
SC I ENCE TRANS LAT IONAL MED I C I N E | R E S EARCH ART I C L E
MICROB IOTA
1Department of Ecology and Evolution, University of Chicago, 1101 East 57th Street,
Chicago, IL 60637, USA. 2Division of Biosciences, Argonne National Laboratory, 9700
South Cass Avenue, Argonne, IL 60439, USA. 3Microbiome Center, Department of Sur-
gery, University of Chicago, A27 South Maryland Avenue, Chicago, IL 60637, USA.
4Alkek Center for Metagenomics and Microbiome Research, Department of Molec-
ular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030,
USA. 5Department of Medicine, University of Chicago, 5841 South Maryland Avenue,
Chicago, IL 60637, USA. 6Department of Civil Engineering, University of Toronto,
35 St. George Street, Toronto, Ontario M5S 1A4, Canada. 7Dalla Lana School of Public
Health, University of Toronto, 223 College Street, Toronto, Ontario M5T 1R4, Canada.
8Department of Pediatrics, University of California, San Diego, San Diego, CA 92037,
USA. 9Department of Computer Science and Engineering, University of California,
San Diego, San Diego, CA 92037, USA. 10Department of Civil, Architectural and
Environmental Engineering, Illinois Institute of Technology, 3201 South Dearborn
Street, Chicago, IL 60616, USA.
*Present address: School of Biological Sciences, University of Auckland, 3A Symonds
Street, Auckland 1010, New Zealand.
†Present address: Division of Colon and Rectal Surgery, Mayo Clinic, Rochester,
MN 55905, USA.
‡Present address: Division of Trauma and Critical Care, Vanderbilt University,
Nashville, TN 37212, USA.
§Corresponding author. Email: gilbertjack@gmail.com

Lax et al., Sci. Transl. Med. 9, eaah6500 (2017) 24 May 2017
2017 © The Authors,

some rights reserved;

exclusive licensee

American Association

for the Advancement

of Science.
Bacterial colonization and succession in a newly
opened hospital
Simon Lax,1,2 Naseer Sangwan,2,3 Daniel Smith,4 Peter Larsen,2 Kim M. Handley,1*
Miles Richardson,1 Kristina Guyton,3 Monika Krezalek,3 Benjamin D. Shogan,3† Jennifer Defazio,3

Irma Flemming,3‡ Baddr Shakhsheer,3 Stephen Weber,5 Emily Landon,5 Sylvia Garcia-Houchins,5

Jeffrey Siegel,6,7 John Alverdy,3 Rob Knight,8,9 Brent Stephens,10 Jack A. Gilbert1,2,3§

Themicroorganisms that inhabit hospitalsmay influence patient recovery and outcome, although the complexity and
diversity of these bacterial communities can confound our ability to focus on potential pathogens in isolation. To de-
velop a community-level understanding of how microorganisms colonize and move through the hospital
environment, we characterized the bacterial dynamics among hospital surfaces, patients, and staff over the course
of 1 year as a new hospital became operational. The bacteria in patient rooms, particularly on bedrails, consistently re-
sembled the skin microbiota of the patient occupying the room. Bacterial communities on patients and room surfaces
became increasingly similar over the course of a patient’s stay. Temporal correlations in community structure demon-
strated that patients initially acquired room-associated taxa that predated their stay but that their own microbial sig-
natures began to influence the room community structure over time. The a- and b-diversity of patient skin samples
were only weakly or nonsignificantly associated with clinical factors such as chemotherapy, antibiotic usage, and sur-
gical recovery, and no factor except for ambulatory status affected microbial similarity between the microbiotas of a
patient and their room. Metagenomic analyses revealed that genes conferring antimicrobial resistance were
consistently more abundant on room surfaces than on the skin of the patients inhabiting those rooms. In addition,
persistent unique genotypes of Staphylococcus and Propionibacteriumwere identified. Dynamic Bayesian network anal-
ysis suggested that hospital staff weremore likely to be a source of bacteria on the skin of patients than the reverse but
that there were no universal patterns of transmission across patient rooms.
INTRODUCTION
The indoor environment has become the most intimate ecosystem for
most inhabitants of the developed world. A strong link has been ob-
served between themicrobial communities associated with human skin
and those recovered from buildings (1–4), and the reducedmicrobial di-
versity of these environments relative to the outside worldmay be linked
to an increased incidence of immunological diseases such as asthma and
allergies (5–8). A potential link between hospital-associated microbial
communities and hospital-acquired infections, a leading cause of patient
death (9–11), needs further investigation (1). In particular, an under-
standing of bacterial community structure in hospital environments will
be critical formapping the dissemination of antimicrobial resistance genes
(12). Culture-based analyses of pathogen genomes remain essential for
inferring patterns of hospital-acquired infection transmission, and full
genome sequencingmay be required to establish virulence. Additionally,
very subtle nucleotide variation can be used to establish transmission
networkswithinhospitals (13,14) and around the globe (15, 16).Although
of critical importance, whole-genome analyses necessarily restrict the
focus of studies of hospital-associated bacteria to a small subset of clini-
cally relevant taxa. Larger-scale analyses of commensal hospital micro-
biota can help to elucidate how microorganisms are vectored through
the health care environment and the extent towhich the skinmicrobiota
of patients and staff influence, and are influenced by, these surroundings.
Outside of a small number of studies limited to intensive care units and
neonatal care rooms (17–19), nodetailed longitudinal, culture-independent
analyses of the hospital microbiota have yet been undertaken (1). Addi-
tionally, although a number of longitudinal studies have clarified the tem-
poral dynamics of the human skinmicrobiota (2, 20), little is known about
howskinbacterial communities of patients respond tohospital stays and to
clinical treatments such as chemotherapy and antibiotic administration.

