
C H A P T E R 3

Causality and Causal Inference

WE HAVE DISCUSSED two stages of social science research: summariz-
ing historical detail (section 2.5) and making descriptive inferences by
partitioning the world into systematic and nonsystematic components
(section 2.6). Many students of social and political phenomena would
stop at this point, eschewing causal statements and asking their se-
lected and well-ordered facts to “speak for themselves.”

Like historians, social scientists need to summarize historical detail
and to make descriptive inferences. For some social scientific pur-
poses, however, analysis is incomplete without causal inference. That
is, just as causal inference is impossible without good descriptive infer-
ence, descriptive inference alone is often unsatisfying and incomplete.
To say this, however, is not to claim that all social scientists must, in all
of their work, seek to devise causal explanations of the phenomena
they study. Sometimes causal inference is too difficult; in many other
situations, descriptive inference is the ultimate goal of the research
endeavor.

Of course, we should always be explicit in clarifying whether the
goal of a research project is description or explanation. Many social
scientists are uncomfortable with causal inference. They are so wary of
the warning that “correlation is not causation” that they will not state
causal hypotheses or draw causal inferences, referring to their research
as “studying association and not causation.” Others make apparent
causal statements with ease, labeling unevaluated hypotheses or spec-
ulations as “explanations” on the basis of indeterminate research de-
signs.1 We believe that each of these positions evades the problem of
causal inference.

1 In view of some social scientists’ preference for explanation over “mere description,”
it is not surprising that students of complicated events seek to dress their work in the
trappings of explanatory jargon; otherwise, they fear being regarded as doing inferior
work. At its core, real explanation is always based on causal inferences. We regard argu-
ments in the literature about “noncausal explanation” as confusing terminology; in vir-
tually all cases, these arguments are really about causal explanation or are internally
inconsistent. If social scientists’ failures to explain are not due to poor research or lack
of imagination, but rather to the nature of the difficult but significant problems that they
are examining, such feelings of inferiority are unjustified. Good description of important
events is better than bad explanation of anything.
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Avoiding causal language when causality is the real subject of inves-
tigation either renders the research irrelevant or permits it to remain
undisciplined by the rules of scientific inference. Our uncertainty
about causal inferences will never be eliminated. But this uncertainty
should not suggest that we avoid attempts at causal inference. Rather
we should draw causal inferences where they seem appropriate but
also provide the reader with the best and most honest estimate of the
uncertainty of that inference. It is appropriate to be bold in drawing
causal inferences as long as we are cautious in detailing the uncer-
tainty of the inference. It is important, further, that causal hypotheses
be disciplined, approximating as closely as possible the rules of causal
inference. Our purpose in much of chapters 4–6 is to explicate the
circumstances under which causal inference is appropriate and to
make it possible for qualitative researchers to increase the probability
that their research will provide reliable evidence about their causal
hypotheses.

In section 3.1 we provide a rigorous definition of causality appro-
priate for qualitative and quantitative research, then in section 3.2 we
clarify several alternative notions of causality in the literature and
demonstrate that they do not conflict with our more fundamental defi-
nition. In section 3.3 we discuss the precise assumptions about the
world and the hypotheses required to make reliable causal inferences.
We then consider in section 3.4 how to apply to causal inference the
criteria we developed for judging descriptive inference. In section 3.5
we conclude this chapter with more general advice on how to con-
struct causal explanations, theories, and hypotheses.

3.1 DEFINING CAUSALITY

In this section, we define causality as a theoretical concept independent
of the data used to learn about it. Subsequently, we consider causal
inference from our data. (For discussions of specific problems of causal
inference, see chapters 4–6.) In section 3.1.1 we give our definition of
causality in full detail, along with a simple quantitative example, and
in section 3.1.2 we revisit our definition along with a more sophisti-
cated qualitative example.

3.1.1 The Definition and a Quantitative Example

Our theoretical definition of causality applies most simply and clearly
to a single unit.2 As defined in section 2.4, a unit is one of the many
elements to be observed in a study, such as a person, country, year, or

2 Our point of departure in this section is Holland’s article (1986) on causality and
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political organization. For precision and clarity, we have chosen a sin-
gle running example from quantitative research: the causal effect of
incumbency status for a Democratic candidate for the U.S. House of
Representatives on the proportion of votes this candidate receives.
(Using only a Democratic candidate simplifies the example.) Let the
dependent variable be the Democratic proportion of the two-party
vote for the House. The key causal explanatory variable is then dichot-
omous, either the Democrat is an incumbent or not. (For simplicity
throughout this section, we only consider districts where the Republi-
can candidate lost the last election.)

Causal language can be confusing and our choice here is hardly
unique. The “dependent variable” is sometimes called the “outcome
variable.” “Explanatory variables” are often referred to as “indepen-
dent variables.” We divide the explanatory variables into the “key
causal variable” (also called the “cause” or the “treatment variable”)
and the “control variables.” Finally, the key causal variable always
takes on two or more values, which are often denoted by “treatment
group” and “control group.”

Now consider only the Fourth Congressional District in New York,
and imagine an election in 1998 with a Democratic incumbent and one
Republican (nonincumbent) challenger. Suppose the Democratic can-
didate received y4

I fraction of the vote in this election (the subscript 4
denotes the Fourth District in New York and the superscript I refers to
the fact that the Democrat is an Incumbent). y4

I is then a value of the
dependent variable. To define the causal effect (a theoretical quantity),
imagine that we go back in time to the start of the election campaign
and everything remains the same, except that the Democratic in-
cumbent decides not to run for re-election and the Democratic Party
nominates another candidate (presumably the winner of the primary
election). We denote the fraction of the vote that the Democratic (non-
incumbent) candidate would receive by y4

N (where N denotes a Demo-
cratic candidate who is a Non-incumbent).3

This counterfactual condition is the essence behind this definition of
causality, and the difference between the actual vote (y4

I) and the likely

what he calls “Rubin’s Model.” Holland bases his ideas on the work of numerous schol-
ars. Donald Rubin’s (1974, 1978) work on the subject was most immediately relevant, but
he also cites Aristotle, Locke, Hume, Mill, Suppes, Granger, Fisher, Neyman, and others.
We extend Holland’s definition of a causal effect by using some ideas expressed clearly
by Suppes (1970) and others concerning “probabilistic causality.” We found this exten-
sion necessary since no existing approach alone is capable of defining causality with
respect to a single unit and still allowing one to partition causal effects into systematic
and nonsystematic components.

3 See Gelman and King (1990) for details of this example. More generally, I and N can
stand for the “treatment” and “control” group or for any two treatments experimentally
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vote in this counterfactual situation (y4
N) is the causal effect, a concept

we define more precisely below. We must be very careful in defin-
ing counterfactuals; although they are obviously counter to the facts,
they must be reasonable and it should be possible for the counterfac-
tual event to have occurred under precisely stated circumstances. A
key part of defining the appropriate counterfactual condition is clari-
fying precisely what we are holding constant while we are changing
the value of the treatment variable. In the present example, the key
causal (or treatment) variable is incumbency status, and it changes
from “incumbent” to “non-incumbent.” During this hypothetical
change, we hold everything constant up to the moment of the Demo-
cratic Party’s nomination decision—the relative strength of the Demo-
crats and Republicans in past elections in this district, the nature of
the nomination process, the characteristics of the congressional dis-
trict, and the economic and political climate at the time, etc. We do
not control for qualities of the candidates, such as name recognition,
visibility, and knowledge of the workings of Congress, or anything
else that follows the party nomination. The reason is that these are
partly consequences of our treatment variable, incumbency. That is, the
advantages of incumbency include name recognition, visibility, and
so forth. If we did hold these constant, we would be controlling for
and hence disregarding some of the most important effects of incum-
bency and as a result, would misinterpret its overall effect on the vote
total. In fact, controlling for enough of the consequences of incum-
bency could make one incorrectly believe that incumbency had no ef-
fect at all.4

More formally, the causal effect of incumbency in the Fourth District
in New York—the proportion of the vote received by the Democratic
Party candidate that is attributable to incumbency status—would be
the difference between these two vote fractions: (y4

I − y4
N). For reasons

that will become clear shortly, we refer to this difference as the realized

administered in fact or in theory. Of course, the decision to call one value of an explana-
tory variable a treatment and the other a control is entirely arbitrary, if this language is
used at all.

4 Jon Elster (1983:34–36) has claimed “the meaning of causality can not be rendered by
counterfactual statements” in many situations, such as those in which a third factor ac-
counts for both the apparent explanatory and dependent variables. In our language,
Elster is simply pointing to common problems of inferences, which are always uncertain
to some extent. However, these difficulties of inference do not invalidate a definition of
causality in terms of counterfactuals. Despite his objections, Elster acknowledges that
counterfactual statements “have an important role in causal analysis” (Elster 1983:36).
Hence Elster’s argument is more cogent, we think, as a set of valuable warnings against
careless use of counterfactuals than as a critique of their fundamental definitional impor-
tance in causal reasoning.
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causal effect and write it in more general notation for unit i instead of
only district 4:5

(Realized Causal Effect for unit i) = yi
I − yi

N (3.1)

Of course, this effect is defined only in theory since in any one real
election we might observe either y4

I or y4
N or neither, but never both.

Thus, this simple definition of causality demonstrates that we can
never hope to know a causal effect for certain. Holland (1986) refers to
this problem as the fundamental problem of causal inference, and it is in-
deed a fundamental problem since no matter how perfect the research
design, no matter how much data we collect, no matter how perceptive
the observers, no matter how diligent the research assistants, and no
matter how much experimental control we have, we will never know
a causal inference for certain. Indeed, most of the empirical issues of
research designs that we discuss in this book involve this fundamental
problem, and most of our suggestions constitute partial attempts to
avoid it.

Our working definition of causality differs from Holland’s, since in
section 2.6 we have argued that social science always needs to parti-
tion the world into systematic and nonsystematic components, and
Holland’s definition does not make this distinction clearly.6 To see the
importance of this partitioning, think about what would happen if we
could rerun the 1998 election campaign in the Fourth District in New
York, with a Democratic incumbent and a Republican challenger. A
slightly different total vote would result, due to nonsystematic fea-
tures of election campaigns—aspects of politics that do not persist
from one campaign to the next, even if the campaigns begin on iden-
tical footing. Some of these nonsystematic features might include a
verbal gaffe, a surprisingly popular speech or position on an issue, an
unexpectedly bad performance in a debate, bad weather during one
candidate’s rally or on election day, or the results of some investigative
journalism. We can therefore imagine a variable that would express
the values of the Democratic vote across hypothetical replications of
this same election.

