Roteiro de aula prática Ensaio de sensibilidade de *Leishmania braziliensis* a fármacos

Parasita: promastigotas de *Leishmania* (*Leishmania*) *braziliensis.* Isolados clínicos recuperados de pacientes com leishmaniose cutânea e a cepa referência MHOM/BR/1975/2903.

A. Observe uma cultura de *Leishmania* (*L*.) *braziliensis* viva em microscópio invertido.

B. Ensaio

Para cada fármaco, diferentes doses foram adicionadas em placas de 96 poços em um volume final de 100 μ L de meio M-199.

Foram então adicionados a cada poço 100 μ L de promastigotas de *L. braziliensis* em fase estacionária, ressuspensos em meio M199 para 2×10⁶células/mL. As placas contendo os parasitas em presença dos fármacos foram mantidas em estufa a 25 °C por 24 h.

Ensaio de MTT

A viabilidade celular foi avaliada por MTT (3-[4,5-dimethyl-2-thiazolyl]-2,5-diphenyl-2H-tetrazolium bromide). 30 μ L de MTT (5 mg/mL) foram adicionados a cada poço da placa, que foi incubada por 4 h a 25 °C.

A reação foi interrompida adicionando-se 50 μ L de 20% sodium dodecyl sulfate (SDS) por poço.

Para a determinação da densidade óptica (DO), a absorbância dos poços foi determinada nos comprimentos de onda de 595 e 690 nm.

Nas tabelas se encontram os valores de DO obtidos em experimentos previamente realizados no laboratório. Os experimentos foram realizados em triplicata para cada concentração.

Além disso, temos também o valor do branco (apenas meio de cultura, sem parasitas ou fármaco), o qual deve sempre ser descontado dos valores de DO medidos, a fim de excluir a influencia da coloração do meio de cultura no experimento.

Lembrando que os valores de DO dos parasitas sem droga serão considerados como o 100% de sobrevivência (ou 0% de morte), já a maior concentração de fármaco pode ou não ser o 0% de sobrevivência (ou 100% de morte), vai depender do seu fármaco e do seu parasita.

ATIVIDADE:

Cálculo da Concentração efetiva 50% (CE₅₀)

A CE₅₀ será determinada a partir de curvas de regressão sigmoidal feitas no programa Graph Pad Prism 7.0, seguindo as instruções a seguir.

Construção de Curva de CE50 com o programa Graph Prism 5.0

Abrir um novo arquivo conforme as setas:

Digitar as concentrações na primeira coluna (X), em ordem crescente e as DOs ou porcentagens nas demais (A:Y1, A:Y2 e A:Y3).

No controle não tratado, digitar um valor de concentração pelo menos 10 vezes menor do que a menor concentração usada. Isso porque teremos que calcular o Log das concentrações, e não existe log de zero. **Observação: Quando for usar os valores de D.O. do ensaio por MTT, excluir o valor do branco antes.**