Here, we present a yearlong survey of the bacterial diversity associated
with the patients, staff, and surfaces of the newly constructed Center for
Care and Discovery (University of Chicago), an inpatient hospital for
medical and surgical patients. Sampling began 2months before the hos-
pital opening on 23 February 2013 and continued for a year thereafter.
We collected 6523 microbial samples from multiple sites (table S1 and
fig. S1) in 10 patient care rooms and two nurse stations split evenly
across two hospital floors: the surgical subspecialty floor and the hema-
tology and oncology floor. One patient roomon each floor was sampled
daily, whereas all other environments where sampled weekly. All rooms
werenoncritical care rooms that allowed for 24-hour visitation, and rooms
were cleaned dailywith a quaternary ammonium solution and at discharge
with a 1:1000 bleach solution. The building’s environmental and opera-
tional conditions, including temperature, relative humidity, illuminance,
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Fig. 1. Change in microbial community structure after hospital opening. (A) Principal coordinate analysis (PCoA) of all floor samples based on weighted UniFrac
distance and colored by whether they were taken before or after the hospital’s opening. (B) PCoA of three nurse station surfaces colored as in (A). (C) Changes in the
relative abundance of five key genera after hospital opening. (D) Box plot of changes in the Shannon diversity index of samples after hospital opening.
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CO2 concentrations, and infrared doorway beam breaks, were continu-
ously monitored (21, 22). At least 5000 high-quality 16S ribosomal RNA
(rRNA) V4 amplicons were generated per sample using the protocols
outlined by the Earth Microbiome Project.
RESULTS
Changes in hospital bacterial communities after
hospital opening
As soon as the hospital became operational, the floor and nurse station
surfaces demonstrated an increase in the relative abundance of the human
skin–associated generaCorynebacterium, Staphylococcus, and Streptococcus,
and a decrease inAcinetobacter andPseudomonas, which dominated pre-
opening samples (Fig. 1, A to C). Network analysis revealed an almost
complete shift in operational taxonomic unit (OTU)–level composition
well beyond these dominant genera (fig. S2). Shannon diversity, which
accounts for both the richness and evenness of observed OTUs, signif-
icantly increased in nurse station surfaces with which human skin com-
monly interacts (P<0.001; Fig. 1D) but not in floor samples. Beyond the
5 genera discussed above, a further 15 genera were detected in the data
set that satisfied at least one of the following criteria: an average abun-
dance of 1% or greater across all sample types or an abundance of 5% or
greater in at least one individual sample type (fig. S3). These included
genera such as Enterococcus, other unclassifiable members of the family
Enterobacteriaceae, Finegoldia, Rothia, Prevotella, and Sphingomonas,
although the 16S amplicon–based methods used in this study were not
suitable for establishing virulence. We noted that Propionibacterium, a
dominant colonizer of human skin and built environments, was not well
amplified by the primer set used in this study (23).

a- and b-diversity of sample types
We calculated the a-diversity of our samples using two different
methods: the Shannon index, which is based on the abundance and
Lax et al., Sci. Transl. Med. 9, eaah6500 (2017) 24 May 2017
evenness of the observed taxa, and the phylogenetic diversity of the
samples, which is an unweightedmeasure of the branch length spanned
by a phylogenetic tree of the observed taxa. Rarefaction curves dem-
onstrated that diversity calculations converged at sampling depths
well below the 5000 reads per sample analyzed in this study (fig. S4).
Skin samples from patients and nurses were generally the least diverse
of all sample types by both metrics, whereas sample sites most likely
to interact with the outdoors, such as shoes, floors, and recirculated
indoor air (which originated largely from high-efficiency particulate air–
filtered outdoor air) (21), were themost diverse (Fig. 2A).We noted that
these calculations were based on evenly rarefied data that provided
insight only into the relative, rather than absolute, abundance of differ-
ent community members.

