
Requirements Interaction Management

WILLIAM N. ROBINSON, SUZANNE D. PAWLOWSKI, AND VECHESLAV VOLKOV

Georgia State University

Requirements interaction management (RIM) is the set of activities directed toward the
discovery, management, and disposition of critical relationships among sets of
requirements, which has become a critical area of requirements engineering. This
survey looks at the evolution of supporting concepts and their related literature,
presents an issues-based framework for reviewing processes and products, and applies
the framework in a review of RIM state-of-the-art. Finally, it presents seven research
projects that exemplify this emerging discipline.

Categories and Subject Descriptors: C.0 [General]: System architectures; system
specification methodology; C.4 [Performance of Systems]: Modeling techniques;
performance attributes; D.2.1 [Software Engineering]: Requirements/Specifications;
D.2.2 [Software Engineering]: Design Tools and Techniques—Computer-aided
software engineering (CASE); D.2.4 [Software Engineering]: Software Program
Verification; D.2.9 [Software Engineering]: Management—Life cycle; software quality
assurance (SQA); D.2.10 [Software Engineering]: Design; H.1.1 [Models and
Principles]: Systems and Information Theory; I.2.11 [Artificial Intelligence]:
Distributed Artificial Intelligence

General Terms: Design, Management, Performance, Reliability, Verification

Additional Key Words and Phrases: Requirements engineering, system specification,
system architecture, analysis and design, dependency analysis, interaction analysis,
composite system, WinWin, Telos, distributed intentionality, viewpoints, KAOS,
deficiency driven design, KATE, Oz, software cost reduction (SCR).

1. INTRODUCTION

One of the main objectives of requirements
engineering (RE) is to improve systems
modeling and analysis capabilities so that
organizations can better understand crit-
ical system aspects before they actually
build the system. As Brooks [1987] noted,
requirements definition is the most diffi-
cult development stage:

The hardest single part of building a soft-
ware system is deciding precisely what to build.
No other part of the conceptual work is as

Authors’ address: Department of Computer Information Systems, Georgia State University, Atlanta, GA
30302; email: {wrobinson,spawlowski}@gsu.edu;vvolkov@earthlink.com.
Permission to make digital/hard copy of part or all of this work for personal or classroom use is granted
without fee provided that the copies are not made or distributed for profit or commercial advantage, the
copyright notice, the title of the publication, and its date appear, and notice is given that copying is by
permission of ACM, Inc. To copy otherwise, to republish, to post on servers, or to redistribute to lists requires
prior specific permission and/or a fee.
c©2003 ACM 0360-0300/03/0600-0132 $5.00

difficult as establishing the detailed technical
requirements. . . . No other part of the work so
cripples the resulting system if done wrong. No
other part is as difficult to rectify later. [Brooks
1987, p. 18]

Consequently, requirements engineer-
ing research spans a wide range of topics
[Pohl 1997], but a topic of increasing
importance is the analysis and man-
agement of dependencies among require-
ments. We call this requirements inter-
action management (RIM) and define it
as “the set of activities directed toward

ACM Computing Surveys, Vol. 35, No. 2, June 2003, pp. 132–190.

Requirements Interaction Management 133

the discovery, management, and disposi-
tion of critical relationships among sets
of requirements.” Although the term it-
self is new, requirements engineers have
long recognized that the topics and issues
RIM encompasses are crucial to obtaining
a good requirements specification.

The thrust of RIM is to analyze the
extent to which a system can satisfy
multiple requirements simultaneously. A
system has many components, and each
component has many requirements—
requirements that can interact with other
requirements and with the environment.
The satisfaction of one requirement can
aid or detract from the satisfaction of an-
other, and the environment can increase
or reduce requirement satisfaction [van
Lamsweerde and Letier 2000]. Single-
requirement methods exist—for example,
to minimize network latency or maximize
network throughput—but they typically
apply to only one or a few requirements. As
object-oriented methods and networked
system deployment become more common,
the number of components (and their in-
teractions) will increase. Satisfying all
these requirements through component
composition becomes extremely difficult.

As Neumann [1995] has suggested,

The satisfaction of a single requirement is dif-
ficult enough, but the simultaneous and con-
tinued satisfaction of diverse and possibly con-
flicting requirements is typically much more
difficult. [Neumann 1995, p. 2]

Yet, despite the importance of manag-
ing requirements interactions, the state of
the art suffers three major problems [van
Lamsweerde et al. 1998]:

(1) The specific kind of interaction being
considered is not always clear.

(2) There is a lack of systematic tech-
niques for detecting conflicts among
nonoperational requirements.

(3) There is a lack of systematic tech-
niques for resolving conflicts.

RIM seeks to address all three.

1.1. Problematic Interaction

Component interaction errors, which arise
from incorrect requirements, have become
a significant development problem. Re-
quirements errors are numerous: they
typically make up 25% to 70% of total
software errors—US companies average
one requirements error per function point
[Jones 1995]. They can be persistent: two-
thirds are detected after delivery. They
can be expensive: the cost to fix them can
be up to a third of the total production
cost [Boehm 1981]. Moreover, many sys-
tem failures are attributed to poor require-
ments analysis [Jones 1996; Lyytinen and
Hirschheim 1987; Neumann 1995].

Component interaction errors can be
more serious than simple component fail-
ures [Perrow 1984]. As Leveson [1995]
observed:

Whereas in the past, component failure was
cited as the major factor in accidents, today more
accidents result from dangerous design char-
acteristics and interaction among components
[Hammer 1980]. [Leveson 1995, p. 9]

Leveson documented several cases in
which incorrect requirements caused com-
ponent interaction errors with grave con-
sequences.

1.2. Understanding Requirements Conflict

At first glance, it may appear straightfor-
ward to support requirements interaction
analysis: simply formalize the require-
ments, or at least structure them, and then
use a computer-aided software engineer-
ing (CASE) tool to check syntax and con-
sistency. However, although CASE tools
have successfully provided support for
modeling and code generation [Chikofsky
and Rubenstein 1993; Lempp and Rudolf
1993; Norman and Nunamaker 1989],
they have been less successful in support-
ing requirements analysis [Lempp and
Rudolf 1993]. (In fact, the downstream
life-cycle successes of these tools may be
one reason systems analysts are spend-
ing increasing amounts of time on require-
ments analysis [Graf and Misic 1994].)
Moreover, requirements analysis is not
just about checking the consistency of

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

134 Robinson et al.

descriptions. In fact, inconsistent require-
ments often reflect the inconsistent needs
of system stakeholders—something devel-
opers need to see. Inconsistent require-
ments are the starting point for deriving
useful information that might otherwise
go unnoticed [Finkelstein et al. 1994].

Inconsistency [Nuseibeh et al. 1994],
conflict, breakdown [Winograd and Flores
1987], cognitive dissonance [Festinger
1964]—all are terms that characterize
aspects of uncovering unexpected ideas
during problem solving and they are
common in requirements engineering lit-
erature (see Section 4.2.1). Conflict is
an important driver of group commu-
nication and productive work [Robbins
1983], and research has shown empiri-
cally that it drives systems development
[Lyytinen and Hirschheim 1987; Markus
and Keil 1994; Robey et al. 1989] and,
more specifically, requirements develop-
ment [Bendifallah and Scacchi 1989; Kim
and Lee 1986; Magal and Snead 1993;
Robinson 1990].

Two basic forces give rise to require-
ments conflict. First, the technical na-
ture of constructing a requirements doc-
ument gives rise to inconsistency—“any
situation in which two parts of a [re-
quirements] specification do not obey some
relationship that should hold between
them” [Easterbrook and Nuseibeh 1996,
p. 32]. Second, the social nature of con-
structing a requirements document gives
rise to conflict—requirements held by two
or more stakeholders that cause an incon-
sistency. Applying the general convention
in requirements engineering, we use the
term conflict to indicate both problems un-
less the context calls for the use of a more
specific term.

Consider three technical difficulties that
lead to requirements conflict:

—Voluminous requirements. The sheer
size of a requirements document can
lead to conflicts, such as varied use
of terminology. This is especially true
when multiple analysts elaborate the
requirements.

—Changing requirements and analysts.
As a requirements document evolves,

developers add new requirements and
update older ones. One change request
can lead to a cascade of other change re-
quests until the requirements reach a
consistent state. Consequently, the doc-
ument is typically in a transitory state
with many semantic conflicts. Require-
ments analysts expect to resolve most of
these by bringing them to their current
state (as the analysts interpret “cur-
rent state”). Unfortunately, the implicit
current state of requirements is lost
when analysts leave a long-term project.
Moreover, requirements concepts and
their expressions vary with the devel-
opment team composition.

—Complex requirements. The complex-
ity of the domain or software specifi-
cation can make it difficult to under-
stand exactly what has been specified
or how components interact. If the de-
velopment team and stakeholders are
struggling to understand the require-
ments naturally, they are less likely to
see any requirements dependencies and
thus likely to overlook requirements
conflicts.

Consider three social difficulties that
lead to requirements conflict:

—Conflicting stakeholder requirements.
Different stakeholders often seek dif-
ferent requirements that the system
cannot satisfy together. For example,
one stakeholder might want to use
an open-source communication proto-
col, while another wants a proprietary
solution.

—Changing and unidentified stakehold-
ers. In the attempt to understand sys-
tem requirements, analysts often seek
new stakeholders for an ongoing project.
Analysts report that they can under-
stand system requirements when inter-
acting with actual users, but that it is
difficult to gain access to them [Lubars
et al. 1993]. Moreover, one department
of an organization may claim to be
“the” customer, but another department
may make the final purchasing decision
[Lubars et al. 1993]. Thus, a previously
unidentified stakeholder becomes an
important contributor of requirements.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 135

—Changing expectations. In addition
to the technical problem of tracking
changed requirements, there is the so-
cial problem of informing stakeholders
of the consequences of changes, as well
as managing stakeholders’ requests and
their expectations of change. Research
shows that user behavioral partici-
pation and psychological involvement
positively influence user satisfaction
of the development products [Barki
and Hartwick 1989]. User participa-
tion is particularly effective during
requirements development [Kim and
Lee 1986; Leventhal 1995; Liou and
Chen 1993–1994; Magal and Snead
1993; McKeen and Guimaraes 1997].