🛕 GraphPad Prism 7.03 - [Project1	GraphPad Prism 7.03 - [Project1:Data 1]																
le Edit View Insert Ch	ange	Arrange	e Family Windov	w Help													- 8 ×
Prism File Sheet	Undo	Clipbo	ard Analysis	Ch	ange	Import Dr	aw Write		Text		Export	Print Sen	d LA H	elp	-		
🔥 🛝 🗋 - 🚯 🖉 - 🛞 📌 -	61-	X 🗈	E KR	돌릴	💔 - 🔗 - 🛛		√a 📝	Q		Ŧ	A - R	3 🔊		DDI	N/°		
🎿 🔒 🔂 - 🗙 🔆 New -	₽-	66	 Analyze 1 	* 🖬 🛲	🗉 ±23 🍼 -		- T T	αAA	B I ∐ x²	X2 👘 🖷	=· 🕬	🛃 "P	× 2- 🤇	•	IVI		
m Eamily	6	. 1	×	1	Group A		1	Group B			Group C	1 1		Group D		1	Group E
Search results	Table	format	Poses Mitefosioa (uM)		itura MTT (D.O	1)		Title			Title			Title			Title
			X	A:Y1	A:Y2	A:Y3	B:Y1	B:Y2	B:Y3	C:Y1	C:Y2	C:Y3	D:Y1	D:Y2	D:Y3	E:Y1	E:Y2
Data 1			0.01	1 1 107	1.075000	1 15500	0										
🖶 🕕 Info	2	Title	1.60	1.107	0.969000	1.02800	0	-									
Project info 1	3	Title	3.00	1.020	0.926000	0.96000	č										
	4	Title	6.30	0.973	0.948000	0.91600	Č	_									E
Graphs	5	Title	13.00	0.784	0.819000	0.87600	0	-									
Data 1	6	Title	25.00	0.704	0.415000	0.38700	0										
	7	Title	50.00	0.043	0.056000	0.04900	0										
	8	Title	100.00	0.024	0.026267	0.02666	7										
	9	Title															
	10	Title															
	11	Title															
	12	Title															
	13	Title															
	14	Title			_												
	15	Title															
	16	Title															
	17	Title															
	18	Title															
	19	Title															
	20	Title															
	21	Title															
	22	Title															
	23	Title															
	24	Title															
	25	Title															-
	•																F.
	•	A	و 📄 💼 جي		Data 1			• F	tow 1, Column F	ιτ						Q - [-	•

A GraphPad Prism 7.03 - [Project1	:Data 1	1]	40° 512																o x	:
A File Edit View Insert Ch	ange	Arrang	e Family Windo	w Help															- 6	×
Prism File Sheet	Undo	Clipbo	ard Analysis	-	Chan	ge	Import 0	Draw	Write		Text		Expo	rt Print Sen	Id LA H	elp	-			
🔥 🛝 🗋 - 📴 🖉 - 🛞 🖈 -	61-	X 🖞		3	📑 X	- 🖄-			√a 📝 🕄			-		1 🗟 🔎	()	DDI	N° .			
🙈 🛛 🖓 - 🗙 🔆 New -	₽-	00	- Analyze	* 🖬	## 🗷	123 🍼 -			TIα	A A	B I ∐ x ^a	² X2 👘 🏢	• 🖻 • 🖷	• 🚭 📲	2 2- 0		141			
🕀 🔄 Family	Table	e format:	x			Group A				Group B			Group C			Group D			Group E	E 🔺
		XY	Doses Mitefosina (µA	1)	Leitu	ra MTT (D.C	0.)			Title			Title			Title			Title	
Data Tables		×	х	A:Y1	1	A:Y2	A:Y3		B:Y1	B:Y2	B:Y3	C:Y1	C:Y2	C:Y3	D:Y1	D:Y2	D:Y3	E:Y1	E:Y2	
Data 1	1		0.0	01 1	1.107	1.075000	6					x								
	2	Title	1.6	50 1	1.025	0.969000	Parame	ters: I	(ow means	with SD of	SEM									
Project into 1	3	Title	3.0	0 1	1.029	0.926000														-
Graphs	4	Title	6.3	30 0	0.973	0.948000	Sc	ope o	f calculatio	ns										- =
Data 1	5	Title	13.0	0 0	0.784	0.819000		Calc	culate one tot	al/mean for	entire data table									
Layouts	6	Title	25.0	0 0	0.340	0.415000		Calo	culate a total/	mean for e	ach data set.									
-	7	Title	50.0	0 0	0.043	0.056000	Cal	lculat	e											
	8	Title	100.0	0 0	0.024	0.026267		Rov	v totals											
	9	Title						🔵 Rov	v means											
	10	Title						Rov	v means with	SD										
	11	Title						Rov	v means with	SEM										
	12	Title						Rov	v means with	%CV										
	13	Title						Rov	v medians wit	h range										
	14	Title					Ne	w ora	ph											
	15	Title				_		Crea	ate a new gra	oh of the re	veulte									
	16	Title							are a non gra											
	17	Title						_												
	18	Title							Learn	Cancel	OK									
	19	Title									1									
	20	Title					_		_			_								
	21	Title																		
	22	Title																		
	23	Title																		
	24	Title																		
	25	Title																		-
	•																		Þ	1
	•	N S	0 ا ا	= [🖬]		Data 1				•	Row 1, Column R	श						Q		Q,