b-Diversity patterns grouped our sample types into three sets (Fig. 2B).
The first set, comprising patient skin samples, staff nose samples, and
unused latex gloves, was dissimilar to all other sets and had high variance
within sample types. The second set, comprising floor samples andmost
nurse station samples, was highly similar to other sample typeswithin the
set and had low variance within sample types. The final set, comprising
staff clothing and personal effects such as shoes, pagers, and cell phones,
was similar to the second set but not to other sample types within the
group. Hand microbial communities of staff were more similar to the
microbiota of hospital surfaces than were hand microbial communities
of patients (Fig. 2B), likely as a result of the greatermobility of staffwithin
the hospital. Supervised learningmodels could successfully differentiate
both nose andhand samplemicrobial communities according towhether
they were taken from staffmembers or patients (error ratios of 2.5 and
3.9, respectively). Hand samples could even be differentiated using
genus-level data (error ratio = 3.3), with the generaMicrococcus (staff-
associated) and Prevotella (patient-associated) having the highest feature
importance scores. In the preopening time period, room and nursing
station floor samples had highly similar microbial communities but
were dissimilar to other surfaces, whereas post-opening floor samples had
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a greater degree of similarity to all surfaces, which could be explained
by higher foot traffic after opening (Fig. 2B).

Temporal correlation of microbial communities across
hospital surfaces
Todetermine the strength ofmicrobial interactionswith different hospital
surfaces, we calculated the degree of resemblance between samples taken
from two different surfaces on the same day and in the same patient
Lax et al., Sci. Transl. Med. 9, eaah6500 (2017) 24 May 2017
room or nurse station. Here, we determined principal coordinate (PC)
correlation, by calculating aweighted average of the correlations between
samples taken from the same room and date along the dominant eigen-
vectors of the distance matrix (Fig. 3). Patient hands and bedrails had a
strong interaction (r = 0.5), although all pairwise correlations within
patient rooms were significant, suggesting a degree of microbial homog-
enization on the same daywithin each room. The strongest observed cor-
relations were between the handmicrobiota of the hospital staff and their
personal cell phones and pagers (r = 0.48 and 0.52, respectively), which
mirrors the findings in previous studies (24, 25). Correlations within the
nurse station environmentwere significant but comparativelyweak, likely
due to the diversity of people using these environments.

We calculated the variability in the common microbiota (the set of
OTUs found in at least a given percentage of samples) for five surface
types as a function of the minimum threshold to be considered part of
the common microbiota (Fig. 4A). The average percent of 16S rRNA
reads detected in every sample of a given room varied between 15
and 35%. This highlights the biogeographic variability of surfaces and
the dynamic nature of the interaction between patient and roommicro-
biotas. Variability was greatest for patient axilla (armpit) and lowest for
patient noses; however, the trends for all five surfaces were markedly
similar, suggesting that variability in the microbiotas of room bedrails
and floors could be attributable to variation in patient skinmicrobiotas
(Fig. 4A). We used a Bayesian source-tracking approach (26) to eval-
uate predictive matching of microbial profiles of samples taken from
the first and second days of a patient’s stay for the 19 patients with such
data (fig. S5A). For the same surface type (for example, hand to hand),
the microbial community on day 2 was highly predictive of the day
1microbial community of the corresponding patient (fig. S5A).Models
using the microbial profile of day 1 hands to predict day 2 bedrails and
vice versa were also highly accurate. In contrast, floor, nose, and axilla
samples had much weaker, but still substantially better than random
(1/19, 0.053), predictive accuracy with the exception of nose or floor
predicting axilla.

Patient skin and room surfaces becamemoremicrobially similar over
the course of their stay, as evidenced by uniformly negative Spearman
correlations between day of stay and community dissimilarity between
surface types (Fig. 4B and fig. S5B). The strength and significance of the
correlation varied between comparisons but were strongest between pa-
tients’hands and their room floor (r =−0.39,P= 0.002). Patients’hands
and axillae became significantly more similar over the course of their
hospital stay (r = −0.29, P = 0.015), perhaps because of reduced micro-
bial exposure and homogenization resulting from bed confinement.

To assess directionality in microbial transfer, we turned to the seven
patients whomwe sampled both on their date of admission (day 0) and
after they had spent their first night in the hospital (day 1).We calculated
the UniFrac gain for each pair of samples, which is an asymmetric mea-
sure of howmuch phylogenetic diversity (branch length) is gained when
one sample is added to another (Fig. 4C). We found that hospital
environment samples added more diversity to patient samples on day
1 than on day 0 and that patient samples addedmore diversity to hospital
environment samples on day 0 than day 1 (Fig. 4D). That is, taxa shared
with the skinof the current patientweremore abundant on roomsurfaces
after the patient had spent a night in the room, whereas taxa shared with
room surfaces were more abundant on patient skin when a patient first
entered the room (Fig. 4D). This asymmetry suggested that patients ini-
tially acquired room-associated taxa that predated their stay but that
their own microbial signatures began to influence the roommicrobiota
over time.
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Influence of patient clinical factors
There are countless clinical factors that may influence the a- and
b-diversity of patient skin, as well as the extent to which the bacterial
communities of patients and their rooms resemble each other. To
investigate how a patient’s clinical historymay inform the results of this
study, we analyzed the medical records of the 49 patients who were
sampled onmultiple days. Although every patient had a uniquemedical
history and reason for hospitalization, we coded this complexity into a
number of binary variables that allowed for the statistical power to infer
their influence on patient skin microbiota. Our analyses focused on the
following clinical factors: admission through the emergency room, visit
to the operating room before sampling, antibiotic use immediately
before admission, antibiotic use at any time point during the hospital
stay, antibiotic use at time of sampling, chemotherapy during hospital
stay, and ambulatory status on admission. We further considered the
patients’ sex, age, andweight, aswell as their length of stay in the hospital,
the service they were admitted to, and the route of antibiotic administra-
tion if they were prescribed antibiotics during their hospital stay. A full
summary of these factors is available in table S2, along with the correla-
tions between these factors.