By managing conflict, organizations can
manage these technical and social dif-
ficulties. RIM attempts to address such
technical and social problems as part
of a strategy to manage the conflicts
that contribute to the essential difficul-
ties of requirements engineering. It ad-
dresses many problems by supporting
requirements traceability in a dynamic,
multistakeholder environment [Gotel and
Finkelstein 1995]. For example, by track-
ing the statements asserted by analysts
and stakeholders as they enact a re-
quirements dialog, developers can man-
age voluminous requirements and visu-
alize the changes in requirements, the
analyst team, or system stakeholders.
Problems that are more social can also
be addressed. For example, by tracking
stakeholder statements, analysts can find
trends (e.g., convergence or divergence)
of expectations. RIM tools can even sup-
port the detection and resolution of mul-
tistakeholder requirements conflict (see
Section 5).

1.3. Article Overview

This survey has three major themes.
First, we define RIM and its history
(Sections 2 and 3). Second, we examine
basic research themes involving the RIM
activities (Section 4). Third, we summa-
rize research projects illustrative of RIM
(Section 5). We conclude by showing that

RIM has become a critical area of require-
ments engineering whose methods will
lead to the development of systems with
higher stakeholder satisfaction and fewer
failures (Section 6).

2. ELEMENTS OF RIM

As its name implies, RIM is about re-
quirements, interactions, and manage-
ment. Requirements are descriptions of
needs. Interactions can be understood
by comparing requirements descriptions
or analyses of their underlying imple-
mentations. Management focuses on the
activities that uncover and resolve re-
quirements interactions.

2.1. Requirements

Requirement has many definitions, each
emphasizing an aspect of requirements
engineering [Zave and Jackson 1997].
Central to any definition is a stakeholder
need. For example, Davis [1993] stated
that a requirement is “a user need or a
necessary feature, function, or attribute of
a system that can be sensed from a posi-
tion external to that system” [Davis 1993].
From such a broad definition stem many
specialized requirement types that ana-
lysts use to categorize requirements (for a
more refined description, see Pohl [1997]):

—System. These requirements describe
the type of system, such as hard-
ware or software. There may even be
development requirements concerning
the development process (cost-effective,
timely) or development aspects of the
resulting product (reusable, maintain-
able, portable).

—Functional and nonfunctional. These
requirements describe the form of ser-
vice. Functional requirements describe
a service relation between inputs and
outputs. Nonfunctional requirements
do not define a service, but instead de-
scribe attributes of the service provi-
sion, such as efficiency and reliability.
Nonfunctional requirements are some-
times called system qualities.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

136 Robinson et al.

—Abstraction level. Analysts describe
requirements at different levels of ab-
straction. They can add new details and
define them in more specialized subre-
quirements. By specializing or refining
abstract requirements, or by generaliz-
ing detailed requirements, they define a
requirements abstraction hierarchy.

—Representation. One requirement can
have several representations. It may be-
gin as an informal sketch, become a
natural language sentence (“The system
shall. . . ”), and end as a more formal
representation (temporal logic, SCR,
Knowledge Acquisition in autOmated
Specification of software (KAOS; see
Section 5.4)).

2.2. Interactions

Requirements are part of a managed de-
velopment activity. As such, their interac-
tions may or may not be formally analyzed.
In fact, many projects maintain informal
requirements and only informally esti-
mate their interactions. This leads to three
broad characterizations of requirements
interactions:

—Perceived interaction. Requirement
descriptions seem to imply that satis-
fying one requirement will affect the
satisfaction of another.

—Logical interaction. The require-
ments’ logical descriptions imply a
contradiction or conclusions that can be
inferred only through their combined
contributions.

—Implementation interaction. Require-
ments interact through the behaviors of
the components that implement them.
If the implementation is correct, these
interactions will be the same as the log-
ical interactions. If the implementation
is incorrect or if environmental assump-
tions differ from modeled assumptions,
implementation and logical interactions
may differ.

Taking a more formal perspective can
be helpful in understanding how require-
ments interact. Consider a set of require-
ments, R. If we take each requirement

as a logical statement, then logical incon-
sistency occurs if False is a logical conse-
quence of the set of requirements [Wing
1990]:

Logical Inconsistency:
R |= False

Logical inconsistency means that no
model can satisfy the requirements. Prac-
tically, this means that no software behav-
ior will satisfy the requirements.

Development seeks to create an imple-
mentation, Impl, that behaves correctly
according to R:

Correct Implementation:
Impl |= R

This means that Impl exhibits the be-
haviors required in R.

Real systems are a bit more compli-
cated. Behaviors of the system’s environ-
ment impose their own constraints, de-
noted by E:

Correct Implementation within
an Environment:

E, Impl |= R

This means that Impl, within E, ex-
hibits the behaviors required in R.

Figure 1 illustrates environment
and implementation behaviors as sets
[Jackson 1995] whose intersection rep-
resents the admissible behaviors of the
implementation within its environment.
Requirements define this intersection
because they describe the behaviors of the
implementation within an environment.
We can view requirements interac-
tions in the context of this conceptual
illustration:

—Requirements interaction. Require-
ments R1 and R2 interact in environ-
ment E, if some conclusion, C, can be
derived only when both are included in
the requirements. This may be trivially
satisfied where C is the conjunction of
requirements.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 137

Fig. 1 . Requirements as the boundary between environment behaviors and imple-
mentable behaviors.

Requirements interaction:
(1) E, R1 |=/ C

(2) E, R2 |=/ C

(3) E, R1,R2 |= C

(4) C |=/ False

—Negative interaction (conflict). A neg-
ative interaction is a kind of re-
quirements interaction where False is
derived from the conjunction of the re-
quirements. In the preceding interac-
tion definition, clause 4 becomes: C |=
False.

—Positive interaction. A positive inter-
action is a kind of requirements in-
teraction where False is not derived
from the conjunction of the require-
ments. In the preceding interaction def-
inition, clause 4 is important, as C de-
fines the effect of the interaction. (See
Section 5.4 where van Lamsweerde’s
definitions of conflict and divergence ac-
count for inconsistencies among sets of
requirements.)

—Requirements implementation conflict.
Requirements R1 and R2 in environ-
ment E, interact through the behaviors
of their respective implementations if
each requirement can be individually
satisfied by the component implement-
ing it, whereas the two implementation
components cannot be combined to sat-
isfy both requirements together.

A requirements implementation
conflict:
(1) E, Impl1Ã R1

(2) E, Impl2Ã R2

(3) E, Impl1 ∧ Impl2 /Ã R1 ∧ R2

(In the preceding formula, the satisfies
relation is denoted withÃ; does not satisfy
is denoted with /Ã [Wing 1990].) It is pos-
sible that no implementation can satisfy
both requirements:

All known requirement
implementations conflict:
(1) ∃ Impl1 : E, Impl1Ã R1

(2) ∃ Impl2 : E, Impl2Ã R2

(3)¬∃ Impl3 : E, Impl3Ã R1 ∧ R2

Much requirements engineering litera-
ture addresses requirements descriptions
and analyses, but less is said about how to
describe environmental actions, laws, and
norms, which can also be quite difficult.
In some cases, the failure to consider en-
vironmental characteristics can result in
disastrous system failures.

Flight systems are an example. In the
air, braking is not allowed, but a safe land-
ing obviously requires brakes. To ensure
that pilots did not inadvertently engage
the A320’s braking system, the software
required that the wheels detect the full
weight of the airplane. However, when a
Lufthansa pilot attempted to land in War-
saw on a wet, runway in high winds, the
system did not detect the full weight of
the plane on the wheels [Ladkin 1995a,
1995b], with the following results:

[. . .] the spoilers, brakes and reverse thrust were
disabled for up to 9 seconds after landing in a
storm on a waterlogged runway, and the airplane
ran off the end of the runway and into a con-
veniently placed earth bank, with resulting in-
juries and loss of life. [Ladkin 1995b]

Disastrous system failures, such as
the Lufthansa A320, can arise from

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

138 Robinson et al.

undesirable interactions among require-
ments or between the required behaviors
and the environment.

At some point, of course, the scope of
the environmental model must have some
boundary. Determining what about the en-
vironment to model is a development de-
cision that depends on the available time
and the budget. The assertions in E can
determine if a requirements conflict ex-
ists. In fact, analysts can work backward.
Given requirements R1 and R2, is there
a condition, B, that could cause them to
conflict? If so, is it likely that B will occur
within the environment? B could be a rain-
soaked runway, for example. Had such
an obstacle been considered, the accident
might not have happened. On the other
hand, what is the likelihood of a rain-
soaked runway? If it is low, its analysis
can be postponed indefinitely. If it is high,
analysis and modeling are more pressing.
Analyst decisions regarding what to model
can greatly influence the scope of the inter-
actions that are uncovered.

2.3. Requirements for a Distributed
Meeting Scheduler

The distributed meeting scheduler prob-
lem illustrates the challenges of analyzing
requirements interactions. We chose this
problem because the scheduler’s require-
ments definition involve complex multi-
stakeholder interactions that raise many
issues like privacy, responsibility, and ef-
ficiency. We also chose it because its com-
pact, yet rich, requirements document has
been widely circulated [van Lamsweerde
et al. 1993] and analyses have been pub-
lished [Potts et al. 1994; van Lamsweerde
et al. 1995; Robinson and Pawlowski
1997].

Van Lamsweerde et al. [1995, p. 197]
stated the general requirements for a
scheduler:

The purpose of a meeting scheduler is to support
the organization of meetings—that is, to deter-
mine, for each meeting request, a meeting date
and location so that most of the intended partic-
ipants will effectively participate. The meeting
date and location should thus be as convenient
as possible to all participants. Information about

the meeting should also be made available as
early as possible to all potential participants.

The remaining requirements of the four-
page baseline description refine the roles
of the meeting scheduler and participants.
However, this introduction is sufficient to
understand the examples that follow.