Para normalizar os valores de acordo com o controle não tratado:

🛕 GraphPad Prism 7.03 - [Project1	Row st	ats of	Data 1]				-	11.1 Page Barriel Barriel					-	0 X
A File Edit View Insert Ch	ange	Arran	ge Family Window	Help										- 8 ×
Prism File Sheet	Undo	Clipb	oard Analysis	Interpret	Change	Draw	Wr	rite Text Export Print Send	d	LA Help	Graphia C			
<u>∧</u> . <u>□</u> · <u>□</u> · <u>□</u> · <u>□</u> · <u>⊘</u> · ⊘	61-	26 4	A KKR		4	»-	1		0		PRIA	1		
	5-		Analyze	× 💷	## 😨 ł	23 🗌 -	Pa	arameters: Normalize	24	&- Ø-	TIM	1		
Family			X		A	1			T.		D		1	E .
			Doses Miltefosina (µM)	Le	tura MTT (D.O.)			Subcolumns			Title			Title
Data Tables		×	X	Mean	SD	N		Average the subcolumns, and normalize the means		Mean	SD	N	Mean	SD
Data 1	1		0.010	1.112	0.040	3		Normalize each subcolumn separately						
	2		1.600	1.007	0.033	3		How is 0% defined?						
Project into 1	3		3.000	0.972	0.052	3		Smallert value in each data cet						
Row stats of Data 1	4		6.300	0.946	0.029	3		First uship in each data set (or last ushipbour is consiling)						
Graphs	5		13.000	0.826	0.046	3		Remove from the results page						
Data 1	6		25.000	0.381	0.038	3		Henrove non the results page						
Row stats of Data 1	7		50.000	0.049	0.007	3		Decomes U% for all data sets						
Layouts	8		100.000	0.026	0.001	3		How is 100% defined?						
	9							Largest value in each data set						
	10						2	Last value in each data set (or first, whichever is larger)						
	11							Remove from the results page						
	12							Y= becomes 100% for all data sets						
	13							The sum of all values in the data set (column)						
	14			-		-								
	15							Present results as						
	16			-				Fractions						
	17							Percentages						
	18							New graph						
	19							Create a new graph of the results						
	20													
	21													
	22							Learn Cancel OK						
	23						Ľ							
	24													
	25													+
	4													+
	•	м	۵ 🖻		Row stats of D	ata 1	_	✓ Row means with SD ▼					Q -0-	•

Para transformar os valores em Log(X):

🛕 Grap	hPad Prism 7.03 - [Project1	Norma	lize of Row stats of Data 1]		an Annahanan a an		3 X
🔌 File	e Edit View Insert Ch	ange	Arrange Family Windo	v Help			- 5 ×
Prism	File Sheet	Undo	Clipboard Analysis	Int	erpret Change Draw Write Text Export Print Send LA Help		
A	🗋 - 🚯 🖉 - 🏵 🖈 -	61-	XGT LER	C			
	🕞 🕞 - 🗙 🔆 New -	₽-	🖺 👘 - 🗧 Analyze	*			
	amile.	l l				1	E i
	earch results	1	Deses Hillefeeine (vill		Function List		Talla
	Data with Results				Standard functions N Mean SD N	Mean	sn
1 6-	Data 1				Pharmacology and biochemistry transforms	mean	
	Row stats of Data	1	0.01			+	
		2	1.60	1		+	
🖕 📑 🚺	Data Tables	3	3.00	1	User-defined Y functions	+	E
🖨 - 🚺 I	nfo	-	6.30		Interchange X and Y (then transform as specified below).	++	
	Project info 1	0	13.00			++	
🕀 - 🛄 🖡	Results	0	25.00			+	
	Braphs	<u> </u>	50.00		Transform Y values using Y=KY -	+	
	Bow state of Data 1	8	100.00		Same K for all data sets. K =	+	
	Normalize of Row stats	9			Different K for each data set	+	
	avouts	10				+	
F	loating Notes	11				+	
-	-	12			When it is impossible to transform a SD or SEM		
		13			Erase SD or SEM.		
		14			Convert to an asymmetric 95% confidence interval.		
		15					
		16			Residentes		
		17			ineplicates		
		18			Iranstorm individual Y values		
		19			Transform the average of replicates		
		20			New graph		
		21			Create a new graph of the results		
		22					
		23			Learn Carcel OK		
		24					
		25					
•	III F	•					E F
F		•	M 🔗 🗎 🚺		Mormalize of Row stats of Data 1 	Q	€