Canonical correspondence analysis (CCA) was used to infer rela-
tionships between the taxonomic composition of patient skin and bed-
rail samples and medical and environmental metadata. No significant
effects were observed for anymetadata criterion on the a- or b-diversity
of room floor or room faucet handle samples. For patient hand and
axilla samples, as well as bedrail samples, no factors were found that
significantly constrained the variance inOTU-level composition,whereas
chemotherapy treatment was the only significant constraint on nose
bacterial community composition (P = 0.02; 1.3% of the variance con-
strained). The effect of these factors was more evident in permutational
multivariate analysis of variance (PERMANOVA) analyses of b-diversity
(Table 1A), with all seven binary factors significantly influencing the
structure of handmicrobial communities. All factors, except antibiotics
taken before admission, were significant for nose samples. All factors,
except ambulatory status, were significant for bedrail samples. Axilla
Lax et al., Sci. Transl. Med. 9, eaah6500 (2017) 24 May 2017
sampleswere least influenced by these variables, with only preadmission
antibiotics and chemotherapy treatment showing significant effects
(Table 1A). Despite the significance of these tests, the differences in
the average ranked distances ofwithin- and between-group comparisons
were uniformly low (all analysis of similarityR statistics < 0.15), suggesting
relatively weak effects of these factors on the variance of microbial com-
munities between patients. Further, random forest supervised learning
models (table S3)were unable to successfully predict any of these patient
factors based on OTU abundances (error ratio < 2), with the exception
of weakly predicting whether a patient had visited an operating room
based on hand (error ratio = 2.29) and nose (error ratio = 2.38) samples.
The feature importance scores of individualOTUs for those twomodels
were significantly correlated (r =0.47), suggesting that patientsmay either
pick up certain taxa in the operating room (or en route to and from the
operating room)or experience a consistent reduction in certain taxadue to
presurgical preparation with antimicrobials such as chlorhexidine.

We also assessed the effects of these clinical factors on thea-diversity
(Faith’s phylogenetic diversity) (27) of patient skin and bedrail samples
(Table 1B). The strongest observed effect was significantly lower diversity
for all four sample types in patients who were admitted through the
emergency department (Table 1B). We hypothesized that this may be
due toprolongedduration in thehealth care environmentbecausepatients
likely would have spent several hours in the emergency roombefore being
transferred to the general care room where they were sampled. Patients
undergoing chemotherapy had significantly lower diversity in nose and
hand samples, as well as on bedrail samples (Table 1B), presumably due
to indirect toxic effects of chemotherapeutic agents on the bacterial com-
munity or as a consequence of immune system changes related to the
treatment. Patients who were not ambulatory had lower microbial di-
versity in nose, hand, and bedrail samples, presumably because being
confined to bed reduced their potential microbial exposure or due to
a higher likelihood ofmicrobial dysbiosis before admission. Ambulatory
status was the only factor that significantly influenced the level of sim-
ilarity between sample types, with the microbiota of non-ambulatory
patients being less similar to that of hospital surfaces (table S4).
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Antibiotics had no consistently observed effect on the a-diversity of
the microbiota of patient skin (Fig. 5A) or in ordination clustering of
patient skinmicrobiota samples (Fig. 5B), evenwhen controlling for length
of exposure and the route of delivery. Most patients who received antibio-
tics were administered the drugs either intravenously or orally, suggesting
that these routes of deliverymay have negligible effects on the skinmicro-
biota at the community level. A total of 26 different antibiotics were pre-
scribed to the patients we analyzed over the course of their stay, and it is
possible that the effects of individual drugs weremasked by our grouping
according to route of administration. Unfortunately, we do not have the
statistical power to assess the effects of individual drugs, althoughwe do
note that the four patients administered topical antibiotics (neospo-
rin in all cases) saw decreases in skin microbial diversity after use of the
antibiotic.
Lax et al., Sci. Transl. Med. 9, eaah6500 (2017) 24 May 2017
Effect of environmental conditions
As previously reported (21), temperature in patient rooms ranged from
20° to 26°C, with mean 23.5°C and SD 1.4°C. Relative humidity ranged
from 14.2 to 48.5%, withmean 34.8% and SD 6.8%. Humidity ratio had
mean 6.3 gW/kgda with SD 1.23 gW/kgda, and illuminance had mean
173 lx with SD 448 lx (illuminance includes both artificial and natural
light) (21).Within a patient roomon the same day, higher temperatures
and higher illuminancewere consistently associatedwith greatermicro-
bial dissimilarity between patient and surface microbial communities,
whereas higher relative humidity and humidity ratio were consistently
correlated with greatermicrobial similarity (Fig. 6A).Microbial similarity
among staff members working on the same floor showed a seasonal
trend in both hand and nose samples, with the greatest similarity in late
summer/early fall and the least similarity in thewinter (Fig. 6B). Greater
Table 1. Effects of seven binary clinical factors on the a- and b-diversity of patient skin and bedrail bacterial communities. (A) PERMANOVA analyses of
the effects of clinical metadata on observed b-diversity. Each test was based on the weighted UniFrac distance between samples, and significance was assessed
through 105 permutations of the randomized data set. (B) Effects of clinical metadata on the a-diversity of skin and bedrail bacterial communities, based on
Faith’s phylogenetic diversity index. Significance was assessed through a two-sided nonparametric t test with 105 permutations. For both (A) and (B), significant
test results are highlighted in bold, and those that are significant after a Bonferroni correction for multiple comparisons are indicated with an asterisk.