2.3.1. Requirements Definition. To show
how requirements may interact, we
present two requirements for informa-
tion privacy and we describe them for-
mally so that we can include examples
of formal interaction analysis. The first is
the InitiatorKnowsConstraints require-
ment [Robinson and Volkov 1997; van
Lamsweerde et al. 1998]:

Requirement InitiatorKnows
Constraints

Mode Achieve

InformalDef

‘‘A meeting initiator shall
know the scheduling constraints of the
various participants invited to the
meeting within some deadline d (days)
after the meeting initiation.’’
FormalDef

∀ m : Meeting, p : Participant,
i : Initiator

Invited(p, m)
⇒ ♦≤dKnows(i, p.Constraints)

This requirement definition is in a vari-
ant of the KAOS language (see Sections 5
and 5.4), which allows for both informal
and formal descriptions. The formal defi-
nition uses real-time temporal logic oper-
ators [Koymans 1992]. The ♦means some
time in the future. Other operators refer
to the next state (o), the previous state (•),
some time in the past (¨), always in the
past (¥), and always in the future (¤).

The second requirement for informa-
tion privacy is, InitiatorNever Knows-
Constraints:

Requirement InitiatorNeverKnows
Constraints

Mode Avoid

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 139

InformalDef
‘‘A meeting initiator shall

never know the scheduling constraints
of the various participants invited
to the meeting after the meeting
initiation.’’
FormalDef

∀m: Meeting, p: Participant,
i: Initiator
Invited(p, m)

⇒ ¤¬knows(i, p. Constraints)

2.3.2. A Conflict and Its Resolution. The
two requirements can conflict under cer-
tain circumstances, described in boundary
condition, B [van Lamsweerde et al. 1998].
That is:

InitiatorKnowsConstraints,
InitiatorNeverKnowsConstraints,
B |= False

We can show a condition, B, that leads to
a contradiction:

♦ (∃ p′ : Participant, m′ : Meeting

Invited(p′, m′))

The following shows that we can indeed
derive a contradictory assertion from the
conjunction of the two requirements and
the boundary condition:

♦ (∃ p′ : Participant, m′ : Meeting

Invited (p′, m′)
∧♦≤d Knows(i′, p′.Constraints)
∧ ¬ ♦ Knows(i′, p′.Constraints))

There are several ways to resolve
this conflict [Robinson and Volkov 1996].
One is to rely on a scheduler pro-
gram. Rather than provide scheduling
constraints to the initiator, enable the
scheduler to find a meeting time. Using
this approach, only the scheduler pro-
gram knows the constraints, while the
initiator is simply notified of the meet-
ing time. This approach is captured in
the following requirement, which replaces

InitiatorKnowsConstraints:
Requirement SchedulerKnows

Constraints
Mode Achieve
InformalDef

‘‘A meeting scheduler shall
know the scheduling constraints of the
various participants invited to the
meeting within some deadline d (days)
after the meeting initiation.’’
FormalDef

∀ m : Meeting, p : Participant,
s : Scheduler

Invited(p, m)
⇒ ♦≤d Knows(s, p.Constraints)

Relying on the scheduler to perform
complex actions may be wishful thinking.
That is, an implementation that satisfies
the scheduler’s required function may not
exist. A step toward determining an im-
plementation is to describe the scheduler’s
main function as follows:

Operation DetermineSchedule
Input MeetingRequest
Output Meeting
PreCondition

¬Scheduled(m) ∧
(∃i: Initiator) Requesting(i, mr)
PostCondition

Feasible(mr) ⇒ Scheduled(m)
∧ ¬Feasible(mr) ⇒ DeadEnd(m)

Still, the question remains: is there
an implementation that either derives
a meeting schedule or identifies infea-
sible meeting constraints (a dead end)?
Moreover, this is simply one require-
ment. Analysts must still determine if all
meeting scheduler requirements can be
satisfied together. Additionally, the envi-
ronment may cause problems, such as net-
work delays in sending or receiving par-
ticipant constraints, or reduced processing
capacity on the (shared) computer. There-
fore, while the initial requirements may
be acceptable (R |=/ False), analysts may
need to elaborate them to ensure that they
are satisfied within their environment (E,
Impl |= R).

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

140 Robinson et al.

2.3.3. A Nonfunctional Conflict. Require-
ments may involve nonfunctional qual-
ities of service, such as effort, cost, or
usability. These can be analyzed in the
same manner as the functional con-
flict between InitiatorKnowsConstraints and
InitiatorNeverKnowsConstraints. Consider
the following nonfunctional requirement
(we have deliberately omitted formal defi-
nitions here):

Requirement SchedulerShallNot
IncreaseParticipantEffort

Mode Achieve
InformalDef

‘‘A meeting scheduler for
a meeting shall not increase the
effort of invited participants."

SchedulerShallNotIncrease
ParticipantEffort indicates that the
scheduler shall not increase the effort
of participants. This may be difficult
to achieve because we assume that the
scheduler is to determine a meeting
time. To do so, it must know the cur-
rent participant scheduling constraints.
Thus, there is a functional assump-
tion, InviteeRespondsWithUpdated
Constraints, that captures the as-
sumption that participants will reply
to the scheduler’s request with updated
constraints:

Assumption InviteeRespondsWith
UpdatedConstraints

InformalDef
‘‘A meeting participant

shall update his scheduling constr-
aints within some deadline d1 (days)
after the meeting request and then
reply to the request with his cons-
traints (within d2 days).’’

A domain definition links the sched-
uler’s behavior to the participant’s behav-
ior. The following RequestIncreasesEffort
definition indicates that, by the request,
the requesting agent has increased the ef-
fort of the receiving agent. This definition
shows that the scheduler can increase the
effort of a participant:

DomainDef RequestIncreasesEffort

InformalDef
"An agent that requests a

reply from a second agent imposes
an increased effort on the second
agent.’’

It may be clear by now that there is a
potential nonfunctional conflict, which can
be summarized as
SchedulerShallNotIncreaseParticipant
Effort, InviteeRespondsWithUpdated
Constraints, RequestIncreasesEffort
|= False

The increased burden imposed by the
scheduler conflicts with the decreased
effort specified by the requirement
SchedulerShallNotIncreaseParticipant
Effort.

2.4. Interaction Features

Analysts can define requirements interac-
tions through their features, such as basis,
degree and direction, and likelihood.

2.4.1. Basis. The basis specifies the ele-
ments of the interaction. In the preceding
example, a nonfunctional requirement, an
environmental assumption, and a domain
property together form the basis of the
nonfunctional conflict. More specifically,
the conflict basis is the minimal set of
statements (environment and require-
ment) that imply a contradiction. (See
Section 2.2.)

2.4.2. Degree and Direction. Some re-
quirements imply a logical contradiction,
and thus define a 100% conflict. How-
ever, analysts can specify requirements
satisfaction as a range of values—1 to
100%, for example, see Liu and Yen [1996].
Given that requirements satisfaction may
be partial, requirements interaction may
be partially positive or partially negative.

Looking again at SchedulerShallNot
IncreaseParticipantEffort, suppose we
replace the statement that the sched-
uler shall “not increase the effort of
invited participants” with the state-
ment that the scheduler shall “mini-
mize the effort of invited participants.”
Call this new requirement, Scheduler
MinimizeParticipantEffort.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 141

Given this formulation, analysts must
determine if an increase in a partici-
pant’s effort, caused by InviteeResponds
WithUpdatedConstraints, conflicts with
the scheduler’s requirement to minimize
participant effort. One conclusion is that
such an increase “somewhat” conflicts
with effort minimization, which suggests
the use of a qualitative scale. Of course,
multiple occurrences of an increase could
lead to a “strongly” conflicts conclusion
[Chung et al. 1995].

So far, we have focused mainly on nega-
tive interactions. Requirements may also
interact to reduce conflict. Consider, for ex-
ample, an automated reply mechanism for
the participant in the scheduler problem.
Given a request, another agent replies in-
stead, thereby reducing the effort of the re-
quested agent. The following domain defi-
nition describes this:

DomainDef AutoReplyReducesEffort
InformalDef

‘‘A proxy agent that rep-
lies to a request for another agent
decreases the effort for the other
agent."

Now, an analyst can conclude that Auto
ReplyReducesEffort increases the satis-
faction of SchedulerMinimizeParticipant
Effort. Thus, the same requirements
can have both positive and negative in-
teractions. For example, if the schedul-
ing system required both autoreply and
participant reply, then the satisfaction
of SchedulerMinimizeParticipantEffort
would be indeterminate.

Others have modeled partial require-
ments satisfaction as follows: the de-
gree of satisfaction, d , of a requirement,
R, by the behaviors of implementation,
Impl, is defined by the following ternary
relation:

Partial Requirements Satisfaction:

PartSat(Imp, R, Degree), where
Imp : set of implementations
R : set of requirements
Degree : [0, 100]

We can use Impl Ãd R to indicate that
Impl partially satisfies R to the degree, d .

A simple and practical approach places
scaled attributes on requirements [Gilb
1977, 1988]. Then, stakeholders associate
values with the attributes, such as Usabil-
ity = 60 Availability = 20 (on a scale of
100). Analysts can use these metrics to
identify unsatisfied requirements.

Some analysts have used fuzzy set the-
ory to formalize requirements satisfaction
into linguistic terms, such as high, or low.
Fuzzy set theory maps ranges of satisfac-
tion onto terms, as illustrated in the fol-
lowing definition of the PartSat fuzzy set
[Liou and Chen 1993–1994; Liu and Yen
1996; Yen and Tiao 1997]:

FuzzySetPartSat(Degree) = High, where
Degree ∈ [75..100]

FuzzySetPartSat(Degree) = Medium,
where Degree ∈ [25..74]

FuzzySetPartSat(Degree) = Low, where
Degree ∈ [0..25]

Utility theory and fuzzy set theory
provide techniques to aggregate require-
ments satisfaction across a variety of at-
tributes, such as cost or reliability.

2.4.3. Conflict Likelihood. Often, require-
ments can conflict; but the likelihood of
such a conflict may be acceptable. Regard-
less, characterizing the likelihood that an
interaction will occur is always helpful.