Para fazer a regressão não linear:

🛕 GraphPad Prism 7.03 - [Project1:T	Transfor	rm of Normalize of R	ow stats of	of Da	a 1]							
👻 File Edit View Insert Cha	inge /	Arrange Family V	Vindow H	Help								- 8 ×
Prism File Sheet	Undo	Clipboard An	alysis	1	erpret Change Draw Write Text Export	Print	Send	LA He	IP			
▲ □- ⓑ ∠- ↔ ≠-	 ⊂ ∠ 		₽ <u>.</u> ze ₩ ₩	Par	meters: Nonlinear Regression	× 6	Э- 6 Р 3	2- 0	PRIM	ſ		
					Fit Compare Constrain Weights Initial values Range Output Confidence Diagnostics Flag	,	-		D		1	E A
results	Ì	Denes Mitofosi	a (ult)		Choose an equation				Title			Tèle
ith Results		v v	in (um)		Becently used		-	Mean	sn	N	Mean	SD
ta 1		<u> </u>	0.000		log(inhibitor) vs. normalized response Variable slope	- E		moun			incuit	
Row stats of Data 1	2		-2.000		Sigmoidal dose-response (variable slope) Details		_					
Normalize of Row stats of Data	2		0.204		log[agonist] vs. response Find ECanything		_					
Transform of Normalize of Ro	3		0.477		Sigmoidal dose-response (Variable stope) [2] Michaelis-Menten		_					Ξ.
ables	4		0.799		One phase decay							
	5		1.114		User-defined equations							
ject info 1	6		1.398		Standard curves to interpolate							
	7		1.699		Dose-response - Stimulation							
	8		2.000		Dose-response - Inhibition Dese-response - Special							
al	9				Binding - Saturation							
w stats of Data 1	10				Binding - Competitive							
rmalize of Row stats of Data 1	11				Binding - Kinetics							
nsform of Normalize of Kow stats	12				Enzyme kinetics - Inhibition							
s n Notos	13				Enzyme kinetics - Subtrate vs. Velocity							
givotes	14		- 11									
	15				- D							
	16		- 11		If you subtracted off the baseline, constrain Bottom to a constant value of 0.0. If you normalized your							
	17		_		data, also cosntrain Top to 100.0							
	18		- 11		Sigmoidal dose-response (variable slope)							
	19		- 11									
	20		- 11		Fitting method							
	21		- 10		O Least squares (ordinary) ht Bobust ht Automatic outlier elimination		-			_		
	22				Interpolate		-					
	22				Interpolate unknowns from standard curve. Confidence interval: None		-			T	ansform:	
	23					_ -	-			X=	Log(X)	
	24		_		Learn Canog OK							
	25			L								-
< III +	•					_						P.
I II I I I I I I I I I I I I I I I I I	•	M & .	0 = [K	Transform of Normalize of Row stats of Data 1 👻 Transformed data 💌						Q - J-	•

Para ver o resultado de CE₅₀ e IC95%:

Para ver o gráfico:

Olhem atentamente para o gráfico, percebam a distribuição dos pontos ao longo da curva, essa curva está boa?

Agora olhem a janela na qual foi calculada a média dos valores e desvio padrão, qual concentração equivale à EC50 (DO seria metade do valor do não tratado)? Isso bate com os dados calculados no progama?