5 We can specialize for district 4 by substituting “4” for “i” in the following equation.
6 The reason for this is probably that Holland is a statistician who comes very close to

an extreme version of “Perspective 2” random variation, which is described in section
2.6. In his description of the “statistical solution” to the problem of causal inference, he
most closely approximates our definition of a causal effect, but this definition is mostly
about using different units to solve the Fundamental Problem instead of retaining the
definition of causality in just one. In particular, his expected value operator averages
over units, whereas ours (described below) averages over hypothetical replications of
the same experiment for just a single unit (see Holland 1986:947).
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As noted above (see section 2.6), this variable is called a “random
variable” since it has nonsystematic features: it is affected by explana-
tory variables not encompassed in our theoretical analysis or contains
fundamentally unexplainable variability.7 We define the random vari-
able representing the proportion of votes received by the incumbent
Democratic candidate as Y4

I (note the capital Y) and the proportion of
votes that would be received in hypothetical replications by a Demo-
cratic nonincumbent as Y4

N.
We now define the random causal effect for district 4 as the difference

between these two random variables. Since we wish to retain some
generality, we again switch notation from district 4 to unit i:

(Random Causal Effect for unit i) = (Yi
I − Yi

N) (3.2)

(Just as in the definition of a random variable, a random causal effect
is a causal effect that varies over hypothetical replications of the same
experiment but also represents many interesting systematic features
of elections.) If we could observe two separate vote proportions in dis-
trict 4 at the same time, one from an election with and one without a
Democratic incumbent running, then we could directly observe the
realized causal effect in equation (3.1). Of course, because of the Fun-
damental Problem of Causal Inference, we cannot observe the realized
causal effect. Thus, the realized causal effect in equation 3.1 is a single
unobserved realization of the random causal effect in equation 3.2. In
other words, across many hypothetical replications of the same elec-
tion in district 4 with a Democratic incumbent, and across many hypo-
thetical replications of the same election but with a Democratic non-
incumbent, the (unobserved) realized causal effect becomes a random
causal effect.

Describing causality as one of the systematic features of random
variables may seem unduly complicated. But it has two virtues. First,
it makes our definition of causality directly analogous to those system-
atic features (such as a mean or variance) of a phenomenon that serve

7 As we explained in more detail in section 2.2, this phrasing can be confusing. A “ran-
dom variable” contains some systematic component and thus is not always entirely un-
predictable. Unfortunately, this language has a specific meaning in statistics and the
concepts underlying it are important. The original reason for the terminology is that
randomness does not mean “anything goes” or “anything could happen.” Instead, it
refers to one of many possible very well-specified probabilistic processes. For example,
the random process governing which side of a coin lands upward when flipped in the
air is a very different random process than the one governing the growth of the Euro-
pean Economic Community’s bureaucracy or the uncertain political consequence of a
change in Italy’s electoral system. The key to our representation is that each of these
“random” processes have systematic and probabilistic components.
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as objects of descriptive inference: means and variances are also sys-
tematic features of random variables (as in section 2.2). Secondly, it
enables us to partition a causal inference problem into systematic and
nonsystematic components. Although many systematic features of a
random variable might be of interest, the most relevant for our run-
ning example is the mean causal effect for unit i. To explain what we
mean by this, we return to our New York election example.

Recall that the random variable refers to the vote fraction received
by the Democrat (incumbent or nonincumbent) across a large number
of hypothetical replications of the same election. We define the ex-
pected value of this random variable—the vote fraction averaged
across these replications—for the nonincumbent as

E(Y4
N) = m4

N

and for the incumbent as

E(Y4
I) = m4

I.

Then, the mean causal effect of incumbency in unit i is a systematic
feature of the random causal effect and is defined as the difference be-
tween these two expected values (again generalized to unit i instead of
to district 4):

Mean Causal Effect for unit i ≡ b (3.3)

= E(Random Causal Effect for unit i)

= E(Yi
I − Yi

N)

= E(Yi
I) − E(Yi

N)

= mi
I − mi

N

where in the first line of this equation, b (beta) refers to this mean
causal effect. In the second line, we indicate that the mean causal effect
for unit i is just the mean (expected value) of the random causal effect,
and in the third and fourth lines we show how to calculate the mean.
The last line is another way of writing the difference in the means of
the two sets of hypothetical elections. (The average of the difference
between two random variables equals the difference of the averages.)
To summarize in words: the causal effect is the difference between the sys-
tematic component of observations made when the explanatory variable takes
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one value and the systematic component of comparable observations when the
explanatory variable takes on another value.

The last line of equation 3.3 is similar to equation 3.1, and as such,
the Fundamental Problem of Causal Inference still exists in this formu-
lation. Indeed, the problem expressed this way is even more formida-
ble because even if we could get around the Fundamental Problem for
a realized causal effect, we would still have all the usual problems of
inference, including the problem of separating out systematic and
nonsystematic components of the random causal effect. From here on,
we use Holland’s phrase, the Fundamental Problem of Causal Infer-
ence, to refer to the problem that he identified as well as to these stan-
dard problems of inference, which we have added to his formulation.
In the box on page 95, we provide a more general notation for causal
effects, which will prove useful throughout the rest of this book.

Many other systematic features of these random causal effects might
be of interest in various circumstances. For example, we might wish to
know the variance in the possible (realized) causal effects of incum-
bency status on Democratic vote in unit i, just as with the variance in
the vote itself that we described in equation 2.3 in section 2.6. To calcu-
late the variance of the causal effect, we apply the variance operation

(variance of the causal effect in unit i) = V(Yi
I − Yi

N)

in which we avoid introducing a new symbol for the result of the
variance calculation, V(Yi

I − Yi
N). Certainly new incumbents would

wish to know the variation in the causal effect of incumbency so they
can judge how closely their experience will be to that of previous in-
cumbents and how much to rely on their estimated mean causal effect
of incumbency from previous elections. It is especially important to
understand that this variance in the causal effect is a fundamental part
of the world and is not uncertainty due to estimation.

3.1.2 A Qualitative Example

We developed our precise definition of causality in section 3.1. Since
some of the concepts in that section are subtle and quite sophisticated,
we illustrated our points with a very simple running example from
quantitative research. This example helped us communicate the con-
cepts we wished to stress without also having to attend to the contex-
tual detail and cultural sensitivity that characterize good qualitative
research. In this section, we proceed through our definition of causal-
ity again, but this time via a qualitative example.

Political scientists would learn a lot if they could rerun history with
everything constant save for one investigator-controlled explanatory
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variable. For example, one of the major questions that faces those in-
volved with politics and government has to do with the consequences
of a particular law or regulation. Congress passes a tax bill that is in-
tended to have a particular consequence—lead to particular invest-
ments, increase revenue by a certain amount, and change consumption
patterns. Does it have this effect? We can observe what happens after
the tax is passed to see if the intended consequences appear; but even
if they do, it is never certain that they result from the law. The change
in investment policy might have happened anyway. If we could rerun
history with and without the new regulation, then we would have
much more leverage in estimating the causal effect of this law. Of
course, we cannot do this. But the logic will help us design research to
give us an approximate answer to our question.

Consider now the following extended example from comparative
politics. In the wake of the collapse of the Soviet system, numerous
governments in the ex-Soviet republics and in Eastern Europe have
instituted new governmental forms. They are engaged—as they them-
selves realize—in a great political experiment: they are introducing
new constitutions, constitutions that they hope will have the intended
effect of creating stable democratic systems. One of the constitutional
choices is between parliamentary and presidential forms of govern-
ment. Which system is more likely to lead to a stable democracy is the
subject of considerable debate among scholars in the field (Linz 1993;
Horowitz 1993; Lijphart 1993). The debate is complex, not the least be-
cause of the numerous types of parliamentary and presidential sys-
tems and the variety of the other constitutional provisions that might
accompany and interact with this choice (such as the nature of the elec-
toral system). It is not our purpose to provide a thorough analysis of
these choices but rather a greatly simplified version of the choice in
order to define a causal effect in the context of this qualitative example.
In so doing, we highlight the distinction between systematic and non-
systematic features of a causal effect.

The debate about presidential versus parliamentary systems in-
volves varied features of the two systems. We will focus on two: the
extent to which each system represents the varied interests of the citi-
zenry and encourages strong and decisive leadership. The argument is
that parliamentary systems do a better job of representing the full
range of societal groups and interests in the government since there
are many legislative seats to be filled, and they can be filled by repre-
sentatives elected from various groups. In contrast, the all-or-nothing
character of presidential systems means that some groups will feel left
out of the government, be disaffected, and cause greater instability. On
the other hand, parliamentary systems—especially if they adequately
represent the full range of social groups and interests—are likely to be
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deadlocked and ineffective in providing decisive government. These
characteristics, too, can lead to disaffection and instability.8

The key purpose of this section is to formulate a precise definition of
a causal effect. To do so, imagine that we could institute a parliamen-
tary system and, periodically over the next decade or so, measure the
degree of democratic stability (perhaps by actual survival or demise of
democracy, attempted coups, or other indicators of instability), and in
the same country and at the same time, institute a presidential system,
also measuring its stability over the same period with the same mea-
sures. The realized causal effect would be the difference between the de-
gree of stability observed under a presidential system and that under
a parliamentary system. The impossibility of measuring this causal ef-
fect directly is another example of the fundamental problem of causal
inference.

As part of this definition, we also need to distinguish between sys-
tematic and nonsystematic effects of the form of government. To do
this, we imagine running this hypothetical experiment many times.
We define the mean causal effect to be the average of the realized causal
effects across replications of these experiments. Taking the average in
this way causes the nonsystematic features of this problem to cancel
out and leaves the mean causal effect to include only systematic fea-
tures. Systematic features include indecisiveness in a parliamentary
system or disaffection among minorities in a presidential one. Nonsys-
tematic features might include the sudden illness of a president that
throws the government into chaos. The latter event would not be a
persistent feature of a presidential system; it would appear in one trial
of the experiment but not in others.9

Another interesting feature of this example is the variance of the
causal effect. Any country thinking of choosing one of these political
systems would be interested in its mean causal effect on democratic
stability; however, this one country gets only one chance—only one
replication of this experiment. Given this situation, political leaders
may be interested in more than the average causal effect. They may
wish to understand what the maximum and minimum causal effects,
or at least the variance of the causal effects, might be. For example, it
may be that presidentialism reduces democratic stability on average

8 These distinctions are themselves debated. Some argue that a presidential system
can do a better representational job. And others argue that parliamentary systems can be
more decisive.