In the scheduler problem, the de-
gree of satisfaction for the requirement
SchedulerMinimizeParticipantEffort
depends on the environment. In an
environment where a participant re-
ceives many requests from the scheduler,
the satisfaction of SchedulerMinimize
ParticipantEffort may be low (Impl
Ã

LowR). An analyst can model the number
of requests, k, that a participant receives.
Then, the likelihood that a participant
receives many requests (Pk) determines
the likelihood that the requirement
SchedulerMinimizeParticipantEffort
will be satisfied. If the analyst knows that
Pk ≈ 0, or the consequences of Scheduler
MinimizeParticipantEffort failing are
acceptable, then it is likely that the
requirements will be satisfactory within
the specified environment.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

142 Robinson et al.

Fig. 2 . A descriptive framework of RIM research.

2.5. Managing Interaction

The management element of RIM con-
cerns the strategic application of activities
to identify, analyze, monitor, document,
communicate, and change requirements
interaction. The activities may be applied
within an ad hoc or a defined process, may
involve the use of special tools and tech-
niques, and may be conducted solely by
analysts or by analysts and other stake-
holders. In any case, the overall goals of
these activities include the following:

—Detect and resolve requirements con-
flict (negative interactions).

—Increase system effectiveness by mutu-
ally reinforcing requirements (positive
interaction)

—Increase involvement from a variety of
stakeholders.

Satisfying these goals reduces overall
system errors and costs and increases sys-
tem effectiveness and stakeholder satis-
faction.

As a discipline, RIM is new and evolving.
It has five major dimensions:

—Representation of requirements, inter-
actions, resolutions, and other prod-
ucts. Researchers are defining the set
of terms, or ontology, that describe re-
quirements and their interactions.

—Activities for discovery, management,
and disposition of interactions. Re-
searchers are defining techniques, some
automated, that manage or aid in man-
aging interactions. Often, this research

aims to provide early life-cycle analysis
rather than address interactions at sys-
tem runtime.

—Views of the activities and products.
RIM research is not conducted in isola-
tion. Rather, it is being integrated into
traditional software development tools
and methods. Thus, different stakehold-
ers may access different views of RIM
analysis. Views include abstract agent
descriptions found in i* (see Section 5.3)
to the tabular transition tables of SCR
(see Section 5.6). Eventually, customers,
developers, and users will be able to
access requirements interactions from
views tailored to their purpose.

—Goals of stakeholders. Researchers are
defining goal ontologies and analyses to
aid in requirements negotiations among
stakeholder views and the strategic ap-
plication of RIM.

—Theoretic basis for representation, acti-
vities, and views. Researchers are
augmenting traditional requirements-
engineering theories with theories from
database, artificial intelligence, knowl-
edge acquisition and representation,
and social conflict and negotiation to es-
tablish a theoretical basis for the sup-
port and application of RIM.

Figure 2 proposes a classification of RIM
research along these five dimensions. The
theories provide a basis for developing
new specialized techniques. Drawn from
a variety of disciplines, they include con-
cepts like database schema integration

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 143

that researchers can adapt to fit RIM.
Other concepts include models, ontolo-
gies, and formal analyses for requirements
engineering.

The goals dimension defines RIM goals
and strategies. For example, a common
social negotiation strategy suggests re-
solving simple conflicts first and difficult
ones later [Pruitt 1981]. Such a strategy
may also be appropriate for software de-
velopment. However, defining and deter-
mining simple and difficult conflicts will
be among the concerns in specializing the
strategy. The goals dimension also defines
goals for individual and collective stake-
holder views.

The views dimension defines stake-
holder interfaces to the activities and
products that make up RIM’s technolog-
ical component. For example, an analyst
typically has access to all the activi-
ties and their products during develop-
ment, while a system user may have a
more limited view. Similarly, the method-
ologies and tools used provide varied
perspectives on RIM issues. For exam-
ple, a tool may address the management
of requirements interactions in support
of a RIM-oriented development method-
ology, while another tool ignores RIM
issues.

The activities dimension defines analy-
ses and modifications for requirements in-
teraction.

The products dimension includes inter-
mediate and final results used during the
activities.

3. AN HISTORICAL PERSPECTIVE

RIM has a narrow “systems” focus on
interaction management, but it borrows
from many theories and techniques from
other disciplines.

3.1. Conceptual Evolution

Table I summarizes prominent concepts
and their evolution into the emerging dis-
cipline of RIM. Because of space limita-
tions, the references for each concept are
representative, not exhaustive. We distin-
guish concepts by time and by the five cate-

gories described in Figure 2: theory, goals,
views, products, and activities.

The top-most row of Table I summa-
rizes some RIM theoretical developments.
Many of these concepts, such as prefer-
ence, conflict, negotiation, and resolution,
derive from human negotiation [Pruitt
1981] and group decision-making [Janis
and Mann 1979]. A general overarching
tenet of RIM is analogous to that of group
decision-making:

Specifying stakeholder views on system require-
ments, followed by their negotiated integration,
will result in systems that are both technically
better, but are also more accepted by system
stakeholders.

Goals and strategies make this tenet
operational.

3.1.1. Development Goals Interaction. Re-
searchers and practitioners recognized
early on that specifying development
goals is important. In a 1974 experi-
ment, Weinberg and Schulman [1974]
gave teams one of the following goals to
satisfy: minimize effort, minimize lines
of code, minimize memory use, maximize
program clarity, and maximize clarity of
program output. All but one team did best
on their given goal. Since then, many re-
searchers have specified a variety of soft-
ware development goals, and their re-
lationships [Barbacci et al. 1995, 1997;
Boehm 1981; Chung et al. 1995; Kazman
et al. 1998]. Most recently, the empha-
sis has been on creating models and tools
to aid in the analysis of software devel-
opment goal interactions. An example is
WinWin [Boehm 1996], which we describe
in Section 5.1.

Reasoning about requirements goals
has evolved concurrently with the evolu-
tion of software development goals. Mul-
tiple Attribute Utility Theory (MAUT)
[Raiffa 1968] and later Multiple Criteria
Decision Making (MCDM) [Zeleny 1982]
have provided general decision theoretic
techniques that help analysts elicit crite-
ria and trade them off during decision-
making. An example is Oz [Robinson
1994], which we describe in Section 5.5.
The more specialized decision technique

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

144 Robinson et al.
Ta

bl
e

I.
E

vo
lu

tio
n

of
R

IM
C

on
ce

pt
s

B
ef

or
e

19
70

19
70

s
19

80
s

19
90

s
T

h
eo

ry
C

od
ifi

ed
n

eg
ot

ia
ti

on
te

ch
n

iq
u

es
:“

lo
g

ro
ll

in
g,

”
co

n
di

ti
on

re
st

ru
ct

u
ri

n
g

[P
ru

it
t

19
81

]
G

ro
u

p
de

ci
si

on
-m

ak
in

g
[H

ey
m

an
d

O
st

er
le

19
93

]

R
eq

u
ir

em
en

ts
N

eg
ot

ia
ti

on
B

eh
av

io
r

[B
en

di
fa

ll
ah

an
d

S
ca

cc
h

i1
98

9;
R

ob
in

so
n

19
90

]
N

eg
ot

ia
ti

on
ex

pe
rt

s:
ca

se
-b

as
ed

[S
yc

ar
a

19
91

],
ru

le
-b

as
ed

[W
er

km
an

19
90

b]

D
om

ai
n

-i
n

de
pe

n
de

n
t

re
so

lu
ti

on
ge

n
er

at
io

n
[R

ob
in

so
n

an
d

V
ol

ko
v

19
96

]

G
oa

ls
P

ro
gr

am
m

in
g

go
al

s
[W

ei
n

be
rg

an
d

S
ch

u
lm

an
19

74
]

S
of

tw
ar

e
qu

al
it

ie
s

[B
oe

h
m

et
al

.1
97

8]

S
of

tw
ar

e
de

ve
lo

pm
en

t
go

al
st

ru
ct

u
re

[B
oe

h
m

19
81

]
S

of
tw

ar
e

qu
al

it
y

at
tr

ib
u

te
s

[B
ar

ba
cc

i
et

al
.1

99
7]

M
an

ag
em

en
t

by
O

bj
ec

ti
ve

s
[D

ru
ck

er
19

54
]

S
of

tw
ar

e
m

et
ri

cs
[G

il
b

19
77

]
S

of
tw

ar
e

qu
al

it
y

in
te

ra
ct

io
n

ex
pe

rt
s

[B
oe

h
m

19
81

]

M
A

U
T

[R
ai

ff
a

19
68

]
M

C
D

M
pr

og
ra

m
m

in
g

[Z
el

en
y

19
82

]
M

C
D

M
fo

r
re

qu
ir

em
en

ts
[R

ob
in

so
n

19
94

]
S

of
tw

ar
e

qu
al

it
y

ar
ch

it
ec

ti
n

g
[K

az
m

an
et

al
.1

99
8]

Q
F

D
[H

au
se

r
19

88
]

Q
F

D
fo

r
re

qu
ir

em
en

ts
[J

ac
ob

s
an

d
K

et
h

er
s

19
94

]
N

on
fu

n
ct

io
n

al
fr

am
ew

or
k

[M
yl

op
ou

lo
s

et
al

.1
99

2]
V

ie
w

s
M

u
lt

iv
ie

w
sp

ec
ifi

ca
ti

on
[M

u
ll

er
y

19
79

]
M

et
h

od
E

n
gi

n
ee

ri
n

g
[K

u
m

ar
an

d
W

el
ke

19
92

]
P

ar
al

le
le

la
bo

ra
ti

on
[F

ea
th

er
19

89
]

R
eq

u
ir

em
en

ts
V

ie
w

po
in

ts
[N

u
se

ib
eh

et
al

.1
99

4
]

P
ro

ce
ss

pr
og

ra
m

m
in

g
[O

st
er

w
ei

l1
98

7]
P

ro
ce

ss
co

m
pl

ia
n

ce
[E

m
m

er
ic

h
et

al
.