A

B
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nose- and hand-associated microbial similarity among different staff
members correlated with higher humidity; hand-associated microbial
similarity also correlated with lower temperatures (Fig. 6C). Hand,
nose, and floor samples taken in the sameweekwere generallymore similar
to each other than to samples taken during a different week (fig. S6).
Lax et al., Sci. Transl. Med. 9, eaah6500 (2017) 24 May 2017
Network analyses
To gain further insight into the bacterial diversity of our samples, we ran
oligotyping (28) on readsassigned to fourdominantgenera:Staphylococcus,
Streptococcus, Corynebacterium, and Acinetobacter. After filtering for
oligotypeswith >500 reads, these genera together comprised 303 unique
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clusters, with 116 Staphylococcus, 83 Streptococcus, 77Corynebacterium,
and 27 Acinetobacter oligotypes (fig. S7). When we applied Bayesian
source tracking to the two patient rooms that were sampled daily, using
the oligotype-level profiles on hand or axilla samples from each patient
as a source, it was often possible to accurately predict the correct patient
ID based on themicrobial profiles on the bedrails and, to a lesser extent,
on floors and patient room faucet handles (figs. S8 and S9). This suggested
that individual patients can harbor a unique strain-level skin microbial
signature that might be obscured through traditional OTU clustering,
although the fact that many oligotypes were found in a large number of
samples (fig. S7) suggests a certain degree of ubiquity that limits predic-
tive accuracy.

We used dynamic Bayesian network (DBN) analysis to infer
patterns of oligotype interaction and transmission in the two rooms
sampled daily. A DBN is a directed acyclic network of conditional de-
pendencies in a set of randomvariables using probabilistic relationships.
This conditional dependency permits the opportunity to predict the
directionality of interactions between oligotypes. The networks gen-
erated for these two rooms, which both contained ~1000 edges, did not
significantly resemble one another based on permutation analysis, sug-
gesting an absence of universal transmission patterns across rooms.
However, staff skin was more likely to be a source of oligotypes than
a sink, whereas bedrails were more likely to be a source of oligotypes
to patient skin than vice versa.

Metagenomic analyses
We selected 92 samples for metagenomic sequencing and pooled
samples by type (skin or surface) and room day. Samples were chosen
so that we could focus on different patients staying in the same hospital
roomover the course ofmultiplemonths.Apart fromPropionibacterium,
all major genera showed highly similar relative abundances when com-
pared to the 16S rRNAdata. Antibiotic resistance gene (ARG) abundance
on a given daywas almost always greater for roomsurface samples com-
pared to skin samples (fig. S10A). However, tetracycline resistance genes
were significantly more abundant in skin samples (5.99 ± 6.7%) com-
pared to hospital surfaces (2.099 ± 3.6%; two-group t test, P < 0.05;
Bonferroni correction), whereas multidrug efflux proteins were more
abundant in surface samples compared to skin samples (4.99 ± 2.1%
and 9.099 ± 7.6%, respectively) (fig. S10B). Taxonomic binning of
ARG contigs assembled across skin samples revealed high abundance
of Staphylococcus aureus (29.4 ± 11.6%), Staphylococcus epidermidis
(12.1 ± 3.6%), and Corynebacterium striatum (5.06 ± 6.2%) genotypes.
Escherichia coli (11.2 ± 6.3%) and Pseudomonas aeruginosa (5.6 ± 6.7)
showed high antibiotic resistance potential across surface samples (two-
group t test, P < 0.05; Bonferroni-corrected).

