Mathematical Preliminaries

Mathematical Preliminaries

- Sets
- Functions
- Relations
- Graphs
- Proof Techniques

SETS

A set is a collection of elements

$$
\begin{aligned}
& A=\{1,2,3\} \\
& B=\{\text { train,bus,bicycle,airplane }\}
\end{aligned}
$$

We write

$$
\begin{aligned}
& 1 \in A \\
& \text { ship } \notin B
\end{aligned}
$$

Set Representations

$$
\begin{aligned}
& C=\{a, b, c, d, e, f, g, h, i, j, k\} \\
& C=\{a, b, \ldots, k\} \longrightarrow \text { finite set } \\
& S=\{2,4,6, \ldots\} \longrightarrow \text { infinite set } \\
& S=\{j: j>0, \text { and } j=2 k \text { for some } k>0\} \\
& S=\{j: j \text { is nonnegative and even }\}
\end{aligned}
$$

$A=\{1,2,3,4,5\}$

10

Universal Set: all possible elements

$$
U=\{1, \ldots, 10\}
$$

Set Operations

$$
A=\{1,2,3\} \quad B=\{2,3,4,5\}
$$

- Union

$$
A \cup B=\{1,2,3,4,5\}
$$

- Intersection

$$
A \cap B=\{2,3\}
$$

- Difference

$$
\begin{aligned}
& A-B=\{1\} \\
& B-A=\{4,5\}
\end{aligned}
$$

- Complement

$$
\begin{aligned}
& \text { Universal set }=\{1, \ldots, 7\} \\
& A=\{1,2,3\} \quad \square \bar{A}=\{4,5,6,7\}
\end{aligned}
$$

\{ even integers $\}=\{$ odd integers $\}$

Integers

DeMorgan's Laws

$\overline{A \cup B}=\bar{A} \cap \bar{B}$

$$
\overline{A \cap B}=\bar{A} \cup \bar{B}
$$

Empty, Null Set: \varnothing

$$
\phi=\{ \}
$$

$$
S \cup \varnothing=S
$$

$$
S \cap \varnothing=\varnothing
$$

$$
\bar{\varnothing}=\text { Universal Set }
$$

$$
s-\varnothing=S
$$

$$
\varnothing-S=\varnothing
$$

Subset

$$
A=\{1,2,3\} \quad A \subseteq B \quad B=\{1,2,3,4,5\}
$$

Proper Subset: A C B

Disjoint Sets

$$
A=\{1,2,3\} \quad B=\{5,6\}
$$

$A \cap B=\varnothing$

Set Cardinality

- For finite sets
$A=\{2,5,7\}$
$|A|=3$
(set size)

Powersets

A powerset is a set of sets
$S=\{a, b, c\}$

Powerset of $S=$ the set of all the subsets of S
$2^{s}=\{\varnothing,\{a\},\{b\},\{c\},\{a, b\},\{a, c\},\{b, c\},\{a, b, c\}\}$

Observation: $\left|2^{s}\right|=2^{|s|}$
$\left(8=2^{3}\right)$

Cartesian Product

$$
A=\{2,4\} \quad B=\{2,3,5\}
$$

$A \times B=\{(2,2),(2,3),(2,5),(4,2),(4,3),(4,5)\}$

$$
|A \times B|=|A||B|
$$

Generalizes to more than two sets
$A \times B \times \ldots \times$

FUNCTIONS

domain

range

$$
f: A \rightarrow B
$$

If $A=$ domain
then f is a total function otherwise f is a partial function

RELATIONS

$$
R=\left\{\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right),\left(x_{3}, y_{3}\right), \ldots\right\}
$$

$x_{i} R y_{i}$

$$
\text { e. g. if } R='>': \quad 2>1, \quad 3>2,3>1
$$

Equivalence Relations

- Reflexive: $\times R \times$
- Symmetric: $x R y \quad y R x$
- Transitive: $\quad x R y$ and $y R z \quad \times R z$