9 The distinction between a systematic and nonsystematic feature is by no means al-
ways clear-cut. The sudden illness of a president appears to be a nonsystematic feature
of the presidential system. On the other hand, the general vulnerability of presidential
systems to the vagaries of the health and personality of a single individual is a system-
atic effect that raises the likelihood that some nonsystematic feature will appear.
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but that the variability of this effect is enormous—sometimes increas-
ing stability a lot, sometimes decreasing it substantially. This variance
translates into risk for a polity. In this circumstance, it may be that
citizens and political leaders would prefer to choose an option that
produces only slightly less stability on average but has a lower vari-
ance in causal effect and thus minimizes the chance of a disastrous
outcome.

3.2 CLARIFYING ALTERNATIVE DEFINITIONS OF CAUSALITY

In section 3.1, we defined causality in terms of a causal effect: the mean
causal effect is the difference between the systematic component of a
dependent variable when the causal variable takes on two different
values. In this section, we use our definition of causality to clarify sev-
eral alternative proposals and apparently complicating ideas. We
show that the important points made by other authors about “causal
mechanisms” (section 3.2.1), “multiple” causality (section 3.2.2), and
“symmetric” versus “asymmetric” causality (section 3.2.3) do not con-
flict with our more basic definition of causality.

3.2.1 “Causal Mechanisms”

Some scholars argue that the central idea of causality is that of a set of
“causal mechanisms” posited to exist between cause and effect (see
Little 1991:15). This view makes intuitive sense: any coherent account
of causality needs to specify how the effects are exerted. For example,
suppose a researcher is interested in the effect of a new bilateral tax
treaty on reducing the United States’s current account deficit with
Japan. According to our definition of causality, the causal effect here is
the reduction in the expected current account deficit with the tax treaty
in effect as compared to the same situation (at the same time and for
the same countries) with the exception that the treaty was not in effect.
The causal mechanism operating here would include, in turn, the sign-
ing and ratification of the tax treaty, newspaper reports of the event,
meetings of the relevant actors within major multinational companies,
compensatory actions to reduce their total international tax burden
(such as changing its transfer pricing rules or moving manufacturing
plants between countries), further actions by other companies and
workers to take advantage of the movements of capital and labor be-
tween countries, and so on, until we reach the final effect on the bal-
ance of payments between the United States and Japan.

From the standpoint of processes through which causality operates,
an emphasis on causal mechanisms makes intuitive sense: any coher-
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ent account of causality needs to specify how its effects are exerted.
Identifying causal mechanisms is a popular way of doing empirical
analyses. It has been called, in slightly different forms, “process trac-
ing” (which we discuss in section 6.3.3), “historical analysis,” and “de-
tailed case studies.” Many of the details of well-done case studies
involve identifying these causal mechanisms.

However, identifying the causal mechanisms requires causal infer-
ence, using the methods discussed below. That is, to demonstrate the
causal status of each potential linkage in such a posited mechanism,
the investigator would have to define and then estimate the causal ef-
fect underlying it. To portray an internally consistent causal mecha-
nism requires using our more fundamental definition of causality
offered in section 3.1 for each link in the chain of causal events.

Hence our definition of causality is logically prior to the identifica-
tion of causal mechanisms. Furthermore, there always exists in the so-
cial sciences an infinity of causal steps between any two links in the
chain of causal mechanisms. If we posit that an explanatory variable
causes a dependent variable, a “causal mechanisms” approach would
require us to identify a list of causal links between the two variables.
This definition would also require us to identify a series of causal link-
ages, to define causality for each pair of consecutive variables in the
sequence, and to identify the linkages between any two of these vari-
ables and the connections between each pair of variables. This ap-
proach quickly leads to infinite regress, and at no time does it alone
give a precise definition of causality for any one cause and one effect.

In our example of the effect of a presidential versus parliamentary
system on democratic stability (section 3.1.2), the hypothesized causal
mechanisms include greater minority disaffection under a presidential
regime and lesser governmental decisiveness under a parliamentary
regime. These intervening effects—caused by the constitutional system
and, in turn, affecting political stability—can be directly observed. We
could monitor the attitudes or behaviors of minorities to see how they
differ under the two experimental conditions or study the decisiveness
of the governments under each system. Yet even if the causal effect of
presidential versus parliamentary systems could operate in different
ways, our definition of the causal effect would remain valid. We can
define a causal effect without understanding all the causal mecha-
nisms involved, but we cannot identify causal mechanisms without
defining the concept of causal effect.

In our view, identifying the mechanisms by which a cause has its
effect often builds support for a theory and is a very useful operational
procedure. Identifying causal mechanisms can sometimes give us
more leverage over a theory by making observations at a different
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level of analysis into implications of the theory. The concept can also
create new causal hypotheses to investigate. However, we should not
confuse a definition of causality with the nondefinitional, albeit often
useful, operational procedure of identifying causal mechanisms.

3.2.2 “Multiple Causality”

Charles Ragin, in a recent work (1987:34–52), argues for a methodol-
ogy with many explanatory variables and few observations in order
that one can take into account what he calls “multiple causation.” That
is, “The phenomenon under investigation has alternative determi-
nants—what Mill (1843) referred to as the problem of ‘plurality of
causes.’” This is the problem referred to as “equifinality” in gen-
eral systems theory (George 1982:11). In situations of multiple cau-
sation, these authors argue that the same outcome can be caused by
combinations of different independent variables.10

Under conditions in which different explanatory variables can ac-
count for the same outcome on a dependent variable, according to
Ragin, some statistical methods will falsely reject the hypothesis that
these variables have causal status. Ragin is correct that some statistical
models (or relevant qualitative research designs) could fail to alert an
investigator to the existence of “multiple causality,” but appropriate
statistical models can easily handle situations like these (some of
which Ragin discusses).

Moreover, the fundamental features of “multiple causality” are
compatible with our definition of causality. They are also no different
for quantitative than qualitative research. The idea contains no new
features or theoretical requirements. For example, consider the hy-
pothesis that a person’s level of income depends both on high educa-
tional attainment and highly educated parents. Having one but not
both is insufficient. In this case, we need to compare categories of our
causal variable: respondents who have high educational attainment
and highly educated parents, the two groups who have one but not the
other, and the group with neither. Thus, the concept of “multiple cau-
sation” puts greater demands on our data since we now have four cat-

10 This idea is often explained in terms of no explanatory variable being either neces-
sary or sufficient for a particular value of a dependent variable to occur. However, this
is misleading terminology because the distinction between necessary and sufficient con-
ditions largely disappears when we allow for the possibility that causes are probabilistic.
As Little (1991:27) explains, “Consider the claim that poor communication among super-
powers during crisis increases the likelihood of war. This is a probabilistic claim; it iden-
tifies a causal variable (poor communication) and asserts that this variable increases the
probability of a given outcome (war). It cannot be translated into a claim about the nec-
essary and sufficient conditions for war, however; it is irreducibly probabilistic.”
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egories of our causal variables, but it does not require a modification
of our definition of causality. For our definition, we would need to
measure the expected income for the same person, at the same time,
experiencing each of the four conditions.

But what happens if different causal explanations generate the same
values of the dependent variable? For example, suppose we consider
whether or not one graduated from college as our (dichotomous)
causal variable in a population of factory workers. In this situation,
both groups could quite reasonably earn the same income (our de-
pendent variable). One reason might be that this explanatory variable
(college attendance) has no causal effect on income among factory
workers, perhaps because a college education does not help one per-
form better. Alternatively, different explanations might lead to the
same level of income for those educated and those not educated. Col-
lege graduates might earn a particular level of income because of their
education, whereas those who had no college education might earn
the same level of income because of their four years of additional se-
niority on the job. In this situation wouldn’t we be led to conclude that
“college education” has no causal effect on income levels for those
who will become factory workers?

Fortunately, our definition of causality requires that we more care-
fully specify the counterfactual condition. In the present example, the
values of the key causal variable to be varied are (1) college education,
as compared to (2) no college education but four additional years of
job seniority. The dependent variable is starting annual income. Our
causal effect is then defined as follows: we record the income of a per-
son graduating from college who goes to work in a factory. Then, we
go back in time four years, put this same person to work in the same
factory instead of in college and, at the end of four years, measure his
or her income “again.” The expected difference between these two
levels of income for this one individual is our definition of the mean
causal effect. In the present situation, we have imagined that this
causal effect is zero. But this does not mean that “college education has
no effect on income,” only that the average difference between treat-
ment groups (1) and (2) is zero. In fact, there is no logically unique
definition of “the causal effect of college education” since one can-
not define a causal effect without at least two conditions. The condi-
tions need not be the two listed here, but they must be very clearly
identified.

An alternative pair of causal conditions is to compare a college grad-
uate with someone without a college degree but with the same level of
job seniority as the college graduate. In one sense, this is unrealistic,
since the non-college graduate would have to do something for the



Alternative Definitions of Causality · 89

four years while not attending college, but perhaps we would be will-
ing to imagine that this person had a different, irrelevant job for those
four years. Put differently, this alternative counterfactual is the effect
of a college education compared to that of none, with job seniority held
constant. Failure to hold seniority constant in the two causal condi-
tions would cause any research design to yield estimates of our first
counterfactual instead of this revised one. If the latter were the goal,
but no controls were introduced, our empirical analysis would be
flawed due to “omitted variable bias” (which we introduce in sec-
tion 5.2).