Metagenomic contigswereassigned to65genomebins (table S5).With-
in a single patient room, we observed separate genotypes of S. epidermidis,
Propionibacterium acnes, Anaerococcus sp., and Corynebacterium sp. that
were >97% identical (gene complement) but sampled >71 days apart
(99 and 170 days after hospital opening). This suggested either ubiqui-
tous skin-associated microbial strains seeded by sequential room occu-
pant or staff or the presence of persistent bacteria in the environment
despite stringent room cleaning protocols. Genotypes assembled from
day 170 had a consistently greater number of ARGs compared to those
assembled on day 99 (Resfams; S. epidermidis: day 99 = 5 and day 170 =
9; Anaerococcus: day 99 = 4 and day 170 = 7). Genotypes with >99%
average nucleotide identity were found on patient skin and room sur-
faces on the same day, and some of these genotypes were also persistent.
For example, genotypes of P. acnes and S. epidermidiswere found in both
Lax et al., Sci. Transl. Med. 9, eaah6500 (2017) 24 May 2017
skin and surface samples on days 97, 99, and 170 but showed correla-
tions between synonymous versus nonsynonymous substitution ratio
and codon usage bias (fig. S11), suggestive of continual selection pres-
sure (29). For example, S. epidermidis genotypes were positively selected
for different “invasion-specific” proteins (cell surface protein, SE2251;
acetate–coenzyme A ligase, SE2161; and conserved hypothetical pro-
tein, SE0692) on different days (table S5) (30).
DISCUSSION
When patients enter a hospital, they arrive with complex and dynamic
microbial assemblages that will be shaped by the treatment they receive
and by the interactions they have with staff and with the building itself.
As the influenceof humanmicrobial ecology onpatient care and recovery
in the hospital environment becomes better understood, being able to
reinforce beneficial microbial interactions and mitigate harmful ones
throughout the course of hospitalization will become paramount. Here,
we provide a descriptive interaction map of the hospital and human
microbiomes. Although the study results represent an advance in our
knowledge of hospital-associated microbial communities, our data are
limited in their ability to provide immediate clinical impact because of
the observational (rather than interventional) nature of the study. The
use of 16S rather than shotgun metagenomic sequencing or culture-
based methods also limits our ability to infer the transmission patterns
of taxawith specific clinical relevance. In particular, our characterization
of the clinical factors influencing patient skin microbiota is based only
on community-level analyses without regard to potential virulence, anti-
microbial resistance, or metabolic function. Further investigation is
needed to clarify the specific effects of these factors on antibiotic-resistant
and virulent taxa. However, this foundational knowledge demonstrates
the extent to which the microbial ecology of patient skin and of hospital
surfaces are intertwined andmay provide context to future studies of the
transmission of hospital-acquired infections.
MATERIALS AND METHODS
Study design
The rationale for the study was to survey the microbial diversity in a
newly opened hospital both before it opened to the public and for a full
year thereafter. The surface types to be surveyed were chosen before
sample collection began, andwith the exceptionof a shift from sampling
patient inguinal folds to patient axillae after the first month, collection
sites remained unchanged over the course of the study.No power analyses
were used to predetermine the sample size. The 10 patient rooms and
the twonurse stations sampled in this studywere chosen before the start
of sample collection andwere constant throughout the course of the study.
Patients were consented and sampled based exclusively onwhether they
were residents of one of the predetermined rooms on a sampling day,
and nursing staff were consented and sampled based entirely onwhether
they were assigned to the rooms chosen for sampling.

Sample collection
Samples were collected by trained staff at the Center for Care and Dis-
covery at themedical center of the University of Chicago in compliance
with IRB12-1508. With the exception of air samples, which were col-
lected via ultraviolet-sterilized MERV 7 filter medium placed over the
returnair grilles in thepatient rooms, all sampleswere collectedby rubbing
sterile swabs premoistened with 0.15 M saline solution on the site of
interest. After collection, samples were immediately frozen at −20°C
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pending shipment toArgonneNational Laboratory ondry ice. Environ-
mental factors and proxies for human occupancy/activity were contin-
uously collected as previously reported (21, 22), although neither of our
methods could distinguish between hospital staff and nonstaff visitors.
Hospital-acquired infection incidence among the 252 patients who par-
ticipated in the study was assessed through analysis of ICD-9 (Interna-
tional Classification of Diseases, Ninth Revision) codes.