Example: $R='='$

- $x=x$
- $x=y \quad \square y=x$
- $x=y$ and $y=z$ \square

Equivalence Classes

For equivalence relation R equivalence class of $x=\{y: x R y\}$

Example:

$$
\begin{aligned}
R=\{ & (1,1),(2,2),(1,2),(2,1), \\
& (3,3),(4,4),(3,4),(4,3)\}
\end{aligned}
$$

Equivalence class of $1=\{1,2\}$
Equivalence class of $3=\{3,4\}$

GRAPHS

A directed graph

- Nodes (Vertices)

$$
V=\{a, b, c, d, e\}
$$

- Edges

$$
E=\{(a, b),(b, c),(b, e),(c, a),(c, e),(d, c),(e, b),(e, d)\}
$$

Labeled Graph

Walk

Walk is a sequence of adjacent edges

$$
(e, d),(d, c),(c, a)
$$

Path

Path is a walk where no edge is repeated

Simple path: no node is repeated

Cycle

Cycle: a walk from a node (base) to itself

Simple cycle: only the base node is repeated

Euler Tour

A cycle that contains each edge once

Hamiltonian Cycle

A simple cycle that contains all nodes

Finding All Simple Paths

Step 1

(c, a)
(c,e)

Step 2

(c, a)

$(c, a),(a, b)$
(c, e)
$(c, e),(e, b)$
$(c, e),(e, d)$

Step 3

(c,a)
$(c, a),(a, b)$

$(c, a),(a, b),(b, e)$
(c, e)
$(c, e),(e, b)$
$(c, e),(e, d)$

Step 4

Trees

Trees have no cycles

Binary Trees

PROOF TECHNIQUES

- Proof by induction
- Proof by contradiction

Induction

We have statements $P_{1}, P_{2}, P_{3}, \ldots$
If we know

- for some b that $P_{1}, P_{2}, \ldots, P_{b}$ are true
- for any $k>=b$ that

$$
P_{1}, P_{2}, \ldots, P_{k} \text { imply } P_{k+1}
$$

Then

Every P_{i} is true

Proof by Induction

- Inductive basis

Find $P_{1}, P_{2}, \ldots, P_{b}$ which are true

- Inductive hypothesis

Let's assume $P_{1}, P_{2}, \ldots, P_{k}$ are true,
for any $k>=b$

- Inductive step

Show that P_{k+1} is true

Example

Theorem: A binary tree of height n has at most 2^{n} leaves.
Proof by induction:
let L (i) be the maximum number of
leaves of any subtree at height i

We want to show: $L(i)<=2^{i}$

- Inductive basis

$$
L(0)=1 \quad \text { (the root node) }
$$

- Inductive hypothesis

$$
\text { Let's assume } L(i)<=2^{i} \text { for all } i=0,1, \ldots, k
$$

- Induction step

$$
\text { we need to show that } L(k+1)<=2^{k+1}
$$

Induction Step

From Inductive hypothesis: $L(k)<=2^{k}$

Induction Step

$L(k+1)<=2^{*} L(k)<=2^{*} 2^{k}=2^{k+1}$
(we add at most two nodes for every leaf of level k)

Remark

Recursion is another thing

Example of recursive function:
$f(n)=f(n-1)+f(n-2)$
$f(0)=1, \quad f(1)=1$

Proof by Contradiction

We want to prove that a statement P is true

- we assume that P is false
- then we arrive at an incorrect conclusion
- therefore, statement P must be true

Example

Theorem: $\quad \sqrt{2}$ is not rational

Proof:
Assume by contradiction that it is rational

$$
\begin{aligned}
& \sqrt{2}=n / m \\
& n \text { and } m \text { have no common factors }
\end{aligned}
$$

We will show that this is impossible

Therefore, n^{2} is even

\square| n is even |
| :--- |
| $n=2 k$ |

$2 m^{2}=4 k^{2}$

m is even

$$
m=2 p
$$

Thus, m and n have common factor 2
Contradiction!