Ρ

Para calcular a CE₉₀:

Primeiramente retornar à aba da transformação para Log(X) para o programa saber que é em cima destes dados que fará a nova análise.

Em seguida:

Encontrar a opção "FindECanything" que como o nome sugere, te permite encontrar qualquer EC.

O programa te pedirá um valor de F. Se você quer achar a EC₉₀ você deverá preencher esse valor com o número 10. Isso porque o programa lê esse F como porcentagem de sobrevivência, logo se você quer encontrar a concentração que mata 90% dos parasitas (10% sobrevivem) você deve preencher o valor de F com 10.

A GraphPad Prism 7.03 - [Project1:Transform of N	ormalize of Row stats of Da	Pata 1]	
le Edit View Insert Change Arrange	Family Window Help	lp	_ 8 ×
Prism File Sheet Undo Clipbos	ard Analysis	Interpret Change Draw Write Text Export Print Send LA Help	
🛛 🔥 🖸 - 🚯 🖉 - 🏶 🖈 - 🍽 - 🐰 🗋		arameters: Nonlinear Regression	
– 🍊 💭 - 🗙 🔆 New - 🗳 - 🗈 🗈	- 🔚 Analyze 🔠 🔆 🔤		
		Fit Compare Constrain Weights Initial values Range Output Confidence Diagnostics Flag	
- Family	1	Presenter Manage Constraint Tune Vision Hack	^
	Doses Milt	radinicel value rock	
Data With Results	×	No constraint V SU N Mean SU	N Mean
Bow stats of Data 1		HillSlope No constraint	
Normalize of Row stats of Data 1	2	F Constant agriculture and 10	
- 🚰 Transform of Normalize of Row	3		E
Nonlin fit of Transform of Nor	4	Bottom No constraint	
8	5	Top No constraint	
- 🕕 Info	6		
Project info 1	7		
	8		
Graphs	9	Ele entende F como	
Bow state of Data 1	10		
Normalize of Row stats of Data 1	11	"porcentagem de	
Transform of Normalize of Row stats of	12		
	13	sobrevivência" por isso	
	14		
	15	usamos 10 ao invés do 90	
	16		
	17		
	18		
	19	Constrain one parameter relative to another	
	20	must be greater than 1 times	
	21	must be greater than 1 times	
	22	Transf	form:
	23	X=Log	(X)
	24	Learn Cancel OK	
	25		-
۰ III +	1		Þ
📧 📰 🛛 🕹 🖌 🖌 🖉	🖬 🖬 📲	Transform of Normalize of Row stats of Data 1 🗸 Transformed data 🔹	- I •

• Atenção: É sempre muito importante ver se os valores que o programa te deu fazem sentido. Não tem como, por exemplo, seu valor de EC₉₀ ser menor que o de EC₅₀ em uma curva dose resposta. Analise sempre criticamente os resultados do programa.

Para ver o resultado:

O programa chamará a EC que você quis calcular de ECF. Você verá que não apareceu um novo gráfico, isso porque é a mesma regressão, você só pediu para ele te mostrar um ponto diferente do gráfico.

Prism Image Sheet Undo Clipba Image Image Sheet Undo Clipba Image Image Image Image Image Image Image Image	rd	Analyze Analyz	Draw	Write √a ₪ ❹ [T] α	ĂĂBI	Text ∐ X ² X ₂ ⊯ 1	► A +	Print Send	LA Help	RIM		
	-	Nonlin 6t		Α	В	C	D	E	F	G	H	1
sults		Nomin IK	Leitu	ra MTT (D.O.)	Title	Title	Title	Title	Title	Title	Title	Title
1	1	6		Y	Y	Y	Y	Y	Y	Y	Y	Y
Row stats of Data 1	1	log(agonist) vs. response Find ECanything										
Normalize of Row stats of Data 1	2	Best-fit values										
Transform of Normalize of Row stats of Dat	3	logECF	1.648	8)								1
Nonlin fit of Transform of Normalize of Row	4	HillSlope	-2.9									
Nonlin fit of Transform of Normalize of Re	5	F	= 10									
•	6	Bottom	-2.652									
ct info 1	7	Тор	91.58									
	8	ECF	44.5									
		Span	94.24									
1 🗸	10	Std. Error										
stats of Data 1	11	logECF	0.050	36								
halize of Row stats of Data 1	12	HillSlope	0.364	3								
form of Normalize of Now stats of Data 1	13	Bottom	2.912									
Notes	14	Тор	1.607	()	-							
	15	Span	3.539									
	16	95% CI (profile likelihood)										
	17	logECF	1.556	to 1.782								
	18	HillSlope	-3.875	to -2.154								
	19	Bottom	-9.568	to 2.999								
	20	Тор	88.19	to 95.17								
	21	ECF	35.95	to 60.53								
	1	Goodness of Fit										
	23	Degrees of Freedom	20							-		
· · · · · · · · · · · · · · · · · · ·	24	R square	0.985	5								
III +	٠ 📃		111									