Amplicon sequencing
All samples were processed using a modified version of the manufac-
turer’s protocol of the Extract-N-Amp kit (Sigma-Aldrich). Swabbed
tips were placed into 2 ml of 96-Well Deep Well plates (Axygen).
Extract-N-AmpExtraction solution (200 ml) was added, vortexed for 5 s,
and incubated at 90°C for 10min. Samples were centrifuged at 2500g for
1 min. Extract-N-Amp Dilution solution (200 ml) was added to each
sample to obtain a 1:1 ratio of extraction to dilution solution. Genomic
DNA was amplified using the Earth Microbiome Project barcoded
primer set, adapted for Illumina HiSeq 2000 andMiSeq by adding nine
extra bases in the adapter region of the forward amplification primer
that support paired-end sequencing. The V4 region of the 16S rRNA
gene (515F-806R) was amplified with region-specific primers that in-
cluded the Illumina flowcell adapter sequences. The reverse amplification
primer also contained a 12-base barcode sequence that supports pooling
of up to 2167different samples in each lane (31). Each20ml of polymerase
chain reaction (PCR) contains 5ml ofMoBioPCRWater (CertifiedDNA-
Free), 10 ml of Extract-N-Amp Ready Mix, 1 ml of forward primer (5 mM
concentration, 200 pM final), 1 ml of Golay Barcode Tagged Reverse
Primer (5 mM concentration, 200 pM final), and 4 ml of template DNA.
The conditions for PCR were as follows: 94°C for 3 min to denature the
DNA, with 35 cycles at 94°C for 45 s, 50°C for 60 s, and 72°C for 90 s;
with a final extension of 10min at 72°C to ensure complete amplification.
PCR amplifications were completed in triplicate and then pooled. After
pooling, amplicons were quantified using PicoGreen (Invitrogen) and a
plate reader. Once quantified, different volumes of each of the products
were pooled into a single tube so that each amplicon was represented
equally. This pool was then cleaned using the UltraClean PCR Clean-Up
Kit (Mo Bio) and quantified using Qubit (Invitrogen). After quantifica-
tion, the molarity of the pool was determined and diluted to 2 nM, de-
natured, and then diluted to a final concentration of 4 pM with a 30%
PhiX spike for loading on the IlluminaHiSeq 2000 sequencer. Amplicons
were then sequenced in two 151–base pair (bp) × 12-bpHiSeq 2000 runs
and 3MiSeq runs using the protocol outlined by the EarthMicrobiome
Project.

Quality control and sequence clustering
Forward reads were quality-trimmed and processed for OTU clustering
using the open reference method implemented in the QIIME pipeline
(32). The sequence identity cutoff was set at 97%, and taxonomy was
assigned to the high-quality (<1% incorrect bases) candidate OTUs using
the parallel_assign_taxonomy_rdp.py script of the QIIME software.
Multiple sequence alignment and phylogenetic reconstruction were per-
formedusingPyNAST (33) andFastTree (34).OTUs containing less than
5 reads were discarded, and the OTU table was rarefied to an even depth
of 5000 reads.

Oligotyping
We used the oligotyping pipeline (28) to identify sub-OTU level varia-
tion in four highly abundant genera: Acinetobacter, Corynebacterium,
Streptococcus, and Staphylococcus. USEARCH (35) was used to align
Lax et al., Sci. Transl. Med. 9, eaah6500 (2017) 24 May 2017
reads back to OTUs based on a 97% identity cutoff, and mapped reads
were quality-trimmed using the FASTX-Toolkit (http://hannonlab.cshl.
edu/fastx_toolkit/). Theminimum substantive abundance threshold for
an oligotype (-M) was set to 500 reads, and the minimum number of
samples (-s) and percent abundance cutoff (-a) were set to 1800 and 5%,
respectively.

PC space correlation
We calculated the weighted UniFrac distance (36) between each pair of
samples and then found the principal coordinates (eigenvectors) of the
distance matrix. To reduce the complexity of the data and minimize
noise, we focused only on the minimum set of eigenvectors whose
eigenvalues summed to 50% of the variance, which, for our distance
matrix, were the first 10. We calculated the PC correlation along these
10 eigenvectors (n) such that our PC correlation (r) was an average of
the Pearson correlation along eigenvectors iweighted by their associated
eigenvalues (example calculation in fig. S12):

r ¼ ∑
n

i¼1
ri

li

∑
n

j¼1
lj

Correlation along each eigenvector was checked for significance
using the cor.test function in R (two-sided; confidence level, 95%),
and all nonsignificant correlations (P > 0.05) were reduced to zero
before averaging.

Correlations were determined between pairs of samples taken from
within the same environment (patient room, nurse station, and hospital
staff) on the same day. Glove and water samples were excluded from
these analyses due to the small and unique subset of ordination space
they occupied in the PCoA of all samples (fig. S13). Air filter samples
were also excluded because each was collected over the course of a week
rather than on a single day.

Supervised learning
Random forest supervised learning models were used to determine the
diagnostic power of microbial community profiles in predicting whether
hand and nose samples were taken from a hospital patient or staff mem-
ber. The models were run using the supervised_learning.py command
in QIIME, with 1000 trees per model and 10-fold cross-validation.