19
97

]
In

te
ra

ct
io

n
m

on
it

or
in

g
[F

ic
ka

s
an

d
F

ea
th

er
19

95
]

P
ro

d
u

ct
s

R
eq

u
ir

em
en

ts
M

od
el

in
g

L
an

gu
ag

e
[G

re
en

sp
an

et
al

.1
99

4]
R

eq
u

ir
em

en
ts

tr
ac

ea
bi

li
ty

[P
ot

ts
an

d
B

ru
n

s
19

88
]

G
oa

lo
ri

en
te

d
re

qu
ir

em
en

ts
[D

ar
de

n
n

e
et

al
.1

99
3]

A
ge

n
t-

or
ie

n
te

d
re

qu
ir

em
en

ts
[M

yl
op

ou
lo

s
et

al
.1

99
7]

A
ct

iv
it

ie
s

G
oa

l-
ba

se
d

de
si

gn
[K

an
t

an
d

B
ar

st
ow

19
81

]
G

oa
l-

ba
se

d
re

qu
ir

em
en

ts
n

eg
ot

ia
ti

on
[R

ob
in

so
n

19
89

]
P

ro
gr

am
sl

ic
in

g
[H

or
w

it
z

et
al

.1
98

9]

G
oa

lr
eg

re
ss

io
n

fo
r

re
qu

ir
em

en
ts

[R
ob

in
so

n
19

93
,1

99
4;

va
n

L
am

sw
ee

rd
e

et
al

.1
99

8]
S

ch
em

a
in

te
gr

at
io

n
[B

at
in

ie
t

al
.1

98
6]

In
co

n
si

st
en

cy
di

al
og

[F
in

ke
ls

te
in

an
d

F
u

ks
19

89
]

In
co

n
si

st
en

cy
re

as
on

in
g

[H
u

n
te

r
an

d
N

u
se

ib
eh

19
98

]
In

co
n

si
st

en
cy

fr
am

ew
or

k
[C

u
go

la
et

al
.

19
96

]
M

u
lt

ia
ge

n
t

pl
an

n
in

g
[G

eo
rg

ef
f

19
84

]
A

ge
n

t
n

eg
ot

ia
ti

on
[S

an
dh

ol
m

an
d

L
es

se
r

19
95

]

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 145

of Quality Function Deployment [Hauser
1988] has been applied to requirements
analysis (e.g., Jacobs and Kether [1994]).

3.1.2. Multiple System Views. Views,
or views, on sets of related require-
ments have also evolved. Approaches,
such as CORE [Mullery 1979], ETHICS
[Mumford and Weir 1979], and later Mul-
tiView [Avison 1990] and Soft Systems
[Checkland 1981], combined both social
and technical development aspects in rep-
resenting various system requirements
views. Feather’s [1989] parallel elabo-
ration work described the algorithmic
aspects of representing, comparing, and
combining various system views, as did
the ViewPoints project [Nuseibeh et al.
1994] (see Section 5.3), and a growing body
of related research [Finkelstien 1996].

3.1.3. Requirements Modeling Languages.
Requirements definition languages
evolved to support reasoning about in-
teractions among requirements views.
For example, the Requirements Model-
ing Language (RML) [Greenspan et al.
1994] has given rise to languages that
focus on agents [Mylopoulos et al. 1997]
and goals [Dardenne et al. 1993]. (See
KAOS the discussion of in Section 5.4).
Such languages let analysts determine
how the actions of external and system
agents affect the satisfaction of system
requirements.

3.1.4. Interaction Analysis. Many require-
ments-interaction-reasoning techniques
have come from related fields. For ex-
ample, goal regression, an Artificial
Intelligence (AI) planning technique, can
uncover certain requirements that are the
root cause of a conflict [van Lamsweerde
et al. 1998]. (See Section 5.5.) Similarly,
database schema integration ideas [Batini
et al. 1986] are helpful in combining re-
quirements views [Spanoudakis and
Finkelstein 1997]. Finally, from nonmono-
tonic reasoning have come logics and
frameworks for reasoning about logical
inconsistencies [Hunter and Nuseibeh
1998].

Table II. Disciplines Influencing Requirements
Interaction Management

Software engineering
Requirements engineering
Formal specification
Concurrent engineering
Quality architecting
Feature interaction

Database view integration
Schema integration
Schema reengineering

Knowledge acquisition and representation
Knowledge integration
Information integration

Distributed artificial intelligence
Reasoning with inconsistency and

incompleteness
Distributed problem solving, coordination,

collaboration
Negotiation support systems

Coordination
Collaboration
Group issues: dominance, anonymity

Social conflict and negotiation
Negotiation theory and models
Negotiation strategies and tactics
Bargaining and arbitration
Political negotiation

Social economics
Individual decision-making

Cognitive dissonance theory
Utility theory

3.2. Influential Disciplines

Interaction management research, most
of which aims to identify and manage
negative interactions, spans a variety of
disciplines. To characterize influences on
RIM, we surveyed over 60 published works
that RIM articles referenced. These ref-
erenced works described mainly theories,
techniques, and tools for the management
of conflicts. They included disciplines from
the computer and information to cognitive
and social sciences. From the articles, we
identified seven distinct areas of influence,
which Table II lists.

3.2.1. Software Development. Research-
ers in software development are address-
ing interaction management in a number
of contexts, including the following:

—Requirements inconsistency. Detect-
ing and resolving requirements in-
consistency is a growing theme of
requirements engineering, which we
expand in this article. The Viewpoints

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

146 Robinson et al.

project (see Section 5.3), for example,
provides a framework in which rules
capture inconsistencies among and
within views of a system requirements
specification.

—Formal specification. Analysts have
recognized the need for methods to de-
tect and resolve inconsistencies in for-
mal specifications [Lamsweerde 2000].
Now, formal techniques can detect in-
consistencies [Spanoudakis and Finkel-
stein 1995], deduce in the presence of
conflict [Hunter and Nuseibeh 1998],
and manage conflict [van Lamsweerde
et al. 1998] (see the discussion of KAOS
in Section 5.4).

—Concurrent engineering. Detecting
and resolving design differences among
the designs of multifunctional and
multidisciplinary teams is a concern of
concurrent engineering [Kusiak 1993].
Quality function deployment (QFD) is
commonly used to identify interactions
among system requirements as well as
among lower-level design or production
requirements [Kusiak 1993]. Other
methods, such as heuristic conflict clas-
sification and resolution identify and
resolve undesirable design interactions
[Klein 1991].

—Feature interaction. Detecting and re-
solving undesirable functional interac-
tion is an established part of telephony
software development. For example,
there is a conflict between “Caller
ID,” which provides the receiver with
the caller’s number, and “Unlisted
Number,” which keeps the caller from
revealing the originating number. An
AI planning method that includes
goal hierarchies generates a resolu-
tion in which the callee receives the
caller’s name, but not the caller’s num-
ber [Velthuijsen 1993]. This planning
method is but one of a number of meth-
ods for resolving feature interactions. A
recent article surveys formal, informal,
and experimental methods [Keck and
Kühn 1998].

—Quality architecting. Analyzing how
different system architectures affect
tradeoffs among system qualities is a

concern of software architects [Perry
and Wolf. 1992]. A method, such as
ATAM [Kazman et al. 1998], analyzes
system qualities, such as performance,
security, and reliability to determine if a
system architecture can satisfy multiple
interacting system qualities. If it can-
not, the method helps select an archi-
tecture that satisfies the most qualities.

3.2.2. Database View Integration. Re-
searchers in database development are
addressing interactions in schema consis-
tency. Traditionally, relational database
designers start with multiple views of
data and then combine those views into
a global data schema. As part of the
schema integration activity, they identify
conflicts among the views [Batini et al.
1986], including differences in name or
structure. Generally, defined methodolo-
gies have supported this activity [Batini
et al. 1986], but tool support is growing
[Francalanci and Fuggetta 1997; Jeusfeld
and Johnen 1994; Johannesson and Jamil
1994; Ram and Ramesh 1995].

3.2.3. Knowledge Acquisition and Represen-
tation. Researchers in knowledge acqui-
sition and representation are addressing
interactions in a number of contexts, in-
cluding the following:

—Knowledge integration. Knowledge
bases, such as those in expert systems,
should be consistent if they are to
support deductive reasoning. To sup-
port this consistency goal, there must
be some way to combine knowledge
gained from multiple experts and make
it consistent within the computerized
knowledge base. Common knowledge-
integration techniques include the use
of meta-knowledge, set-theoretic anal-
ysis, consensus theory, repertory grid
analysis, cluster analysis, and decision
theory [Botten et al. 1989]. One tool,
based on repertory grid and personal
construct theory, aims to support the
derivation of terminological consistency
among experts [Shaw and Gaines 1988,
1989].

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 147

—Information integration. During its
execution, a knowledge-base system
may receive a variety of inconsis-
tent inputs. To solve its overall task,
the system must appropriately deal
with these inconsistencies [Lander and
Lesser 1989; Hearst 1998]. For example,
various scheduling databases in a meet-
ing scheduling system might reference
the same person using slightly differ-
ent names; an information integration
agent can reconcile this discrepancy by
recognizing naming differences [Sycara
et al. 1996].

3.2.4. Distributed Artificial Intelligence. The
analysis of interaction among distributed
artificial intelligence agents is similar to
the analysis of multiple viewpoint require-
ments. Each distributed AI agent repre-
sents a requirements viewpoint and the
agent knowledge base represents the re-
quirements viewpoint description. Thus,
when distributed AI agents interact to
complete shared tasks, their representa-
tion and reasoning is similar to that found
in the integration of multiple require-
ments viewpoints.