Thus, the issues addressed under the label “multiple causation” do
not confound our definition of causality although they may make
greater demands in our subsequent analyses. The fact that some de-
pendent variables, and perhaps all interesting social science–depen-
dent variables, are influenced by many causal factors does not make
our definition of causality problematic. The key to understanding
these very common situations is to define the counterfactual condi-
tions making up each causal effect very precisely. We demonstrate in
chapter 5 that researchers need not identify “all” causal effects on a
dependent variable to provide estimates of the one causal effect of in-
terest (even if that were possible). A researcher can focus on only the
one effect of interest, establish firm conclusions, and then move on to
others that may be of interest (see sections 5.2 and 5.3).11

3.2.3 “Symmetric” and “Asymmetric” Causality

Stanley Lieberson (1985:63–64) distinguishes between what he refers to
as “symmetrical” and “asymmetrical” forms of causality. He is inter-
ested in causal effects which differ when an explanatory variable is
increased as compared to when it is decreased. In his words,

In examining the causal influence of X1 [an explanatory variable] on Y [a
dependent variable], for example, one has also to consider whether shifts to
a given value of X1 from either direction have the same consequences for
Y. . . . If the causal relationship between X1 [an explanatory variable] and Y

11 Our emphasis on distinguishing systematic from nonsystematic components of ob-
servations subject to causal inference reflects our general view that the world, at least as
we know it, is probabilistic rather than deterministic. Hence, we also disagree with
Ragin’s premise (1987:15) that “explanations which result from applications of the com-
parative method are not conceived in probabilistic terms because every instance of a
phenomenon is examined and accounted for if possible.” Even if it were possible to col-
lect a census of information on every instance of a phenomenon and every permutation
and combination of values of the explanatory variables, the world still would have pro-
duced these data according to some probabilistic process (as defined in section 2.6). This
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[a dependent variable] is symmetrical or truly reversible, then the effect on
Y of an increase in X1 will disappear if X1 shifts back to its earlier level (as-
suming that all other conditions are constant).

As an example of Lieberson’s point, imagine that the Fourth Con-
gressional District in New York had no incumbent in 1998 and that the
Democratic candidate received 55 percent of the vote. Lieberson
would define the causal effect of incumbency as the increase in the
vote if the winning Democrat in 1998 runs as an incumbent in the next
election in the year 2000. This effect would be “symmetric” if the ab-
sence of an incumbent in the subsequent election (in year 2002) caused
the vote to return to 55 percent. The effect might be “asymmetric” if,
for example, the incumbent Democrat raised money and improved the
Democratic party’s campaign organization; as a result, if no incumbent
were running in 2002, the Democratic candidate might receive more
than 55 percent of the vote.

Lieberson’s argument is clever and very important. However, in our
view, his argument does not constitute a definition of causality, but ap-
plies only to some causal inferences—the process of learning about a
causal effect from existing observations. In section 3.1, we defined cau-
sality for a single unit. In the present example, a causal effect can be
defined theoretically on the basis of hypothetical events occurring only
in the 1998 election in the Fourth District in New York. Our definition
is the difference in the systematic component of the vote in this district
with an incumbent in this election and without an incumbent in the
same election, time, and district.

In contrast, Lieberson’s example involves no hypothetical quantities
and therefore cannot be a causal definition. This example involves
only what would actually occur if the explanatory variable changed in
two real elections from nonincumbent to incumbent, versus incumbent
to nonincumbent in two other elections. Any empirical analysis of
this example would involve numerous problems of inference. We dis-
cuss many of these problems of causal inference in chapters 4–6. In the
present example, we might ask whether the estimated effect seemed
larger only because we failed to account for a large number of recently
registered citizens in the Fourth District. Or, did the surge in support
for the Democrat in the election in which she or he was an incumbent

seems to invalidate Ragin’s “Boolean Algebra” approach as a general way of designing
theoretical explanations or making inferences; to learn from data requires the same logic
of scientific inference that we discuss in this book. However, his approach can still be
valuable as a form of formal theory (see section 3.5.2): it enables the investigator to
specify a theory and its implications in a way that might be much more difficult with-
out it.
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seem smaller than it should because we necessarily discarded districts
where the Democrat lost the first election?

Thus, Lieberson’s concepts of “symmetrical” and “asymmetrical”
causality are important to consider in the context of causal inference.
However, they should not be confused with a theoretical definition of
causality, which we give in section 3.1.

3.3 ASSUMPTIONS REQUIRED FOR ESTIMATING

CAUSAL EFFECTS

How do we avoid the Fundamental Problem of Causal Inference and
also the problem of separating systematic from nonsystematic compo-
nents? The full answer to this question will consume chapters 4–6, but
we provide an overview here of what is required in terms of the two
possible assumptions that enable us to get around the fundamental
problem. These are unit homogeneity (which we discuss in section 3.3.1)
and conditional independence (section 3.3.2). These assumptions, like any
other attempt to circumvent the Fundamental Problem of Causal Infer-
ence, always involve some untestable assumptions. It is the responsi-
bility of all researchers to make the substantive implications of this
weak spot in their research designs extremely clear and visible to read-
ers. Causal inferences should not appear like magic. The assumptions
can and should be justified with whatever side information or prior
research can be mustered, but it always must be explicitly recognized.

3.3.1 Unit Homogeneity

If we cannot rerun history at the same time and the same place with
different values of our explanatory variable each time—as a true solu-
tion to the Fundamental Problem of Causal Inference would require—
we can attempt to make a second-best assumption: we can rerun our
experiment in two different units that are “homogeneous.” Two units
are homogeneous when the expected values of the dependent variables from
each unit are the same when our explanatory variable takes on a particular
value. (That is, m1

N = m2
N and m1

I = m2
I.) For example, if we observe X = 1

(an incumbent) in district 1 and X = 0 (no incumbent) in district 2, an
assumption of unit homogeneity means that we can use the observed
proportions of the vote in two separate districts for inference about the
causal effect b, which we assume is the same in both districts. For a
data set with n observations, unit homogeneity is the assumption that
all units with the same value of the explanatory variables have the
same expected value of the dependent variable. Of course, this is only
an assumption and it can be wrong: the two districts might differ in
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some unknown way that would bias our causal inference. Indeed, any
two real districts will differ in some ways; application of this assump-
tion requires that these districts must be the same on average over
many hypothetical replications of the election campaign. For example,
patterns of rain (which might inhibit voter turnout in some areas)
would not differ across districts on average unless there were system-
atic climatic differences between the two areas.

In the following quotation, Holland (1986:947) provides a clear ex-
ample of the unit homogeneity assumption (defined from his perspec-
tive of a realized causal effect instead of the mean causal effect). Since
very little randomness exists in the experiment in the following exam-
ple, his definition and ours are close. (Indeed, as we show in section
4.2, with a small number of units, the assumption of unit homogeneity
is most useful when the amount of randomness is fairly low.)

If [the unit] is a room in a house, t [for ‘treatment’] means that I flick the light
switch in that room, c [for ‘control’] means that I do not, and [the dependent
variable] indicates whether the light is on or not a short time after applying
either t or c, then I might be inclined to believe that I can know the values of
[the dependent variable for both t and c] by simply flicking the switch. It is
clear, however, that it is only because of the plausibility of certain assump-
tions about the situation that this belief of mine can be shared by anyone else.
If, for example, the light has been flicking off and on for no apparent reason
while I am contemplating beginning this experiment, I might doubt that I
would know the values of [the dependent variable for both t and c] after
flicking the switch—at least until I was clever enough to figure out a new
experiment!

In this example, the unit homogeneity assumption is that if we had
flicked the switch (in Holland’s notation, applied t) in both periods, the
expected value (of whether the light will be on) would be the same.
Unit homogeneity also assumes that if we had not flicked the switch
(applied c) in both periods, the expected value would be the same, al-
though not necessarily the same as when t is applied. Note that we
would have to reset the switch to the off position after the first experi-
ment to assure this, but we would also have to make the untestable
assumption that flipping the switch on in the first period does not ef-
fect the two hypothetical expected values in the next period (such as if
a fuse were blown after the first flip). In general, the unit homogeneity
assumption is untestable for a single unit (although, in this case, we
might be able to generate several new hypotheses about the causal
mechanism by ripping the wall apart and inspecting the wiring).

A weaker, but also fully acceptable, version of unit homogeneity is
the constant effect assumption. Instead of assuming that the expected
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value of the dependent variable is the same for different units with the
same value of the explanatory variable, we need only to assume that
the causal effect is constant. This is a weaker version of the unit homo-
geneity assumption, since the causal effect is only the difference be-
tween the two expected values. If the two expected values for units
with the same value of the explanatory variable vary in the same way,
the unit homogeneity assumption would be violated, but the constant
effect assumption would still be valid. For example, two congressional
districts could vary in the expected proportion of the vote for Demo-
cratic nonincumbents (say 45 percent vs. 65 percent), but incumbency
could still add an additional ten percent to the vote of a Democratic
candidate of either district.

The notion of unit homogeneity (or the less demanding assumption
of constant causal effects) lies at the base of all scientific research. It is,
for instance, the assumption underlying the method of comparative
case studies. We compare several units that have varying values on
our explanatory variables and observe the values of the dependent
variables. We believe that the differences we observe in the values of
the dependent variables are the result of the differences in the values
of the explanatory variables that apply to the observations. What we
have shown here is that our “belief” in this case necessarily relies upon
an assumption of unit homogeneity or constant effects.

Note that we may seek homogeneous units across time or across
space. We can compare the vote for the Democratic candidate when
there is a Democratic incumbent running with the vote when there is
no Democratic incumbent in the same district at different times or
across different districts at the same time (or some combination of the
two). Since a causal effect can only be estimated instead of known, we
should not be surprised that the unit homogeneity assumption is gen-
erally untestable. But it is important that the nature of the assumption
is made explicit. Across what range of units do we expect our assump-
tion of a uniform incumbency effect to hold? All races for Congress?
Congressional but not Senate races? Races in the North only? Races in
the past two decades only?

Notice how the unit homogeneity assumption relates to our discus-
sion in section 1.1.3 on complexity and “uniqueness.” There we argued
that social science generalization depends on our ability to simplify
reality coherently. At the limit, simplifying reality for the purpose of
making causal inferences implies meeting the standards for unit ho-
mogeneity: the observations being analyzed become, for the purposes
of analysis, identical in relevant respects. Attaining unit homogeneity
is often impossible; congressional elections, not to speak of revolu-
tions, are hardly close analogies to light switches. But understanding
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the degree of heterogeneity in our units of analysis will help us to esti-
mate the degree of uncertainty or likely biases to be attributed to our
inferences.