Canonical correspondence analysis
The OTU table was split by surface type into hand, axilla, and nose
tables and filtered to include only samples that had metadata observa-
tions for all factors (n = 115 and 138 for axilla and for both nose and
hand). To reduce the influence of widespread taxa, any OTUs detected
in more than 80% of samples were filtered out, as were any OTUs de-
tected in less than three samples or which comprised less than 0.01% of
all reads within the OTU table. The ordistep command in the vegan R
packagewas used to determine the optimal set of constraining variables.
Patient age, patient weight, number of days since hospital opening, room
temperature, room humidity ratio, and room relative humidity were all
standardized tomean 0 and variance 1.Measurements for relative hu-
midity, temperature, and light were taken on the wall immediately next
to the patient’s bed (21). Chemotherapy treatment, antibiotic treatment
before admission, antibiotic treatment during admission, surgery, ad-
mission through the emergency room, and ambulatory status were all
treated as dummy variables (yes = 1; no = 0). We also attempted CCA
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on genus-level input data and on our oligotype data but were unable to
find any significantly constraining variables for either data set.

Bayesian networks
DBNs were generated using BANJO (v2.2) with the following param-
eters: a maximum of five parents, a minimumMarkov lag of 0, a max-
imum Markov lag of 1, discretization into five intervals, greedy
searching, and all local moves. To reduce complexity, all oligotypes rep-
resenting less than 0.05% of the total population were removed from
analysis, resulting in data sets of 76 and 73 oligotypes for the two rooms
sampled daily. All possible surfaces and oligotypes were allowed to in-
teract with each other, and empty entries were replaced by average values
from the nearest adjacentmeasurements. Data was log2-transformed and
then normalized within oligotypes across all samples.

Metagenomic analyses
A total of 92 samples were selected for shotgun metagenomic sequen-
cing. Librarieswere generatedusing1ngof genomicDNAand theNextera
XT protocol according to the manufacturer’s instructions (Illumina). Se-
quencing was performed on the Illumina HiSeq platform (150 bp × 2,
six samples per lane; insert size range of 300 to 1200 ± 100 bp). Raw
metagenome reads were quality-trimmed using the nesoni pipeline
(http://vicbioinformatics.com/nesoni.shtml) with the following param-
eters: minimum length, 75; quality cutoff, 30; adapter trimming, yes; and
ambiguous bases, 0. Taxonomic informationwas assigned to the individual
metagenome reads usingMetaPhlAn (37). Quality-trimmedmetagenome
reads were assembled into contigs using IDBA_UD (38) using a k-mer
length ranging from 31 to 41. Metagenome contigs with lengths of
<300 bp were excluded from further analysis. To understand the strain-
level population level dynamics of in situ genotypes across the surface and
skin environments, we focused our further assembly efforts on binning
population genomes using MetaBAT (39). Single-copy marker gene–
based copy number variation analysis (40) was used to estimate the per-
centage completion and intraspecies contaminationacross each assembled
genome. De novo assembled genotypes (same species with >80% com-
pletion) were grouped into strain-level bins using awhole genome–level
average nucleotide identity cutoff of 99%. Genotypes assigned to
S. epidermidis, P. acnes, Corynebacterium, and Peptoniphilus taxons
were finalized for interhabitat (skin versus surface) strain-level evolutionary
analysis. Using the reciprocal smallest distance algorithm (41), ortholo-
gous genes were identified across skin and surface genotypes (same
strains assembled across a patient room on the same day). Pairwise
selected orthologous protein coding genes were aligned using ClustalW
(42). Multiple codon alignments were constructed from the corre-
sponding aligned protein sequences using the pal2nal script (43). Final
alignments (with stop codons removed) were processed for dN/dS analysis
usingPAML(44). To further validate the influenceof in situ functional con-
straints on the observed selection patterns, we processed the orthologous
gene pairs using codon bias variation. Usingmethods explained by Zhang
et al. (45), codon deviation coefficient (CDC) was used as the measure of
codon bias across orthologous gene pairs predicted across genotype.
Mean value (CDC) of two orthologous genes was used for the correlation
analysis against dN/dS values. Reconstructed genomes were submitted to
RAST database (46) for automated genome annotation. ARGs were iden-
tified using Resfams (47).

Statistics
Statistical analyses were performed in R, except where noted. Changes in
the similarity between patients and their rooms over time was assessed
Lax et al., Sci. Transl. Med. 9, eaah6500 (2017) 24 May 2017
through Spearman correlation, and the P value was calculated as the
percent of 10,000 test statistics drawn from random permutations of
the data set with more negative correlations than the one observed.
PERMANOVA analyses were performed in QIIME on the weighted
UniFrac distancematrix between samples, and significancewas assessed
through 105 permutations of the randomized data set. Factors signifi-
cantly affecting the a-diversity of skin and bedrail bacterial communities,
based on Faith’s phylogenetic diversity index, were assessed through a
two-sided nonparametric t test with 105 permutations.
SUPPLEMENTARY MATERIALS
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Fig. S1. Floor plan of sampling locations.
Fig. S2. Bipartite OTU network of floor samples.
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Fig. S4. Rarefaction curves demonstrate convergence of a-diversity calculations.
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Fig. S8. Predictive accuracy of SourceTracker models using hand samples as source.
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functional constraints on the same strain of P. acnes.
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Fig. S13. PCoA of all samples.
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