Distributed AI research is addressing
interactions in a number of contexts, in-
cluding the following:

—Distributed agent negotiation. Dis-
tributed artificial intelligence has
expanded the role of planning. Multi-
agent planning systems identify and
resolve plan failures that occur among
sets of loosely coordinated agents (e.g.,
Conry et al. [1991]; Durfee [1988];
Georgeff [1984]; Kraus and Wilkenfeld
[1990]; von Martial 1992]). If the plan-
ners reach an inconsistent state, they
may cooperatively negotiate to satisfy
other plans [Conry et al. 1991]. To do
so, they may use economic models to
guide their decision-making so that
they can efficiently manage their re-
sources [Sandholm and Lesser 1995].
Again, the method of resolution is
typically subgoal replanning; however,
the subgoal failure and replanning is
complicated without global information.
Researchers in AI, and subsequently

distributed AI, have defined negotiat-
ing agents, which has given rise to two
complimentary research areas:

—Negotiation analysis knowledge. Case-
based reasoning and rule-base program-
ming codify and aid analyses to identify
and resolve the conflicts that arise in a
variety of domains, including labor ne-
gotiation [Sycara 1988], design integra-
tion [Klein 1991], and specification inte-
gration [Robinson and Volkov 1997].

—Negotiation protocol knowledge.
Frameworks [Conry et al. 1988; Smith
1980] and communication protocols
[Kraus and Wilkenfeld 1990; Lander
and Lesser 1993; Mazer 1989; Oliver
1996; Sandholm and Lesser 1995] aid in
coordinating the sequences of messages
among distributed negotiating agents.

3.2.5. Negotiation Support Systems. Re-
searchers in negotiation support systems
(NSS) are addressing interactions with
the aim of advising a human negotiator
or supporting humans gathered around
a negotiation table [Jelassi and Foroughi
1989, Lim and Benbasat 1992–1993]. Re-
search ranges from developing an NSS
“shell” aimed at supporting the construc-
tion of negotiation systems [Kersten and
Szpakowicz 1994; Matwin et al. 1989] to
specialized domain support such as airline
buyout [Shakun 1991], product marketing
[Rangaswamy et al. 1989], or electronic
marketplace [Yen et al. 1996]. Some ne-
gotiation support systems have borrowed
from AI reasoning features. Negotiation
support systems often focus on human as-
pects of negotiation including the domi-
nance and anonymity of participants.

3.2.6. Social Conflict and Negotiation. The-
ories and studies of conflict and negotia-
tion among humans have influenced much
of the research just described. This back-
ground in persuasion [Fisher and William
1991], negotiation [Pruitt 1981; Raiffa
1982], and decision-making [Janis and
Mann 1979; Raiffa 1968] is the basis for
many computerized models.

Researchers have adapted techniques
from human negotiations to assist in

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

148 Robinson et al.

Fig. 3 . An illustration of the activities that are
managed as part of the requirements interaction
management life-cycle. Each number indicates the
section where an activity is introduced. The symbol,
R, depicts a set of requirements, while the symbol,
⊥, depicts conflicting requirements.

detecting and resolving requirements con-
flicts. For example, case-based and rule-
base methods [Robinson and Volkov 1996;
van Lamsweerde et al. 1998] were gen-
eralized and formalized from the domain-
specific techniques of the 1980s.

3.2.7. Individual Decision-Making. Individ-
ual decision-making has influenced the
basic theories of interaction management
research. Multiattribute utility theory
suggests how an individual can trade off
various interacting goal to maximize over-
all utility [Raiffa 1968]. Some decision
models consider the dynamic aspects of
this process. For example, as an individ-
ual learns of the tradeoffs among goals, he
or she may reconsider the value, or weight,
placed on individual goals [Zeleny 1982].

4. LIFE-CYCLE ACTIVITIES

Figure 3 illustrates RIM activities. We de-
rived the figure from our model of auto-
mated negotiation, which we created from
a survey of tools and theories [Robinson
and Volkov 1998]. The description begins
with unstructured requirements, which
analysts may partition. Next, interaction
identification may provide conflicts that
analysts must address. Through interac-
tion focusing, they consider only a sub-
set of interactions at a time. Resolution

generation provides alternative ways to
resolve each conflict. Finally, resolution se-
lection determines which resolutions will
become change requests for the require-
ments document.

As Figure 3 shows, the activities in the
RIM life-cycle fall into six groups. Each
RIM activity has associated research is-
sues, which we describe next.

4.1. Requirements Partitioning

Requirements partitioning seeks to focus
interaction analysis on manageable re-
quirements subsets. This is important,
since analyzing all the interactions among
all requirements can involve significant
computation. For n requirements, there
can be n(n−1)/2 binary conflicts; the space
is even worse for n-ary conflicts. Parti-
tioning seeks to divide this problem into
a set of smaller problems. Requirements
partitioning gives rise to the following
issues:

Issue: On what basis should a require-
ments document be partitioned into sub-
sets that enhance analysis?

Many computer science communities
have considered problem partitioning
based on goals, among them the dis-
tributed AI community [Gasser and
Huhns 1989]. Partitioning based on stake-
holder views is a commonly used natu-
ral partitioning based on the originating
source of the stated requirements [Check-
land 1981; Gotel and Finkelstein 1995].
Other partitions may be based on root
requirements [Robinson and Pawlowski
1998], requirements issues [Yakemovic
and Conklin 1990], nonfunctional soft-
ware attributes [Boehm 1996], require-
ments consistency [Easterbrook 1993], or
scenarios [Potts et al. 1994]. In compos-
ite system design, Feather [1989] has used
the cross-product of functional partition-
ing and agent responsibility to partition
requirements. This approach is continued
in the deficiency driven design method, de-
scribed in Section 5.5.

Issue: How can an analyst allocate require-
ments to partitions?

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 149

Table III. Types of Requirements Interactions
Type Description Exemplar
Positive

interaction
Increasing the satisfaction of R1 increases the

satisfaction of R2.
Some,+,++, [Chung et al. 1995]
Influence + [Gustas 1995]

Negative
interaction

Increasing the satisfaction of R1 decreases the
satisfaction of R2.

Hurts,−,−−, [Chung et al. 1995]
Contradictory Influence -

[Gustas 1995]
Unspecified

interaction
Changing the satisfaction of R1 has an unspecified

effect on the satisfaction of R2.
Impacts on

interdependency
No

interaction
Increasing the satisfaction of R1 has no effect on the

satisfaction of R2.
Neutral

If each partition has some character-
ization, database and keyword search
technology can partition requirements.
For example, commercial tools can apply
database technology to select subsets
of requirements based on requirement
attributes. Difficulties arise when the
requirements are not attributed a priori
with necessary characteristics. In such
cases, partitioning can be based on the
keywords in each requirement. However,
the presence of a keyword does not neces-
sarily indicate that the key characteristic
is in the requirement. Some researchers
have overcome the limitations of keyword
retrieval by using concept-based infor-
mation retrieval [Chen 1992; Chen et al.
1993].

Sometimes requirements subsets con-
structed with different terminology can
further confound partitioning—for exam-
ple, when different people develop the
requirements. In such cases, statistical
measures of usage can help generate map-
pings among terms [Shaw and Gaines
1988].

Issue: Given a requirements partition-
ing, how can analysis of the partitions be
ordered to enhance analysis?

Strategies for the ordered analysis
of requirements partitions are rare.
A general software life-cycle strategy,
such as the spiral model, considers the
riskiest partitions first [Boehm 1988].
Specialized approaches consider cost-
benefit analysis [Karlsson and Ryan
1997; Cornford et al. 2000] or contention
[Robinson and Pawlowski 1998]. How-
ever, this research area seems largely
unexplored.

4.2. Interaction Identification

In Section 2.2 we introduced the term, re-
quirements interaction, and its two sub-
types, negative interaction and positive
interaction. Classifying interactions and
detecting conflicts have their own sets of
issues.

4.2.1. Classifying Interactions. A variety of
fields have contributed to a growing clas-
sification of interaction types, particularly
AI and requirements engineering.

4.2.1.1. AI-Based Classifications. AI plan-
ning concepts have introduced types such
as goal/subgoal decomposition. Goal con-
flict itself is explained in terms of condi-
tions, or resources, of operators that at-
tempt to achieve a goal; for example, goals
may conflict because operators that satisfy
goals individually have interfering pre-
conditions when achieved simultaneously.
Similarly, two requirements may conflict
because they mutually deplete available
system resources. Many such planning
terms have also been applied to charac-
terize interactions among requirements
[Potts 1994; Robinson 1989; Robinson and
Volkov 1996].

4.2.1.2. Requirements-Engineering-Based
Classifications. Table III summarizes the
most general types of interactions found
in the requirements-engineering-related
literature: positive, negative, and unspec-
ified.

A more refined analysis of the litera-
ture reveals the basis of most interactions.
Table IV summarizes these refined types,
which include interactions over structure,
resources, task, causality, and time.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

150 Robinson et al.

Table IV. Basis of Requirements Interactions
Type Description Exemplar
Structure R1 is similar to R2. Duplicate, alternative [Chung et al. 1999]
Resource R1 and R2 depend on the same resource. Resource utilization/contention [Yu and

Mylopoulos 1993]
Task R1 describes a task required for R2. Subtask, means/ends, operationalization

[Dardenne et al. 1993; Yu and Mylopoulos
1993]

Causality R1 describes a consequence of R2. Results in Moffett [2000]
Time R1 has a temporal relation to R2. Coincident state, simultaneity constraint,

pre/post time relation [Malone and Crowston
1994]

Some researchers have found that a
domain model based simply on posi-
tive and negative types is a practi-
cal solution [Boehm 1996; Chung et al.
1995; Dardenne et al. 1993; Ramesh and
Dhar 1992; Yakemovic and Conklin 1990;
Robinson and Pawlowski 1998]. Others
have extended such work to incorpo-
rate fuzzy logic concerning the degree of
conflict [Yen and Tiao 1997]. In more re-
cent work, fault-trees were the basis for
classifying interactions types. A fault tree,
such as that concerning human-computer-
interaction requirements [Maiden et al.
1997], is viewed as an a priori enumera-
tion of common negative interactions be-
tween the software and its environment.
In a similar fashion, a classification of
common interactions among functional
[Klein 2000] and nonfunctional software
development attributes can serve as the
basis for annotating how requirements
conflict [Boehm 1996]. Some researchers
have considered interactions other than
conflict, such as the cost/benefit of require-
ments [Karlsson and Ryan 1997; Cornford
et al. 2000].