3.3.2 Conditional Independence

Conditional independence is the assumption that values are assigned to
explanatory variables independently of the values taken by the de-
pendent variables. (The term is sometimes used in statistics, but it does
not have the same definition as it commonly does in probability the-
ory.) That is, after taking into account the explanatory variables (or
controlling for them), the process of assigning values to the explana-
tory variable is independent of both (or, in general two or more) de-
pendent variables, Yi

N and Yi
I. We use the term “assigning values” to

the explanatory variables to describe the process by which these vari-
ables obtain the particular values they have. In experimental work, the
researcher actually assigns values to the explanatory variables; some
subjects are assigned to the treatment group and others to the control
group. In nonexperimental work, the values that explanatory variables
take may be “assigned” by nature or the environment. What is crucial
in these cases is that the values of the explanatory variables are not
caused by the dependent variables. The problem of “endogeneity” that
exists when the explanatory variables are caused, at least in part, by
the dependent variables is described in section 5.4.

Large-n analyses that involve the procedures of random selection
and assignment constitute the most reliable way to assure conditional
independence and do not require the unit homogeneity assumption.
Random selection and assignment help us to make causal inferences
because they automatically satisfy three assumptions that underlie the
concept of conditional independence: (1) that the process of assigning
values to the explanatory variables is independent of the dependent
variables (that is, there is no endogeneity problem); (2) that selection
bias, which we discuss in section 4.3, is absent; and (3) that omitted
variable bias (section 5.2) is also absent. Thus, if we are able to meet
these conditions in any way, either through random selection and as-
signment (as discussed in section 4.2) or through some other proce-
dure, we can avoid the Fundamental Problem of Causal Inference.

Fortunately, random selection and assignment are not required to
meet the conditional independence assumption. If the process by
which the values of the explanatory variables are “assigned” is not in-
dependent of the dependent variables, we can still meet the condi-
tional independence assumption if we learn about this process and
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include a measure of it among our control variables. For example,
suppose we are interested in estimating the effect of the degree of resi-
dential segregation on the extent of conflict between Israelis and Pales-
tinians in communities on the Israeli-occupied West Bank. Our con-
ditional independence assumption would be severely violated if we
looked only at the association between these two variables to find the
causal effect. The reason is that the Israelis and Palestinians who
choose to live in segregated neighborhoods may do so out of an ideo-
logical belief about who ultimately has rights to the West Bank. Ideo-
logical extremism (on both sides) may therefore lead to conflict. A
measure that we believe to be residential segregation might really be
a surrogate for ideology. The difference between the two explanations
may be quite important, since a new housing policy might help rem-
edy the conflict if residential segregation were the real cause, whereas
this policy would be ineffective or even counterproductive if ideology
were really the driving force. We might correct for the problem here by
also measuring the ideology of the residents explicitly and controlling
for it. For example, we could learn how popular extremist political
parties are among the Israelis and PLO affiliation is among the Pales-
tinians. We could then control for the possibly confounding effects of
ideology by comparing communities with the same level of ideological
extremism but differing levels of residential segregation.

When random selection and assignment are infeasible and we can-
not control for the process of assignment and selection, we have to
resort to some version of the unit homogeneity assumption in order to
make valid causal inferences. Since that assumption will be only im-
perfectly met in social science research, we will have to be especially
careful to specify our degree of uncertainty about causal inferences.
This assumption will be particularly apparent when we discuss the
procedures used in “matching” observations in section 5.6.

Notation for a Formal Model of a Causal Effect. We now generalize
our notation for the convenience of later sections. In general, we will
have n realizations of a random variable Yi. In our running quantita-
tive example, n is the number of congressional districts (435), and
the realization yi of the random variable Yi is the observed Demo-
cratic proportion of the two-party vote in district i (such as 0.56). The
expected nonincumbent Democratic proportion of the two-party
vote (the average over all hypothetical replications) in district i is
mi

N. We define the explanatory variable as Xi, which is coded in the
present example as zero when district i has no Democratic incum-
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bent and as one when district i has a Democratic incumbent. Then,
we can denote the mean causal effect in unit i as

b = E(Yi�Xi = 1) − E(Yi�Xi = 0) = mi
I − mi

N (3.4)

and incorporate it into the following simple formal model:

E(Yi) = mi
N + Xi(mi

I − mi
N) (3.5)

= mi
N + Xib

Thus, when district i has no incumbent, and Xi = 0, the expected
value is determined by substituting zero into equation (3.5) for Xi,
and the answer is as before:

E(Yi�X = 0) = mi
N + (0)b

= mi
N

Similarly, when a Democratic incumbent is running in district i, the
expected value is mi

I:

E(Yi�X = 1) = mi
N + (1)b

= mi
N + b

= mi
N + (mi

I − mi
N)

= mi
I

Thus, equation (3.5) provides a useful model of causal inference,
and b—the difference between the two theoretical proportions—is
our causal effect. Finally, for future reference, we simplify equation
(3.5) one last time. If we assume that Yi has a zero mean (or is written
as a deviation from its mean, which does not limit the applicability
of the model in any way), then we can drop the intercept from this
equation, and write it more simply as

E(Yi) = Xib (3.6)

The parameter b is still the theoretical value of the mean causal ef-
fect, a systematic feature of the random variables, and one of our
goals in causal inference. This model is a special case of “regression
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analysis,” which is common in quantitative research, but regression
coefficients are only sometimes coincident with estimates of causal
effects.

3.4 CRITERIA FOR JUDGING CAUSAL INFERENCES

Recall that by defining causality in terms of random variables, we were
able to draw a strict analogy between it and other systematic features
of phenomena, such as a mean or a variance, on which we focus in
making descriptive inferences. This analogy enables us to use precisely
the same criteria to judge causal inferences as we used to judge de-
scriptive inferences in section 2.7: unbiasedness and efficiency. Hence,
most of what we said on this subject in Chapter 2 applies equally well
to the causal inference problems we deal with here. In this section, we
briefly formalize the relatively few differences between these two
situations.

In section 2.7 the object of our inference was a mean (the expected
value of a random variable), which we designate as m. We conceptual-
ize m as a fixed, but unknown, number. An estimator of m is said to be
unbiased if it equals m on average over many hypothetical replications
of the same experiment.

As above, we continue to conceptualize the expected value of a ran-
dom causal effect, denoted as b, as a fixed, but unknown, number. The
unbiasedness is then defined analogously: an estimator of b is un-
biased if it equals b on average over many hypothetical replications
of the same experiment. Efficiency is also defined analogously as the
variability across these hypothetical replications. These are very im-
portant concepts that will serve as the basis for our studies of many of
the problems of causal inference in chapters 4–6. The two boxes that
follow provide formal definitions.

A Formal Analysis of Unbiasedness of Causal Estimates. In this
box, we demonstrate the unbiasedness of the estimator of the causal
effect parameter from section 3.1. The notation and logic of these
ideas closely parallel those from the formal definition of unbiased-
ness in the context of descriptive inference in section 2.7. The simple
linear model with one explanatory and one dependent variable is as
follows:12

12 In order to avoid using a constant term, we assume that all variables have zero
mean. This simplifies the presentation but does not limit our conclusions in any way.
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E(Yi) = bXi

Our estimate of b is simply the least squares regression estimate:

�n
i=1 YiXi (3.7)b = _________

�n
i=1 Xi

2

To determine whether b is an unbiased estimator of b, we need to
take the expected value, averaging over hypothetical replications:

�n
i=1 XiYi  (3.8)E(b) = E _________



 

�n
i=1 XiE(Yi)

�n
i=1 Xi

2

= ___________

�n
i=1 Xi

2

�n
i=1 Xi

2b
= _________

�n
i=1 Xi

2

= b

which proves that b is an unbiased estimator of b.

A Formal Analysis of Efficiency. Here, we assess the efficiency of
the standard estimator of the causal effect parameter b from section
3.1. We proved in equation (3.8) that this estimator is unbiased and
now calculate its variance:

�n
i=1 XiYi  (3.9)V(b) = V _________





1



n

�n
i=1 Xi

2

i=1

= __________�Xi
2V(Yi)

(�n
i=1 Xi

2)2

V(Yi)= ________

�n
i=1 Xi

2
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s2
= ________

�n
i=1 Xi

2

Thus, the variance of this estimator is a function of two components.
First, the more random each unit in our data (the larger is s2) is, the
more variable will be our estimator b; this should be no surprise. In
addition, the larger the observed variance in the explanatory vari-
able (�n

i=1Xi
2), the less variable will be our estimate of b. In the ex-

treme case of no variability in X, nothing can help us estimate the
effect of changes in the explanatory variable on the dependent vari-
able, and the formula predicts an infinite variance (complete uncer-
tainty) in this instance. More generally, this component indicates
that efficiency is greatest when we have evidence from a larger
range of values of the explanatory variable. In general, then, it is best
to evaluate our causal hypotheses in as many diverse situations as
possible. One way to think of this latter point is to think about draw-
ing a line with a ruler, two dots on a page, and a shaky hand. If the
two dots are very close together (small variance of X), errors in the
placement of the ruler will be much larger than if the dots are farther
apart (the situation of a large variance in X).

3.5 RULES FOR CONSTRUCTING CAUSAL THEORIES

Much sensible advice about improving qualitative research is precise,
specific, and detailed; it involves a manageable and therefore narrow
aspect of qualitative research. However, even in the midst of solving a
host of individual problems, we must keep the big picture firmly in
mind: each specific solution must help in solving whatever is the gen-
eral causal inference problem one aims to solve. Thus far in this chap-
ter, we have provided a precise theoretical definition of a causal effect
and discussed some of the issues involved in making causal inferences.
We take a step back now and provide a broader overview of some
rules regarding theory construction. As we discuss (and have dis-
cussed in section 1.2), improving theory does not end when data col-
lection begins.

Causal theories are designed to show the causes of a phenomenon or
set of phenomena. Whether originally conceived as deductive or in-
ductive, any theory includes an interrelated set of causal hypotheses.
Each hypothesis specifies a posited relationship between variables that
creates observable implications: if the specified explanatory variables
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take on certain values, other specified values are predicted for the de-
pendent variables. Testing or evaluating any causal hypothesis re-
quires causal inference. The overall theory, of which the hypotheses
are parts should be internally consistent, or else hypotheses can be gen-
erated that contradict one another.

Theories and hypotheses that fit these definitions have an enormous
range. In this section, we provide five rules that will help in formulat-
ing good theories, and we provide a discussion of each with examples.

