, or indeed any, distribution can be applied to 
every statistical problem is a distinctly 18th century idea. For back then, stat
isticians were searching for the "curve of errors" that would apply in all or 
almost all cases (see Stigler, 1986). Due to the unfortunate application of 
statistical tests with very low power, many mistakenly believed for some time 
that the Normal distribution applied to most naturally occurring situations. 
More modem tests and sophisticated understanding of the processes that drive 
observed data revealed the fallacy in this assumption. Indeed, with the enor
mous number of probability distributions that have been developed (Johnson 
and Kotz, 1969, 1970a, 1970b, 1972), this early notion now seems almost 
bizarre. Unfortunately, in too many cases, social scientists have yet to get 
beyond this mode of thinking. II "Everyone believes in the [Normal] law of 
errors, the experimenters because they think it is a mathematical theorem, the 
mathematicians because they think it is an empirical fact" [Poincare, c.f. 
Harvey (1981a: 112)]. 

Log-Normal distribution 

Normally distributed random variables extend theoretically over the entire 
number line. One class of continuous processes for which this does not apply 
involves those that are never negative. Income, population figures, crime sta
tistics, and budget totals are a few examples of positive value random vari
ables. 

Many continuous distributions exist that are defined only over the positive 
number line. The gamma distribution in Equation (3.16) is one example that 
might be useful in some circumstances. Another distribution, much more closely 
related to the very popular Normal distribution, is the log-Normal. Suppose 
Zi is a Normally distributed random variable, with mean 0 and variance 1, 
such that 

In Y,- f.L 
Z,=--- (3.19) 

Then, Yj has a log-Normal distribution with mean f.L and variance a. Since Yj 

is the random variable of interest in this case, and 

1\ For example, in a tour de force of econometric analysis, Judge et al. (1985: 201) 
write, "In practice, normality is assumed most often and we will only consider this 
case." Cramer (1986: xiii), in a book on maximum likelihood, writes, "the only 
probability distribution that occurs at all frequently [in this book] is the normal. " 
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(3.20) 

the distribution should probably be called the exponential (a name already 
taken), but I will adopt the conventional name. 

A general rule exists in stochastic modeling for deriving a distribution of a 
variable that is a function of another variable with a known distribution. Sup
pose X is a continuous random variable with distribution fAX) and Y = u(X) 
defines a one-to-one transformation of X onto Y. Let the inverse transforma
tion be denoted as X = u-I(y). For example, Y=2X and YI2 =X are the trans
formation and inverse transformation, respectively. The goal is to determine 
the distribution of Y from the distribution of X and the function u('); the rule 
is as follows: 

(3.21) 

The last term, the absolute value of the derivative of the inverse function, is 
called the Jacobian, and this procedure for deriving a probability distribution 
is sometimes called the Jacobian method. This procedure also works if the 
function u(·) is only piecewise invertible, instead of a one-to-one function, 
like the transformation Y = X2 and inverse transformation vY = X. 

In the case of the log-Normal derivation, the transformation u(·) is in Equa
tion (3.20) and the inverse transformation is Equation (3.19). Thus, the log
Normal distribution may be derived as follows. The standard Normal distri
bution of Zj is simply the Normal [Equation (3. 18)] with JL = 0 and (}' = I: 

IsnCz;) = (27T) - 112e - z;212. 

The Jacobian is calculated as: 

Then, the full log-Normal distribution is written by combining these two re
sults: 

Now Y j is a positive random variable characterized by the log-Normal distri
bution. It has mean E(Y;)=exp (JL+!(}'2), variance V(Y j ) = e,,'(e(T' -1)e2J.L, 

E(lnYj ) = JL, and V(lnYj ) = (J'2. 

This distribution was derived from two first principles: (1) Zj is a standard 
Normal variable and (2) Yj is a convenient mathematical function of Zj in 
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Equation (3.20). If this function is not motivated completely from substantive 
arguments in some applications, at least the function is familiar and the re
sulting distribution more appropriately describes some characteristics of the 
aggregate level random variables. 

Where derivation from first principles is difficult 
or indeterminate 

The distributions presented above can all be neatly derived from different 
assumptions about a social system. In general, this sort of derivation from 
first principles is the best means of choosing a probability distribution for use 
in the stochastic component of a statistical model. However, in many research 
situations, such a derivation is very difficult, requires assumptions that are 
unrealistic simplifications of the true stochastic process, leads to mUltiple pos
sible distributions, or is just analytically intractable. In these instances, one 
can choose an existing distribution, or create one, that seems to cover most 
interesting cases. This procedure is often an adequate compromise, permitting 
further analysis where otherwise none would be possible. 