Para ver os dados obtidos em um formato diferente de gráfico, como o histograma:

Em seguida: Você deverá construir o seu histograma com base nos dados normalizados

Em seguida:

🚵 GraphPad Prism 7.03 - [Dados aula apresentados.pzfx:Transform of Normalize of Row stats of Data 1]	
A File Edit View Insert Change Arrange Family Window Help	_ & ×
Prism File. Sheet Undo Clipboard Analysis Change Arrange Draw Write Text	Export Print Send LA Help
	PRIM
nily Create New Graph rch results 7	11 15 18 18 17 19 19 19 19 19 19 19 19 19 19 19 19 19
a with Results Data sets to plot	
Data 1	
a lables	
Protect info 1 9 Plot selected data sets only Select	
Also plot associated curves	
phs TC Create a new graph for each data set (don't put them all on one graph)	
Data 1 Kind of graph	If Data 1
Row stats of Data 1	
Normalize of Row stats of Data 1	
Transform of Normalize of Row stats of Data 1	NAV
Normalize of Kow stats of Data I Leitura MIT (D.O	
ating Notes	
Interleaved bars Plot: Mean with SD	3
16 Help Cancel OK	
🔯 🔢 🔺 🖌 🤻 📓 🕘 🗮 🔛 📓 Transform of Normalize of Row stats of Data 1 🗸	Q - Q 100%

Para visualizar:

Anote os dados obtidos no word e exporte o gráfico, isso pode ser feito no botão da barra de tarefas do prisma indicado na figura acima. É possível brincar com as cores, preenchimento e legendas também. Caso queira modificar um gráfico que já está no word (que foi exportado clicando no botão indicado) basta clicar duas vezes nele. O prisma abrirá automaticamente e após fazer as alterações e fechar o programa sua imagem será alterada no próprio word!! ©

Os dados que vocês receberam são reais. Estes parasitas foram recuperados de pacientes com leishmaniose cutânea e possuem sensibilidades diferentes, principalmente à miltefosina. Vocês podem tentar comparar os dados obtidos com os demais grupos ou até mesmo fazer mais de um dado, caso tenham curiosidade.

AULA PRÁTICA - 13/06/2017

Ensaio de MTT

Com base nos dados fornecidos para seu(s) fármaco(s), construa um gráfico de histograma (média e desvio padrão) mostrando a % de viabilidade em cada concentração de fármaco. A viabilidade 100% corresponde ao número de células no poço sem tratamento, portanto as demais % devem ser calculadas com base na média de células na condição sem tratamento.

() Isolado B – Anfotericina () Isolado C - Anfotericina

Cálculo de EC₅₀

Com base nos valores fornecidos, construa a curva sigmoidal e calcule o valor de EC₅₀ para seu fármaco.

Cálculo de EC₉₀

Com base nos valores fornecidos, construa a curva sigmoidal e calcule o valor de EC₉₀ para seu fármaco.

Discussão

Compare os resultados obtidos para as duas condições que seu grupo recebeu (diferentes isolados com um mesmo fármaco ou mesmo isolado com fármacos distintos) e discuta os motivos para as diferenças observadas, se houver.