3.5.1 Rule 1: Construct Falsifiable Theories

By this first rule, we do not only mean that a “theory” incapable of
being wrong is not a theory. We also mean that we should design the-
ories so that they can be shown to be wrong as easily and quickly as
possible. Obviously, we should not actually try to be wrong, but even
an incorrect theory is better than a statement that is neither wrong nor
right. The emphasis on falsifiable theories forces us to keep the right
perspective on uncertainty and guarantees that we treat theories as
tentative and not let them become dogma. We should always be pre-
pared to reject theories in the face of sufficient scientific evidence
against them. One question that should be asked about any theory (or
of any hypothesis derived from the theory) is simply: what evidence
would falsify it? The question should be asked of all theories and hy-
potheses but, above all, the researcher who poses the theory in the first
place should ask it of his or her own.

Karl Popper is most closely identified with the idea of falsifiability
(Popper 1968). In Popper’s view, a fundamental asymmetry exists be-
tween confirming a theory (verification) and disconfirming it (falsifica-
tion). The former is almost irrelevant, whereas the latter is the key to
science. Popper believes that a theory once stated immediately be-
comes part of the body of accepted scientific knowlege. Since theories
are general, and hypotheses specific, theories technically imply an infi-
nite number of hypotheses. However, empirical tests can only be con-
ducted on a finite number of hypotheses. In that sense, “theories are
not verifiable” because we can never test all observable implications of
a theory (Popper 1968:252). Each hypothesis tested may be shown to
be consistent with the theory, but any number of consistent empirical
results will not change our opinions since the theory remains accepted
scientific knowledge. On the other hand, if even a single hypothesis is
shown to be wrong, and thus inconsistent with the theory, the theory
is falsified, and it is removed from our collection of scientific knowl-
edge. “The passing of tests therefore makes not a jot of difference to
the status of any hypothesis, though the failing of just one test may
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make a great deal of difference” (Miller 1988:22). Popper did not mean
falsification to be a deterministic concept. He recognized that any em-
pirical inference is to some extent uncertain (Popper 1982). In his dis-
cussion of disconfirmation, he wrote, “even if the asymmetry [between
falsification and verification] is admitted, it is still impossible, for vari-
ous reasons, that any theoretical system should ever be conclusively
falsified” (Popper 1968:42).

In our view, Popper’s ideas are fundamental for formulating theories.
We should always design theories that are vulnerable to falsification.
We should also learn from Popper’s emphasis on the tentative nature
of any theory. However, for evaluating existing social scientific theo-
ries, the asymmetry between verification and falsification is not as sig-
nificant. Either one adds to our scientific knowledge. The question is
less whether, in some general sense, a theory is false or not—virtually
every interesting social science theory has at least one observable im-
plication that appears wrong—than how much of the world the theory can
help us explain. By Popper’s rule, theories based on the assumption of
rational choice would have been rejected long ago since they have
been falsified in many specific instances. However, social scientists
often choose to retain the assumption, suitably modified, because it
provides considerable power in many kinds of research problems (see
Cook and Levi 1990). The same point applies to virtually every other
social science theory of interest. The process of trying to falsify theories
in the social sciences is really one of searching for their bounds of ap-
plicability. If some observable implication indicates that the theory
does not apply, we learn something; similarly, if the theory works, we
learn something too.

For scientists (and especially for social scientists) evaluating prop-
erly formulated theories, Popper’s fundamental asymmetry seems
largely irrelevant. O’Hear (1989:43) made a similar point about the ap-
plication of Popper’s ideas to the physical sciences:

Popper always tends to speak in terms of explanations of universal theories.
But once again, we have to insist that proposing and testing universal theo-
ries is only part of the aim of science. There may be no true universal theo-
ries, owing to conditions differing markedly through time and space; this is
a possibility we cannot overlook. But even if this were so, science could still
fulfil [sic] many of its aims in giving us knowledge and true predictions
about conditions in and around our spatio-temporal niche.

Surely this same point applies even more strongly to the social sci-
ences.

Furthermore, Popper’s evaluation of theories does not fundamen-
tally distinguish between a newly formulated theory and one that has
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withstood numerous empirical tests. When we are testing for the de-
terministic distinction between the truth or fiction of a universal the-
ory (of which there exists no interesting examples), Popper’s view is
appropriate, but from our perspective of searching for the bounds of a
theory’s applicability, his view is less useful. As we have indicated
many times in this book, we require all inferences about specific hy-
potheses to be made by stating a best guess (an estimate) and a mea-
sure of the uncertainty of this guess. Whether we discover that the in-
ference is consistent with our theory or inconsistent, our conclusion
will have as much effect on our belief in the theory. Both consistency
and inconsistency provide information about the truth of the theory
and should affect the certainty of our beliefs.13

Consider the hypothesis that Democratic and Republican campaign
strategies during American presidential elections have a small net ef-
fect on the election outcome. Numerous more specific hypotheses are
implied by this one, such as that television commercials, radio com-
mercials, and debates all have little effect on voters. Any test of the
theory must really be a test of one of these hypotheses. One test of the
theory has shown that forecasts of the outcome can be made very accu-
rately with variables available only at the time of the conventions—
and thus before the campaign (Gelman and King 1993). This test is
consistent with the theory (if we can predict the election before the
campaign, the campaign can hardly be said to have much of an im-
pact), but it does not absolutely verify it. Some aspect of the campaign
could have some small effect that accounts for some of the forecasting
errors (and few researchers doubt that this is true). Moreover, the pre-
diction could have been luck, or the campaign could have not included
any innovative (and hence unpredictable) tactics during the years for
which data were collected.

We could conduct numerous other tests by including variables in
the forecasting model that measure aspects of the campaign, such as
relative amounts of TV and radio time, speaking ability of the candi-
dates, and judgements as to the outcomes of the debates. If all of these
hypotheses show no effect, then Popper would say that our opinion is
not changed in any interesting way: the theory that presidential cam-
paigns have no effect is still standing. Indeed, if we did a thousand

13 Some might call us (or accuse us of being!) “justificationists” or even “probabilistic
justificationists” (see Lakatos 1970), but if we must be labeled, we prefer the more coher-
ent, philosophical Bayesian label (see Leamer 1978; Zellner 1971; and Barnett 1982). In
fact, our main difference with Popper is our goals. Given his precise goal, we agree with
his procedure; given our goal, perhaps he might agree with ours. However, we believe
that our goals are closer to those in use in the social sciences and are also closer to the
ones likely to be successful.
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similar tests and all were consistent with the theory, the theory could
still be wrong since we have not tried every one of the infinite number
of possible variables measuring the campaign. So even with a lot of
results consistent with the theory, it still might be true that presidential
campaigns influence voter behavior.

However, if a single campaign event—such as substantial accusa-
tions of immoral behavior—is shown to have some effect on voters,
the theory would be falsified. According to Popper, even though this
theory was not conclusively falsified (which he recognized as impossi-
ble), we learn more from it than the thousand tests consistent with the
theory.

To us, this is not the way social science is or should be conducted.
After a thousand tests in favor and one against, even if the negative
test seemed valid with a high degree of certainty, we would not drop
the theory that campaigns have no effect. Instead, we might modify it
to say perhaps that normal campaigns have no effect except when
there is considerable evidence of immoral behavior by one of the can-
didates—but since this modification would make our theory more re-
strictive, we would need to evaluate it with a new set of data before
being confident of its validity. The theory would still be very powerful,
and we would know somewhat more about the bounds to which the
theory applied with each passing empirical evaluation. Each test of a
theory affects both the estimate of its validity and the uncertainty of
that estimate; and it may also affect to what extent we wish the theory
to apply.

In the previous discussion, we suggested an important approach to
theory, as well as issued a caution. The approach we recommended is
one of sensitivity to the contingent nature of theories and hypotheses.
Below, we argue for seeking broad application for our theories and
hypotheses. This is a useful research strategy, but we ought always to
remember that theories in the social sciences are unlikely to be uni-
versal in their applicability. Those theories that are put forward as ap-
plying to everything, everywhere—some versions of Marxism and
rational choice theory are examples of theories that have been put for-
ward with claims of such universality—are either presented in a tauto-
logical manner (in which case they are neither true nor false) or in a
way that allows empirical disconfirmation (in which case we will find
that they make incorrect predictions). Most useful social science theo-
ries are valid under particular conditions (in election campaigns with-
out strong evidence of immoral behavior by a candidate) or in particu-
lar settings (in industrialized but not less industrialized nations, in
House but not Senate campaigns). We should always try to specify the
bounds of applicability of the theory or hypothesis. The next step is to
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raise the question: Why do these bounds exist? What is it about Senate
races that invalidates generalizations that are true for House races?
What is it about industrialization that changes the causal effects? What
variable is missing from our analysis which could produce a more gen-
erally applicable theory? By asking such questions, we move beyond
the boundaries of our theory or hypothesis to show what factors need
to be considered to expand its scope.

But a note of caution must be added. We have suggested that the
process of evaluating theories and hypotheses is a flexible one: particu-
lar empirical tests neither confirm nor disconfirm them once and for
all. When an empirical test is inconsistent with our theoretically based
expectations, we do not immediately throw out the theory. We may do
various things: We may conclude that the evidence may have been
poor due to chance alone; we may adjust what we consider to be the
range of applicability of a theory or hypothesis even if it does not hold
in a particular case and, through that adjustment, maintain our accep-
tance of the theory or hypothesis. Science proceeeds by such adjust-
ments; but they can be dangerous. If we take them too far we make our
theories and hypotheses invulnerable to disconfirmation. The lesson is
that we must be very careful in adapting theories to be consistent with
new evidence. We must avoid stretching the theory beyond all plausi-
bility by adding numerous exceptions and special cases.