4.2.2. Conflict Detection Methods. Zave
and Jackson [1993, p. 404] suggested that
practical consistency checking will largely
be language dependent:

In theory, the consistency of a multiparadigm
specification could be investigated within predi-
cate logic, after translating all partial specifica-
tions into that form. In practice, this is obviously
infeasible. The logical formulas resulting from
the translation are large and incomprehensible,
and the complexity of a real specification in that
form would be far beyond the capacity of existing
automated tools.

We believe that most practical consistency
checking must be formulated at the same con-
ceptual level as the specification languages used,
and that algorithms for consistency checking
will be specialized for particular languages and
styles of decomposition. . . .

It is already common practice for researchers
to work on analyzing and verifying specifications
within particular application areas or written
in particular languages, and they are beginning
to work on verifying specifications of popular
system architectures. We are not proposing any
change to this practice except the use of a small
set of complementary languages instead of one
language, which should make the overall goal
easier to achieve.

The authors show how features common
to different specification languages can
guide the translation of a multiparadigm
specification into a logic for consistency
checking [Zave and Jackson 1996]; others
have done similar work [Ainsworth et al.
1996; Niskier et al. 1989; Nuseibeh et al.
1994]. Delugach [1992, 1996] translated
specifications into conceptual graphs for
detection. Rather than rely on a common
semantic domain, Fiadeiro and Maibaum
[1995] used category theory to detect in-
consistencies among multiparadigm spec-
ifications. Still, many current interaction-
detection techniques rely on certain
features of the specification language.

Table V summarizes five categories of
methods for evaluating requirements for
possible interactions. All the methods ad-
dress the following issue:

Issue: What kinds of analyses can be ap-
plied to requirements to uncover require-
ments interactions?

4.2.2.1. Classification-Based. A general
classification can help in identifying

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 151

Table V. Interaction Detection Methods
Method Description Example
Classification-

based
Requirements interactions are

found and classified by
comparing requirements
against an a priori model of
requirements interactions.

WinWin [Boehm 1996], NFR
[Mylopoulos et al. 1992],
CDE [Klein 1991]

Patterns-based Requirements are compared with
detection pattern conditions. An
interaction is found when there
is a match. Resolution patterns
derive resolutions in a similar
manner.

KAOS [van Lamsweerde
and Letier 2000]

AI planning Requirements interactions and
resolutions are found through
planning. Requirements are
represented as goals, while
operations are represented as
planning operators.

DDR (Oz) [Robinson 1993],
KAOS [van Lamsweerde
and Letier 2000]

Scenario
analysis

Requirements interactions are
demonstrated by simulating a
sequence of events that
represents a narrow aspect of a
system’s required behavior.

SCR [Heninger 1980],
CREWS-SAVRE [Maiden,
1998; Sutcliffe et al. 1998]

Formal methods Requirements interactions are
found by algorithmic
verification (SPIN, SMV),
deductive verification (PVS,
HOL), and language-specific
verification (SCR, RSML).

SPIN [Holzmann 1997], SMV
[McMillan 1992], PVS
[Crow et al. 1995; Owre
et al. 1995], HOL
[Gordon and Melham
1993], SCR [Heninger
1980], RSML [Leveson
et al. 1994]

Runtime
Monitoring

Requirements interactions are
found by monitoring a system
execution for certain events that
indicate violations of
requirements specifications.

FLEA [Feather 1997;
Feather et al. 1998]

requirements interactions. Classification
captures commonly occurring interactions
among requirements and environment
features [Fox et al. 1996; Gruninger and
Fox 1995; Olsen et al. 1994; Storey et al.
1997]. A hierarchy of such binary interac-
tions typically defines the classification.
Most work on nonfunctional interactions
uses such binary interactions to indicate
interactions [Boehm 1996; Chung et al.
1995; Dardenne et al. 1993; Ramesh and
Dhar 1992; Robinson and Pawlowski
1998].

Classification-based interaction detec-
tion proceeds in three phases: (1) classify
requirements according to the interaction
classification, (2) instantiate the associ-
ated general interactions from the clas-
sification, and (3) infer requirements in-
teractions from the instantiated domain

interactions. Detection can be automated
[Spanoudakis and Constantopoulos 1996],
and the analysis of even five simple in-
teraction types yields significant benefits
[Robinson and Pawlowski 1998].

The following definition relates infor-
mation accuracy and the effort required to
provide such information:

DomainDef AccuracyIncreasesEffort
InformalDef

‘‘Accurate information in-
creases effort of information provi-
ders.’’

Now, consider two nonfunctional re-
quirements R1 and R2 belonging to the
Accuracy and Effort categories, respec-
tively. The interaction model may indicate
a negative interaction, which implies that

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

152 Robinson et al.

R1 and R2 might interact negatively. This
is summarized in the following rule:
AnalysisDef DetectNonFunctional

NegativeInteraction
InformalDef

‘‘If two requirements belong
to nonfunctional categories that the
interaction model says are negati-
vely interacting then the two requi-
rements might be interacting negati-
vely.’’

An analogous rule holds for positive in-
teractions.

As an example, consider the Scheduler
ShallNotIncreaseParticipantEffort re-
quirement of Section 2.3.3, along with
the following ParticipantAccurate
Constraints requirement.

Requirement ParticipantAccurate
Constraints

Mode Achieve
InformalDef

‘‘A meeting particpant’s
constraints shall be accurate.’’

SchedulerShallNotIncrease
ParticipantEffort references Effort
while Participant AccurateConstraints
references Accuracy. DetectNon
FunctionalNegativeInteraction instan-
tiates AccuracyIncreasesEffort along
with the two requirements to infer that
requiring accurate participant constraints
will increase participant effort.

WinWin is probably the best known
requirements tool that uses a classifica-
tion of binary interactions to notify stake-
holders of new requirements interactions
[Boehm 1996; Egyed and Boehm 1996].
(See Section 5.)

4.2.2.2. Patterns-Based. An interaction
classification of binary interactions can
lead to wrong inferences about interac-
tions. Accurate information (Participant
AccurateConstraints) will not always
increase participant scheduling effort
(SchedulerShallNotIncreaseParticipant
Effort), for example. Computerized selec-
tion and scheduling of a meeting room can
decrease the effort of meeting participants
as well as increase schedule information
accuracy, which implies an increase in

participant effort as they maintain their
on-line information. Thus, a classifica-
tion of binary interactions is simple to
construct but, if not precise, can lead to
wrong conclusions.

A more precise analysis is possible with
interaction patterns. Such patterns have
pre- and postconditions that constrain
their use and the conclusions they draw.
Consider the following simple interaction
pattern:

An activity performed by a software agent that
produces information used by a human agent de-
creases the human agent’s effort.

This pattern provides more conditions
of use than binary patterns of the form
X increases Y. Consequently, few wrong
inferences will be drawn. Of course,
a multiplicity of patterns leads to the
same problem of inconsistency that oc-
curred with binary interaction classifica-
tion. In this case, however, because the
patterns are precise, the problem is not as
severe.

The KAOS project defines formal pat-
terns [van Lamsweerde et al. 1998].
The Critic specification tool [Fickas and
Nagarajan 1988] and Klein’s concurrent
requirements analysis tool (CDE; [Klein
[1991]) and his Conflict Detection Section
of the MIT Process Handbook [Klein 2000]
use interaction patterns to detect conflicts.

4.2.2.3. AI Planning. It is possible to
automatically compare requirements and
classify their interaction type. Given op-
erational requirements, program slicing
techniques [Horwitz et al. 1989; Yang et al.
1992] can highlight semantic differences
in versions of a common root specification
[Heimdahl and Whalen 1997]. For require-
ments represented as nonoperational sys-
tems goals, planning techniques aid in de-
riving a plan for the conjunction of the
requirements set:

(1) If the planner finds a plan in a given
operator set, then requirements can be
achieved simultaneously.

(2) If it fails to find a plan, analysts can use
goal regression to find the reason for
the requirements conflict [Fickas and

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 153

Anderson 1989; Robinson 1993, 1994;
van Lamsweerde and Letier 2000].

Finally, a set of requirements can suc-
ceed and fail in the same environment.
Analysts can check for this by planning
for the conjunction of some requirements
with the negation of others; if such a
plan succeeds, then the requirements can
fail in the way the plan demonstrates
[Fickas and Anderson 1989]. Of course, the
operations and other environmental re-
sources must first be formalized for some
part of the system environment [Fickas
and Anderson 1989]. Such a planning ap-
proach to goal interaction is also suit-
able for scenario analysis: requirements
become plan goals and the plan opera-
tors become the scenario actions. Analysts
generate scenarios by considering a vari-
ety of plan failures, such as precondition
failure via resource depletion [Fickas and
Anderson 1989; Maiden et al. 1997]. Dis-
tributed AI research also uses such inter-
action detection [Gasser and Huhns 1989;
Velthuijsen 1993; von Martial 1992].

4.2.2.4. Scenario Analysis. Van Lamsweerde
and Willemet [1998, p. 1089] defined a sce-
nario as follows:

A temporal sequence of interaction events
among different agents in the restricted context
of achieving some implicit purpose(s). . . . A sce-
nario captures just one particular, fragmentary
instance of behavior of a system.

Because scenarios represent system ex-
ecution fragments, analysts can evaluate
their outcome relative to requirements.
Positive scenarios satisfy requirements,
while negative scenarios violate them. A
scenario that is both positive and neg-
ative still violates certain requirements,
and thus shows a negative interaction.

In scenario analysis, the analyst selects
a subset of requirements to be analyzed
and then identifies a particular scenario
to determine if the selected requirements
can be satisfied. If the analyst finds no
such scenario, he or she has in effect
discovered a negative interaction. For
temporal logic requirements and state-
based scenarios, model checking tools can
automate scenario analysis [McMillan

1992; Holzmann 1997]. Alternatively, a
knowledge-based approach can suggest
scenarios that are likely to generate
requirements interactions [Maiden 1998].
Finally, scenario-based advice can be
distilled into checklists or fault-trees as
a way to uncover interactions manually
[Leveson 1995].

