0323200 - Práticas de Eletricidade e Eletrônica I - 2018

Experiência 1 – Componentes Ativos - A ser entregue no final da aula

Nome:	N°USP:
	-
Nome:	N°USP:

1. Determinação da curva caraterística de um diodo

1.7 Varie agora a fonte de tensão, e vá monitorando a tensão sobre o resistor (V_R) de forma a obter a corrente com cada um dos valores indicados na tabela abaixo (lembrar que $I_D = V_R/10$ K). Meça então a tensão V_D e complete a tabela abaixo:

Corrente I _D (mA)	Tensão V _D (V)
1,0 mA	
0,9 mA	
0,8 mA	
0,7 mA	
0,6 mA	
0,5 mA	
0,4 mA	
0,3 mA	
0,2 mA	
0,1 mA	

- 1.8 Por tradição, faz-se o gráfico da corrente I_D no eixo y e da tensão V_D no eixo x. Faça o gráfico da corrente (em y) em função da tensão (em x) na folha de papel milimetrado começando o eixo x em 0V e fazendo cada centímetro equivaler a 0,05V. Seus dados ficarão comprimidos em um região do gráfico más é importante que o ponto 0V esteja visível na escala.
- 1.9 Qual a aparência da curva obtida?

- 1.10 Faça agora o gráfico da corrente (em y eixo log) em função da tensão (em x eixo linear) na folha de papel monolog. Neste caso comece o eixo x um pouco antes do menor valor que você obteve para V_D (Comece por exemplo em 0,49V) e faça cada intervalo equivaler a 0,01V. Note que no eixo y vamos utilizar apenas uma das três décadas do papel (um terço do papel).
- 1.11 Pode-se afirmar que a relação entre a corrente e a tensão no diodo obedece uma lei exponencial?
- 1.12 Supondo que a **lei do diodo** é da forma $I_D = K_1 *_e V_D / K_2$, determine as constantes K_1 e K_2 . Não esqueça de colocar as unidades!

$$I_D = \dots e^{\frac{V_D}{\dots}}$$

2. Comprovação da atuação do transistor como chave eletrônica

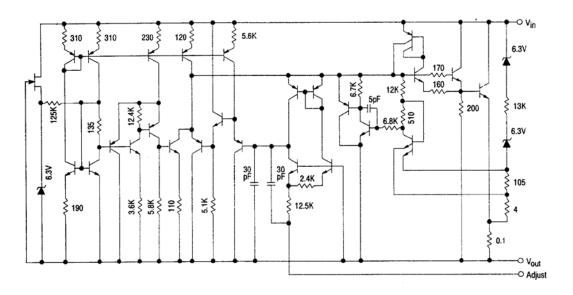
2.8 Vamos agora fazer VENTRADA = +5V. Para isso ligue um fio no terminal livre do resistor de $100k\Omega$ (receptáculo 1B) e conecte a outra extremidade do fio ao ponto com +5V (anodo do diodo). O LED acendeu? Por quê?

2.9 Meça a tensão na saída (coletor do transistor). O resultado era esperado? Por quê? O que você entende por "nível lógico"?

Tensão na entrada (V _{ENTRADA})	Tensão na saída (V _{SAÍDA})	
(nível lógico)	(nível lógico)	

2.10 V	amos agora repetir o processo, mas f	Fazendo $VENTRADA = 0V$.	Para isso desconecte
do	anodo do diodo o fio do terminal liv	re do resistor de 100 k Ω (item 2.7) e conecte-o
ag	ora no emissor do transistor (tensão z	zero). O LED acendeu? Po	or quê?

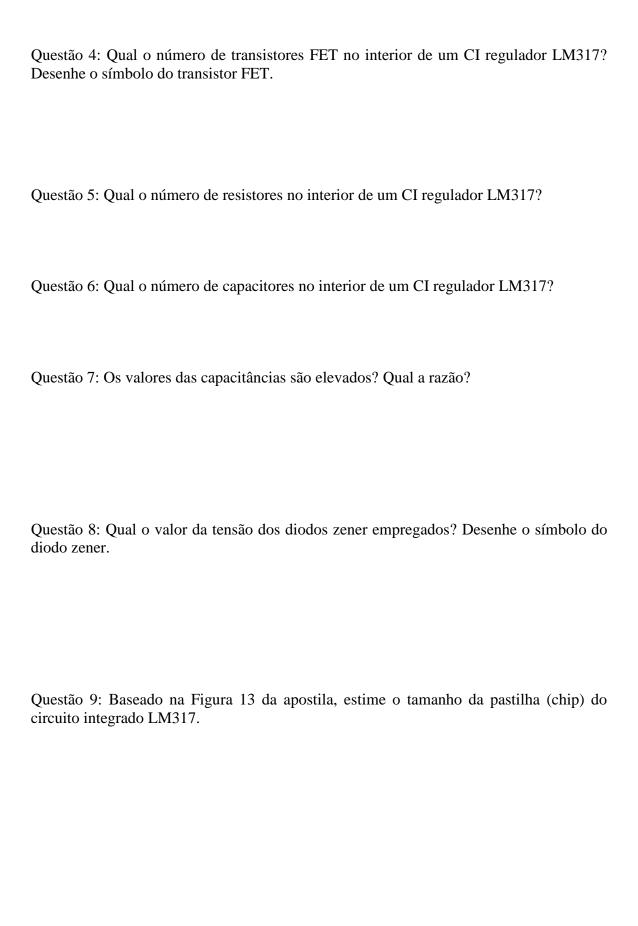
2.11 Meça a tensão na saída (coletor do transistor). O resultado era esperado? Por quê?


Tensão na entrada (V _{ENTRADA})	Tensão na saída (V _{SAÍDA})	
(nível lógico)	(nível lógico)	

2.12 Dos valores obtidos você pode dizer que o transistor funciona como uma chave?

2.13 O circuito montado pode ser considerado um inversor lógico? Por quê?

Atividade de observação 1: O Circuito Integrado LM317


LM317 DIAGRAMA ESQUEMÁTICO

Questão 1: Qual o número total de transistores no interior de um circuito regulador LM317?

Questão 2: Desenhe o símbolo de um transistor bipolar *npn*. Qual o número de transistores bipolares *npn* no interior de um circuito regulador LM317?

Questão 3: Desenhe o símbolo de um transistor bipolar *pnp*. Qual o número de transistores bipolares *pnp* no interior de um circuito regulador LM317?