For example, let Yj be the proportion of citizens in a legislative district who 
would cast their ballots for the Democratic candidate in a two-party system. 
Yj varies between zero (no Democratic votes) and one (all Democratic votes) 
across legislative districts within a state. Since Yj is an unobserved random 
variable, one needs a probability distribution, which I call the mean voter 
preference distribution, from which an election in each district is randomly 
drawn. This distribution must be flexible enough to include cases where it is 
unimodal, to allow for competitive systems with most districts in the state 
having proportions near 0.5, bimodal, to allow for uncompetitive party sys
tems with many successful incumbents in both parties, skewed, in the case of 
bias toward one of the parties, and combinations of these. A histogram of the 
proportion voting Democratic in each district across an actual state is an em
pirical version of this distribution, but a model requires an explicit density 
abstracting the key features of this histogram. 

Deriving a distribution by making assumptions about individual voters or 
their geographical arrangement turns out to narrow the range of possible dis
tributions only negligibly as Quandt (1988) and Gudgin and Taylor (1979) 
demonstrate. Alternatively, one can choose an existing distribution which is 
flexible enough to handle most interesting aggregate forms. Unfortunately, 
none exist in the literature. 12 Thus, as part of a stochastic model and an em-

12 Obvious choices include the Beta distribution or one of those developed for cor-
relation coefficients. Only the Beta distribution allows for bimodality, but it is 
not flexible enough for present purposes (see Johnson and Kotz, 1970b: Chapter 
24). 
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pirical analysis of legislative redistricting C:King, in press-d), I derived a new 
tractable probability distribution specifically designed to handle most of these 
forms. This distribution is defined on the interval (0, I); special cases of it are 
unimodal, bimodal, peaked, uniform, skewed, and various combinations of 
these features. 

This mean voter preference distribution may be defined as follows: 

fmvp(Yilp, A.) = peA [ eA + C ~ yiYJ -2yi- O- P)(1_ Yi)-O-P}. (3.22) 

This distribution has two parameters: A., which indexes direction and degree 
of skewness, and p, which indexes peakedness (ranging from a single spike 
to extreme bimodality). 

3.3 Multivariate probability distributions 

A univariate probability distribution provides a model of the stochastic com
ponent for a single random observation, Yi. Suppose instead that Yi were a 
vector of N random variables. To model this vector, a multivariate distribu
tion must be used. 

For example, the multivariate Normal distribution for the N random obser
vations Yi can be written as a function of an N x I vector IL and N x N sym
metric variance-covariance matrix ~: 

Several features of this distribution are worthy of note. First, if Yi includes 
only one random variable, then N = I, ~ = CT, and this multivariate Normal 
distribution reduces to the univariate Normal distribution in Equation (3.18). 
Second, suppose ~ is a diagonal matrix (i.e., ~ has variances on the diagonal 
and zeros for all the off-diagonal covariances). In this case, it is easy to show 
that the random variables are independent. Hence, in this special case, the 
product of univariate Normal distributions fn(YIiIILJ,CTT)fi Y2iI1L2'CT~) ... 
fn(YNiIILN'CT~) can be shown to be equal to the multivariate Normal distribu
tion. The proof of this assertion comes from Equation (3.1). 

In the general statistical model [Equations (1.3) and (1.4)], an important 
special case is when Y, , ... , Yn are independent random variables. By 
assuming independence, one can derive a multivariate distribution from only 
the product of univariate distributions. This situation is commonly referred to 
as the absence of autocorrelation (Chapter 7 demonstrates how to model pro
cesses without assuming independence). In the even more special case where 
every random observation has the same probability distribution, except for a 
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parameter vector, modeling the stochastic component only requires one to 
specify a single univariate probability distribution. 

3.4 Concluding remarks 

The univariate probability distributions given above represent an extremely 
small proportion of known distributions. A variety of others are introduced 
and derived throughout the remainder of this book as needed. Literally thou
sands of others have been invented. Yet, many interesting data sets still exist 
for which no adequate probabilistic models have been developed. For many 
problems, political scientists can afford to be merely consumers of "pure" 
developments in probability theory and distribution theory. However, since 
many situations remain for which we cannot rely on statisticians to come to 
the rescue, political scientists must begin to learn more about probability dis
tributions and, more generally, about stochastic processes. To the extent that 
political processes differ from natural and physical ones - areas which stat
isticians seem to pay most attention to - political scientists will be responsible 
for the development of their own stochastic models. 

Probability theory has two roles in scientific inference. First, it is the pri
mary means by which the stochastic components of statistical models are 
built. Indeed, the systematic component of statistical models uses the proba
bility distribution's parameters to model the systematic portions of statistical 
relationships. Second, probability theory is the critical tool in likelihood in
ference. Chapter 4 uses probability for this latter purpose. The remaining 
chapters tap both uses of probability theory. 