If our study disconfirms some aspect of a theory, we may choose to
retain the theory but add an exception. Such a procedure is acceptable
as long as we recognize the fact that we are reducing the claims we
make for the theory. The theory, though, is less valuable since it ex-
plains less; in our terminology, we have less leverage over the prob-
lem we seek to understand.14 Furthermore, such an approach may
yield a “theory” that is merely a useless hodgepodge of various excep-
tions and exclusions. At some point we must be willing to discard the-
ories and hypotheses entirely. Too many exceptions, and the theory
should be rejected. Thus, by itself, parsimony, the normative preference for
theories with fewer parts, is not generally applicable. All we need is our
more general notion of maximizing leverage, from which the idea of
parsimony can be fully derived when it is useful. The idea that science
is largely a process of explaining many phenomena with just a few
makes clear that theories with fewer parts are not better or worse. To
maximize leverage, we should attempt to formulate theories that ex-
plain as much as possible with as little as possible. Sometimes this for-
mulation is achieved via parsimony, but sometimes not. We can con-

14 As always, when we do modify a theory to be consistent with evidence we have
collected, then the theory (or that part of it on which our evidence bears) should be
evaluated in a different context or new data set.
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ceive of examples by which a slightly more complicated theory will
explain vastly more of the world. In such a situation, we would surely
use the nonparsimonious theory, since it maximizes leverage more
than the more parsimonious theory.15

3.5.2 Rule 2: Build Theories That Are Internally Consistent

A theory which is internally inconsistent is not only falsifiable—it is
false. Indeed, this is the only situation where the veracity of a theory
is known without any empirical evidence: if two or more parts of a
theory generate hypotheses that contradict one another, then no evi-
dence from the empirical world can uphold the theory. Ensuring that
theories are internally consistent should be entirely uncontroversial,
but consistency is frequently difficult to achieve. One method of pro-
ducing internally consistent theories is with formal, mathematical
modeling. Formal modeling is a practice most developed in economics
but increasingly common in sociology, psychology, political science,
anthropology, and elsewhere (see Ordeshook 1986). In political sci-
ence, scholars have built numerous substantive theories from mathe-
matical models in rational choice, social choice, spatial models of elec-
tions, public economics, and game theory. This research has produced
many important results, and large numbers of plausible hypotheses.
One of the most important contributions of formal modeling is reveal-
ing the internal inconsistency in verbally stated theories.

However, as with other hypotheses, formal models do not constitute
verified explanations without empirical evaluation of their predic-

15 Another formulation of Popper’s view is that “you can’t prove a negative.” You
cannot, he argues, because a result consistent with the hypothesis might just mean that
you did the wrong test. Those who try to prove the negative will always run into this
problem. Indeed, their troubles will be not only theoretical but professional as well since
journals are more likely to publish positive results rather than negative ones.

This has led to what is called the file drawer problem, which is clearest in the quantita-
tive literature. Suppose no patterns exist in the world. Then five of every one hundred
tests of any pattern will fall outside the 95 percent confidence interval and thus produce
incorrect inferences. If we were to assume that journals publish positive rather than neg-
ative results, they will publish only those 5 percent that are “significant”; that is, they
will publish only the papers that come to the wrong conclusions, and our file drawers
will be filled with all the papers that come to the right conclusions! (See Iyengar and
Greenhouse (1988) for a review of the statistical literature on this problem.) In fact, these
incentives are well known by researchers, and it probably affects their behaviors as well.
Even though the acceptance rate at many major social science journals is roughly 5 per-
cent, the situation is not quite this bad, but it is still a serious problem. In our view, the
file drawer problem could be solved if everyone adopted our alternative position. A
negative result is as useful as a positive one; both can provide just as much information about the
world. So long as we present our estimates and a measure of our uncertainty, we will be
on safe ground.
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tions. Formality does help us reason more clearly, and it certainly en-
sures that our ideas are internally consistent, but it does not resolve
issues of empirical evaluation of social science theories. An assump-
tion in a formal model in the social sciences is generally a convenience
for mathematical simplicity or for ensuring that an equilibrium can be
found. Few believe that the political world is mathematical in the same
way that some physicists believe the physical world is. Thus, formal
models are merely models—abstractions that should be distinguished
from the world we study. Indeed, some formal theories make predic-
tions that depend on assumptions that are vastly oversimplified, and
these theories are sometimes not of much empirical value. They are
only more precise in the abstract than are informal social science theo-
ries: they do not make more specific predictions about the real world,
since the conditions they specify do not correspond, even approxi-
mately, to actual conditions.

Simplifications are essential in formal modeling, as they are in all
research, but we need to be cautious about the inferences we can draw
about reality from the models. For example, assuming that all omitted
variables have no effect on the results can be very useful in modeling.
In many of the formal models of qualitative research that we pre-
sent throughout this book, we do precisely this. Assumptions like this
are not usually justified as a feature of the world; they are only of-
fered as a convenient feature of our model of the world. The results,
then, apply exactly to the situation in which these omitted variables
are irrelevant and may or may not be similar to results in the real
world. We do not have to check the assumption to work out the model
and its implications, but it is essential that we check the assumption
during empirical evaluation. The assumption need not be correct for
the formal model to be useful. But we cannot take untested or un-
justified theoretical assumptions and use them in constructing em-
pirical research designs. Instead, we must generally supplement a for-
mal theory with additional features to make it useful for empirical
study.

A good formal model should be abstract so that the key features of
the problem can be apparent and mathematical reasoning can be easily
applied. Consider, then, a formal model of the effect of proportional
representation on political party systems, which implies that propor-
tional representation fragments party systems. The key causal variable
is the type of electoral system—whether it is a proportional represen-
tation system with seats allocated to parties on the basis of their pro-
portion of the vote or a single-member district system in which a sin-
gle winner is elected in each district. The dependent variable is the
number of political parties, often referred to as the degree of party-
system fragmentation. The leading hypothesis is that electoral systems
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based on proportional representation generate more political parties
than do district-based electoral systems. For the sake of simplicity,
such a model might well include only variables measuring some es-
sential features of the electoral system and the degree of party-system
fragmentation. Such a model would generate only a hypothesis, not a
conclusion, about the relationship between proportional representa-
tion and party-system fragmentation in the real world. Such a hy-
pothesis would have to be tested through the use of qualitative or
quantitative empirical methods.

However, even though an implication of this model is that propor-
tional representation fragments political parties, and even though no
other variables were used in the model, using only two variables in an
empirical analysis would be foolish. A study that indicates that coun-
tries with proportional representation have more fragmented party
systems would ignore the problem of endogeneity (section 5.4), since
countries which establish electoral systems based on a proportional al-
location of seats to the parties may well have done so because of their
already existent fragmented party systems. Omitted variable bias
would also be a problem since countries with deep racial, ethnic, or
religious divisions are probably also likely to have fragmented party
systems, and countries with divisions of these kinds are more likely to
have proportional representation.

Thus, both of the requirements for omitted variable bias (section 5.2)
seem to be met: the omitted variable is correlated both with the explan-
atory and the dependent variable, and any analysis ignoring the vari-
able of social division would therefore produce biased inferences.

The point should be clear: formal models are extremely useful for
clarifying our thinking and developing internally consistent theories.
For many theories, especially complex, verbally stated theories, it may
be that only a formal model is capable of revealing and correcting in-
ternal inconsistencies. At the same time, formal models are unlikely to
provide the correct empirical model for empirical testing. They cer-
tainly do not enable us to avoid any of the empirical problems of scien-
tific inference.

3.5.3 Rule 3: Select Dependent Variables Carefully

Of course, we should do everything in research carefully, but choosing
variables, especially dependent variables, is a particularly important
decision. We offer the following three suggestions (based on mis-
takes that occur all too frequently in the quantitative and qualitative
literatures):

First, dependent variables should be dependent. A very common mistake
is to choose a dependent variable which in fact causes changes in our
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explanatory variables. We analyze the specific consequences of en-
dogeneity and some ways to circumvent the problem in section 5.4,
but we emphasize it here because the easiest way to avoid it is to
choose explanatory variables that are clearly exogenous and depen-
dent variables that are endogenous.

Second, do not select observations based on the dependent variable so that
the dependent variable is constant. This, too, may seem a bit obvious, but
scholars often choose observations in which the dependent variable
does not vary at all (such as in the example discussed in section 4.3.1).
Even if we do not deliberately design research so that the dependent
variable is constant, it may turn out that way. But, as long as we have
not predetermined that fact by our selection criteria, there is no prob-
lem. For example, suppose we select observations in two categories of
an explanatory variable, and the dependent variable turns out to be
constant across the two groups. This is merely a case where the esti-
mated causal effect is zero.

Finally we should choose a dependent variable that represents the varia-
tion we wish to explain. Although this point seems obvious, it is actually
quite subtle, as illustrated by Stanley Lieberson (1985:100):

A simple gravitational exhibit at the Ontario Science Centre in Toronto in-
spires a heuristic example. In the exhibit, a coin and a feather are both re-
leased from the top of a vacuum tube and reach the bottom at virtually the
same time. Since the vacuum is not a total one, presumably the coin reaches
the bottom slightly ahead of the feather. At any rate, suppose we visualize
a study in which a variety of objects is dropped without the benefit of such
a strong control as a vacuum—just as would occur in nonexperimental so-
cial research. If social researchers find that the objects differ in the time that
they take to reach the ground, typically they will want to know what charac-
teristics determine these differences. Probably such characteristics of the ob-
jects as their density and shape will affect speed of the fall in a nonvacuum
situation. If the social researcher is fortunate, such factors together will fully
account for all of the differences among the objects in the velocity of their
fall. If so, the social researcher will be very happy because all of the variation
between objects will be accounted for. The investigator, applying standard
social research-thinking will conclude that there is a complete understand-
ing of the phenomenon because all differences among the objects under study
have been accounted for. Surely there must be something faulty with our pro-
cedures if we can approach such a problem without even considering grav-
ity itself.

The investigator’s procedures in this example would be faulty only
if the variable of interest were gravity. If gravity were the explanatory
variable we cared about, our experiment does not vary it (since the
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experiment takes place in only one location) and therefore tells us
nothing about it. However, the experiment Lieberson describes would
be of great interest if we sought to understand variations in the time it
will take for different types of objects to hit the ground when they are
dropped from the same height under different conditions of air pres-
sure. Indeed, even if we knew all about gravity, this experiment would
still yield valuable information. But if, as Lieberson assumes, we were
really interested in an inference about the causal effect of gravity, we
would need a dependent variable which varied over observations with
differing degrees of gravitational attraction. Likewise, in social science,
we must be careful to ensure that we are really interested in under-
standing our dependent variable, rather than the background factors
that our research design holds constant.

Thus, we need the entire range of variation in the dependent vari-
able to be a possible outcome of the experiment in order to obtain an
unbiased estimate of the impact of the explanatory variables. Artificial
limits on the range or values of the dependent variable produce what
we define (in section 4.3) as selection bias. For instance, if we are inter-
ested in the conditions under which armed conflict breaks out, we can-
not choose as observations only those instances where the result is
armed conflict. Such a study might tell us a great deal about variations
among observations of armed conflict (as the gravity experiment tells
us about variations in speed of fall of various objects) but will not en-
able us to explore the sources of armed conflict. A better design if we
want to understand the sources of armed conflict would be one that
selected observations according to our explanatory variables and al-
lowed the dependent variable the possibility of covering the full range
from there being little or no threat of a conflict through threat situa-
tions to actual conflict.

