Properties of
 Regular Languages

For regular languages L_{1} and L_{2} we will prove that:

Union: $L_{1} \cup L_{2}$

Concatenation: $L_{1} L_{2}$
Star: L_{1}^{*}
Reversal: L_{1}^{R}
Complement: $\overline{L_{1}}$
Intersection: $L_{1} \cap L_{2}$

We say Regular languages are closed under

Union: $\quad L_{1} \cup L_{2}$

Concatenation: $L_{1} L_{2}$

$$
\text { Star: } L_{1}^{*}
$$

Reversal: L_{1}^{R}
Complement: $\overline{L_{1}}$
Intersection: $L_{1} \cap L_{2}$

A useful transformation: use one accept state

NFA

Equivalent
NFA

Costas Busch - LSU

In General

NFA

Equivalent NFA

Single accepting state

Extreme case

NFA without accepting state

Add an accepting state without transitions

Take two languages

Regular language L_{1}

$L\left(M_{1}\right)=L_{1}$
NFA M_{1}

Single accepting state

Regular language L_{2}

$$
L\left(M_{2}\right)=L_{2}
$$

NFA M_{2}

Single accepting state

Example

$$
\begin{aligned}
& M_{1} \\
& n \geq 0 \\
& L_{1}=\left\{a^{n} b\right\} \\
& L_{2}=\{b a\}
\end{aligned}
$$

Union

NFA for $L_{1} \cup L_{2}$

$w \in L_{1} \cup L_{2} \Longleftrightarrow w \in L_{1}$ or $w \in L_{2}$

Example

NFA for $L_{1} \cup L_{2}=\left\{a^{n} b\right\} \cup\{b a\}$

Costas Busch - LSU

Concatenation

NFA for $L_{1} L_{2}$
change to
regular state

$w \in L_{1} L_{2} \Longleftrightarrow w=w_{1} w_{2}: w_{1} \in L_{1}$ and $w_{2} \in L_{2}$

Example

NFA for $L_{1} L_{2}=\left\{a^{n} b\right\}\{b a\}=\left\{a^{n} b b a\right\}$

Star Operation

NFA for L^{*}

$$
w \in L^{*} \Longleftrightarrow \begin{aligned}
& w=w_{1} w_{2} \Lambda w_{k}: w_{i} \in L \\
& \text { or } w=\varepsilon
\end{aligned}
$$

Example

NFA for $L_{1}^{*}=\left\{a^{n} b\right\}^{*}$

Reverse

$$
\text { NFA for } L^{R}
$$

1. Reverse all transitions
2. Make the initial state accept state and the accept state initial state

Example

$$
L_{1}=\left\{a^{n} b\right\}
$$

$$
L_{1}^{R}=\left\{b a^{n}\right\}
$$

Complement

1. Take the DFA that accepts L
2. Make accept states regular and vice-versa

Example

NFAs cannot be used for complement Make accept states regular
and vice-versa

NFA M

$$
L(M)=\{ \}
$$

$$
\overline{L(M)}=\Sigma^{*}=\{a, b\}^{*}
$$

$$
L\left(M^{\prime}\right)=\{\varepsilon\} \neq \overline{L(M)}
$$

it is not the
complement

Same example with DFAs

 Make accept states regular and vice-versaDFA M

$$
L(M)=\{ \}
$$

$$
\overline{L(M)}=\Sigma^{*}=\{a, b\}^{*}
$$

$$
\begin{aligned}
& \text { DFA } M^{\prime} \\
& L\left(M^{\prime}\right)=\{a, b\}^{*}=\overline{L(M)} \\
& \text { it is the } \\
& \text { complement }
\end{aligned}
$$

Intersection

L_{1} regular

L_{2} regular

DeMorgan's Law: $\quad L_{1} \cap L_{2}=\overline{L_{1}} \cup \overline{L_{2}}$

L_{1}, L_{2} regular, regular

Example

$$
\left.\begin{array}{c}
L_{1}=\left\{a^{n} b\right\} \text { regular } \\
L_{2}=\{a b, b a\} \text { regular }
\end{array}\right\} \Rightarrow L_{1} \cap L_{2}=\{a b\}
$$

Another Proof for Intersection Closure

Machine M_{1}
DFA for L_{1}

Machine M_{2}

$$
\text { DFA for } L_{2}
$$

Construct a new DFA M that accepts $L_{1} \cap L_{2}$
M simulates in parallel M_{1} and M_{2}

States in M

State in $M_{1} \quad$ State in M_{2}

DFA M_{1}

DFA M_{2}

DFA M

DFA M_{1}

DFA M_{2}

initial state

DFA M

New initial state

DFA M_{1}

accept state

DFA M_{2}

p_{k} accept states
Δ DFA M

Both constituents must be accepting states

Example:

$$
L_{1}=\left\{a^{n \geq 0} b\right\}
$$

$$
M_{1}
$$

$$
L_{2}=\left\{a b^{m}\right\}^{m \geq 0}
$$

DFA M for intersection

$$
L(M)=\left\{a^{n} b\right\} \cap\left\{a b^{m}\right\}=\{a b\}
$$

Construction procedure for intersection

1. Build Initial State
2. For each new state and for each symbol add transition to either an existing state or create a new state and point to it
3. Repeat step 2 until no new states are added
4. Designate accept states

Automaton for intersection

$$
L=\left\{a^{n} b\right\} \cap\left\{a b^{m}\right\}=\{a b\}
$$

initial state

Automaton for intersection

$$
L=\left\{a^{n} b\right\} \cap\left\{a b^{m}\right\}=\{a b\}
$$

add transition and new state for symbol a

Automaton for intersection

$$
L=\left\{a^{n} b\right\} \cap\left\{a b^{m}\right\}=\{a b\}
$$

add transition and new state for symbol b

Automaton for intersection

$$
L=\left\{a^{n} b\right\} \cap\left\{a b^{m}\right\}=\{a b\}
$$

Repeat until no new states can be added a, b

Automaton for intersection

$$
L=\left\{a^{n} b\right\} \cap\left\{a b^{m}\right\}=\{a b\}
$$

q_{1} accept state for M_{1}
p_{1} accept state for $M_{2} \square$ add Accept state

Intersection DFA M :

simulates in parallel M_{1} and M_{2}
accepts string w if and only if:
M_{1} accepts string w
and M_{2} accepts string w

$$
L(M)=L\left(M_{1}\right) \cap L\left(M_{2}\right)
$$