3.5.4 Rule 4: Maximize Concreteness

Our fourth rule, which follows from our emphasis on falsifiability,
consistency, and variation in the dependent variable is to maximize
concreteness. We should choose observable, rather than unobservable,
concepts wherever possible. Abstract, unobserved concepts such as
utility, culture, intentions, motivations, identification, intelligence, or
the national interest are often used in social science theories. They can
play a useful role in theory formulation; but they can be a hindrance to
empirical evaluation of theories and hypotheses unless they can be de-
fined in a way such that they, or at least their implications, can be ob-
served and measured. Explanations involving concepts such as culture
or national interest or utility or motivation are suspect unless we can
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measure the concept independently of the dependent variable that we
are explaining. When such terms are used in explanations, it is too
easy to use them in ways that are tautological or have no differentiat-
ing, observable implications. An act of an individual or a nation may
be explained as resulting from a desire to maximize utility, to fulfill
intentions, or to achieve the national interest. But the evidence that the
act maximized utility or fulfilled intentions or achieved the national
interest is the fact that the actor or the nation engaged in it. It is incum-
bent upon the researcher formulating the theory to specify clearly and
precisely what observable implications of the theory would indicate its
veracity and distinguish it from logical alternatives.

In no way do we mean to imply by this rule that concepts like inten-
tions and motivations are unimportant. We only wish to recognize that
the standard for explanation in any empirical science like ours must be
empirical verification or falsification. Attempting to find empirical evi-
dence of abstract, unmeasurable, and unobservable concepts will nec-
essarily prove more difficult and less successful than for many imper-
fectly conceived specific and concrete concepts. The more abstract our
concepts, the less clear will be the observable consequences and the
less amenable the theory will be to falsification.

Researchers often use the following strategy. They begin with an ab-
stract concept of the sort listed above. They agree that it cannot be
measured directly; therefore, they suggest specific indicators of the ab-
stract concept that can be measured and use them in their explana-
tions. The choice of the specific indicator of the more abstract concept
is justified on the grounds that it is observable. Sometimes it is the only
thing that is observable (for instance, it is the only phenomenon for
which data are available or the only type of historical event for which
records have been kept). This is a perfectly respectable, indeed usually
necessary, aspect of empirical investigation.

Sometimes, however, it has an unfortunate side. Often the specific
indicator is far from the original concept and has only an indirect and
uncertain relationship to it. It may not be a valid indicator of the ab-
stract concept at all. But, after a quick apology for the gap between the
abstract concept and the specific indicator, the researcher labels the in-
dicator with the abstract concept and proceeds onward as if he were
measuring that concept directly. Unfortunately, such reification is
common in social science work, perhaps more frequently in quantita-
tive than in qualitative research, but all too common in both. For exam-
ple, the researcher has figures on mail, trade, tourism and student ex-
changes and uses these to compile an index of “societal integration” in
Europe. Or the researcher asks some survey questions as to whether
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respondents are more concerned with the environment or making
money and labels different respondents as “materialists” and “post-
materialists.” Or the researcher observes that federal agencies differ in
the average length of employment of their workers and converts this
into a measure of the “institutionalization” of the agencies.

We should be clear about what we mean here. The gap between con-
cept and indicator is inevitable in much social science work. And we
use general terms rather than specific ones for good reasons: they
allow us to expand our frame of reference and the applicability of our
theories. Thus we may talk of legislatures rather than of more nar-
rowly defined legislative categories such as parliaments or specific in-
stitutions such as the German Bundestag. Or we may talk of “decision-
making bodies” rather than legislatures when we want our theory to
apply to an even wider range of institutions. (In the next section we, in
fact, recommend this.) Science depends on such abstract classifica-
tions—or else we revert to summarizing historical detail. But our ab-
stract and general terms must be connected to specific measureable
concepts at some point to allow empirical testing. The fact of that con-
nection—and the distance that must be traversed to make it—must al-
ways be kept in mind and made explicit. Furthermore, the choice of a
high level of abstraction must have a real justification in terms of the
theoretical problem at hand. It must help make the connection be-
tween the specific research at hand—in which the particular indicator
is the main actor—and the more general problem. And it puts a bur-
den on us to see that additional research using other specific indica-
tors is carried on to bolster the assumption that our specific indicators
really relate to some broader concept. The abstract terms used in the
examples above—“societal integration,” “post-materialism,” and “in-
stitutionalization”—may be measured reasonably by the specific indi-
cators cited. We do not deny that the leap from specific indicator to
general abstract concept must be made—we have to make such a leap
to carry on social science research. The leap must, however, be made
with care, with justification, and with a constant “memory” of where
the leap began.

Thus, we do not argue against abstractions. But we do argue for a
language of social research that is as concrete and precise as possible.
If we have no alternative to using unobservable constructs, as is usu-
ally the case in the social sciences, then we should at least choose ideas
with observable consequences. For example, “intelligence” has never been
directly observed but it is nevertheless a very useful concept. We have
numerous tests and other ways to evaluate the implications of intelli-
gence. On the other hand, if we have the choice between “the institu-
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tionalization of the presidency” and “size of the White House staff,”
it is usually better to choose the latter. We may argue that the size of
the White House staff is related to the general concept of the institu-
tionalization of the presidency, but we ought not to reify the narrower
concept as identical to the broader. And, if size of staff means institu-
tionalization, we should be able to find other measures of institutional-
ization that respond to the same explanatory variables as does size of
staff. Below, we shall discuss “maximizing leverage” by expanding
our dependent variables.

Our call for concreteness extends, in general, to the words we use to
describe our theory. If a reader has to spend a lot of time extracting the
precise meanings of the theory, the theory is of less use. There should
be as little controversy as possible over what we mean when we de-
scribe a theory. To help in this goal of specificity, even if we are not
conducting empirical research ourselves, we should spend time explic-
itly considering the observable implications of the theory and even
possible research projects we could conduct. The vaguer our language,
the less chance we will be wrong—but the less chance our work will be
at all useful. It is better to be wrong than vague.

In our view, eloquent writing—a scarce commodity in social sci-
ence—should be encouraged (and savored) in presenting the rationale
for a research project, arguing for its significance, and providing rich
descriptions of events. Tedium never advanced any science. However,
as soon as the subject becomes causal or descriptive inference, where
we are interested in observations and generalizations that are expected
to persist, we require concreteness and specificity in language and
thought.16

16 The rules governing the best questions to ask in interviews are almost the same as
those used in designing explanations: Be as concrete as possible. We should not ask
conservative, white Americans, “Are you racist?”, rather, “Would you mind if your
daughter married a black man?” We should not ask someone if he or she is knowledge-
able about politics; we should ask for the names of the Secretary of State and Speaker of
the House. In general and wherever possible, we must not ask an interviewee to do our work
for us. It is best not to ask for estimates of causal effects; we must ask for measures of the
explanatory and dependent variables, and estimate the causal effect ourselves. We must
not ask for motivations, but rather for facts.

This rule is not meant to imply that we should never ask people why they did some-
thing. Indeed, asking about motivations is often a productive means of generating hy-
potheses. Self-reported motivations may also be a useful set of observable implications.
However, the answer given must be interpreted as the interviewee’s response to the
researcher’s question, not necessarily as the correct answer. If questions such as these are
to be of use, we should design research so that a particular answer given (with whatever
justifications, embellishments, lies, or selective memories we may encounter) is an ob-
servable implication.
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3.5.5 Rule 5: State Theories in as Encompassing Ways as Feasible

Within the constraints of guaranteeing that the theory will be falsifi-
able and that we maximize concreteness, the theory should be formu-
lated so that it explains as much of the world as possible. We realize
that there is some tension between this fifth rule and our earlier injunc-
tion to be concrete. We can only say that both goals are important,
though in many cases they may conflict, and we need to be sensitive to
both in order to draw a balance.

For example, we must not present our theory as if it only applies to
the German Bundestag when there is reason to believe that it might
apply to all independent legislatures. We need not provide evidence
for all implications of the theory in order to state it, so long as we pro-
vide a reasonable estimate of uncertainty that goes along with it. It
may be that we have provided strong evidence in favor of the theory
in the German Bundestag. Although we have no evidence that it
works elsewhere, we have no evidence against it either. The broader
reference is useful if we remain aware of the need to evaluate its ap-
plicability. Indeed, expressing it as a hypothetically broader reference
may force us to think about the structural features of the theory that
would make it apply or not to other independent legislatures. For ex-
ample, would it apply to the U.S. Senate, where terms are staggered, to
the New Hampshire Assembly, which is much larger relative to the
number of constituents, or to the British House of Commons, in which
party voting is much stronger? An important exercise is stating what
we think are systematic features of the theory that make it applicable
in different areas. We may learn that we were wrong, but that is con-
siderably better than not having stated the theory with sufficient preci-
sion in the first place.

This rule might seem to conflict with Robert Merton’s ([1949] 1968)
preference for “theories of the middle-range,” but even a cursory read-
ing of Merton should indicate that this is not so. Merton was reacting
to a tradition in sociology where “theories” such as Parson’s “theory of
action” were stated so broadly that they could not be falsified. In polit-
ical science, Easton’s “systems theory” (1965) is in this same tradition
(see Eckstein 1975:90). As one example of the sort of criticism he was
fond of making, Merton ([1949] 1968: 43) wrote, “So far as one can tell,
the theory of role-sets is not inconsistent with such broad theoretical
orientations as Marxist theory, functional analysis, social behaviorism,
Sorokin’s integral sociology, or Parson’s theory of action.” Merton is
not critical of the theory of role-sets, which he called a middle-range
theory, rather he is arguing against those “broad theoretical orienta-
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tions,” with which almost any more specific theory or empirical ob-
servation is consistent. Merton favors “middle-range” theories but we
believe he would agree that theories should be stated as broadly as
possible as long as they remain falsifiable and concrete. Stating theo-
ries as broadly as possible is, to return to a notion raised earlier, a way
of maximizing leverage. If the theory is testable—and the danger of
very broad theories is, of course, that they may be phrased in ways
that are not testable—then the broader the better; that is, the broader,
the greater the leverage.