4.2.2.5. Formal Methods. Formal meth-
ods are used for a variety of purposes
in analyzing specifications, according to
van Lamsweerde and Jetier 2000] (cf
[Heitmeyer and Mandrioli [1996]):

—to confirm that an operational specifi-
cation satisfies more abstract specifica-
tions, or to generate behavioral coun-
terexamples if not, through algorithmic
model checking techniques [Queille and
Sifakis 1982; Clarke and Emerson 1986;
Holzman 1991, 1997; McMillan 1993;
Atlee 1993; Manna and Group 1996;
Heitmeyer et al. 1998b; Clarke et al.
1999];

—to generate counterexamples to claims
about a declarative specification
[Jackson and Damon 1996];

—to generate concrete scenarios illustrat-
ing desired or undesired features about
the specification [Fickas and Helm
1992; Hall 1995, 1998] or, conversely, to
infer the specification inductively from
such scenarios [van Lamsweerde and
Willemet 1988];

—to produce animations of the specifi-
cation in order to check its adequacy
[Hekmatpour and Ince 1988; Harel et al.
1990; Dubois et al. 1993; Douglas and
Kemmerer 1994; Heitmeyer et al. 1996;
Thompson et al. 1999];

—to check specific forms of specifi-
cation consistency/completeness effi-
ciently [Heimdahl and Leveson 1996;
Heitmeyer et al. 1996];

—to generate high-level exceptions and
conflict preconditions that may make
the specification unsatisfiable [van
Lamsweerde et al. 1998; van Lam-
sweerde and Letier 2000];

—to generate higher-level specifications
such as invariants or conditions for

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

154 Robinson et al.

liveness [Lamsweerde and Sintzoff
1979; Bensalem et al. 1996; Park et al.
1998; Jeffords and Heitmeyer 1998];

—to drive refinements of the specification
and generate proof obligations [Morgan
1990; Abrial 1996; Darimont and van
Lamsweerde 1996];

—to generate test cases and oracles from
the specification [Bernot et al. 1991;
Richardson et al. 1992; Roong-Ko and
Frankl 1994; Weyuker et al. 1994;
Mandrioli et al. 1995];

—to support formal reuse of components
through specification matching [Katz
et al. 1987; Reubenstein and Waters
1991; Massonet and van Lamsweerde
1997; Zaremski and Wing 1997].

Many of the preceding methods support
of conflict detection, as well as other RIM
activities. The SCR tool kit, for example,
finds missing, ambiguous, and erroneous
requirements [Bharadwaj and Heitmeyer
1997; Heitmeyer et al. 1996; Schneider
et al. 1998]; see Section 5.6. Using the
KAOS approach, an analyst can uncover
conflicts among requirements or between
requirements and the environment; see
Section 5.4.

4.2.2.6. Runtime Monitoring. Runtime
monitoring tracks the system’s runtime
behavior for any deviations from the re-
quirements specification. Requirements
monitoring is useful when verifying sys-
tem properties is too difficult, when
resolving noncritical conflicts during spec-
ification may be too costly or lead to un-
necessary restrictions, when assumptions
made about the environment are evolv-
ing, or when specific dispositions must be
deployed for specific use modes. During
requirements definition, developers inte-
grate certain assumptions, which analysts
then monitor at runtime. Should the as-
sumptions fail, monitoring invokes a pre-
defined procedure, such as to notify the de-
signer. Monitoring differs from exception
handling in three ways: (1) it considers the
combined behavior of events that occur in
multiple threads or processes; (2) it links
runtime behavior with the actual design-

time requirements; (3) it provides enough
information for developers to reconfigure
the software or software components at
runtime.

Fickas and Feather [1995] proposed re-
quirements monitoring that tracks the
achievement of requirements at runtime
as part of an architecture that lets de-
velopers reconfigure component software
dynamically. Feather’s working system,
called FLEA (for Formal Language for
Expressing Assumptions Language De-
scription), lets developers monitor events
defined in a requirements monitoring lan-
guage [Feather et al. 1997, 1998]. Con-
structs in the language are mapped to trig-
gers in a specialized database. As FLEA
records interesting events in the database,
the database triggers provide alerts when
requirements fail.

Fickas and Feather [1995] illustrated
runtime requirements monitoring for a
software license server. When the license
server fails to satisfy its requirements
(e.g., a user shall be granted a license in
90% of their requests) because of a change
in the system environment, the system
notifies an administrator. As a follow-on,
Robinson’s [2002] ReqMon demonstrated
the use of assertion checking to link run-
time monitors to requirements.

Expectation agents monitor the system’s
actual use [Girgensohn et al. 1994]. Devel-
opers define software user expectations,
such as, “validate the customer address
before configuring the customer’s ser-
vices.” Agents then monitor the system’s
use and when it does not match the defined
expectations, agents perform the follow-
ing actions: notify developers of the dis-
crepancy, provide users with an explana-
tion based on developers’ rationale, and/or
solicit a response to or comment about
the expectation [Girgensohn et al. 1994].
Thus, in one sense, expectation agents
monitor the satisfaction of developer ex-
pectations.

4.3. Interaction Focus

Issue: Given a number of requirements in-
teractions, how can the interactions be par-
titioned to enhance the analysis?

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 155

Some requirements interactions depend
on other requirements interactions. For
example, the resolution of one conflict may
introduce new conflicts into the require-
ments set; conversely, one resolution may
remove multiple conflicts.

Efficient resolution focuses on key in-
teractions. A necessary first step in gener-
ating a resolution is to partition or order
interactions for consideration. In general,
any such ordering should aim first to de-
crease overall conflict and minimize re-
work. Robinson has ordered requirements
by their degree of contentiousness—the
percentage of conflicting interactions that
a particular requirement has among all
requirements [Robinson and Pawlowski
1998]. Resolution generation then focuses
on resolving conflicts among requirements
with the greatest total contention. This
strategy monotonically decreases the over-
all conflict in a small requirements doc-
ument [Robinson and Pawlowski 1998],
but it considers only conflict dependencies,
not factors such as the importance of the
requirements. Less contentious require-
ments may be a priority because the sys-
tem must achieve them exactly as stated
(no negotiation). In that case, the focus
would be on conflicts that involve require-
ments with the greatest total importance.
However, with an importance focus, reso-
lution generation considers relatively few
requirements. Thus, resolutions may be
myopic. For example, in a limited-resource
environment, assigning all resources to
important requirements solves the im-
portant conflicts, but can introduce new
conflicts, as some requirements cannot be
satisfied. Thus, analysts must weigh a re-
quirement’s importance in the context of
its implications for other requirements.
Research into cost-value tradeoffs of re-
quirements aims to assist this activity
[Karlsson and Ryan 1997; Cornford et al.
2000].

Techniques for partitioning a large set
of requirements are also effective in par-
titioning requirements interactions. (See
Section 4.1.) Here, the focus is on all
interactions in a particular partition:
stakeholder, scenario, requirements sub-

sumption hierarchy, and so on. In fact,
decision science suggests that individu-
als can maximize their own benefit by
first understanding and specifying their
own preferences before negotiating with
others [Zeleny 1982]. This suggests using
stakeholder partitioning to resolve par-
tition conflicts within a partition before
attempting to resolve them among par-
titions. Moreover, the negotiation litera-
ture suggests that, in social contexts, re-
solving the simplest conflicts first builds
trust among the negotiating participants
[Pruitt 1981].

4.4. Resolution Generation

Issue: Given requirements interactions,
how can resolutions be generated?

Conflict resolution can be characterized
as a multiple goal-planning problem:
given goal sets G1 and G2 held by agents
A1 and A2, respectively, the resolution
activity attempts to find a combined
goal set similar to {G1, G2} that the
system can achieve without conflict.
Resolution is commonly characterized as
a tuple—agents, goals, environment—
in which multiple agents seek to achieve
goals within an environment, and the
environment specifies available op-
erators, resources, and other domain
constraints.

Several approaches have successfully
automated conflict resolution [Robinson
and Volkov 1998]. Table VI summa-
rizes six categories of conflict-resolution
methods described in the requirements-
engineering literature. We derived the six
categories from approximately 29 meth-
ods, 11 of which we identified as unique.
(Table IX summarizes projects that use
these methods.)

The compromise method in Table VI
is an example of a value-oriented ap-
proach to conflict resolution. The method
searches for alternative goals (or goal
values) to find nonconflicting substitute
goals (or goal values). If the substitute
goals are ordered, lexicographical order-
ing [Zeleny 1982] (to find less desirable

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

156 Robinson et al.

Table VI. Conflict Resolution Methods
Method Description
Relaxation:

generalization,
value-range
extension

Conflicting requirements are relaxed to expand the range of mutually satisfactory
options beyond what the original requirements specify.

Generalization involves replacing the conflicting concept with a more general
concept. Value-range extension changes the range of values acceptable to the
stakeholders.

Refinement
specialization

Conflicting requirements are decomposed into specialized requirements, some of
which can be satisfied.

Compromise Given a conflict over a value within a domain of values, compromise finds another
substitute value from that domain.

Restructuring:
reenforcement,
replanning

Restructuring methods attempt to change the conflict context; they alter
assumptions and related requirements in addition to the conflicting
requirements.

Restructuring attempts to reduce constraining interactions and allow a wider
range of resolution options.

Reenforcement is a restructuring that ensures a precondition is satisfied.
Replanning is the selection of an alternative set of requirements in order to
achieve a subordinate requirement.

Other:
postponement,
abandonment

Conflict resolution can be postponed. In complex interactions, many conflicts and
requirements are interrelated. By postponing a conflict and resolving other
conflicts, the postponed conflict might cease to exist. Alternatively, conflicting
requirements can be abandoned.

goals) characterizes resolution generation
as a constraint relaxation problem. [Conry
et al. 1988; Werkman 1990a, 1990b]. If the
goals are arranged in an AND/OR hierar-
chy, replanning can generate alternative
goal values [Adler et al. 1989; Velthuijsen
1993; von Martial 1992].

The other methods in Table VI are ex-
amples of a structure-oriented approach,
which considers new operators and re-
sources, as well as resource sharing.
Also called “lateral” “out of the box
thinking” [Fisher and William 1991], the
structure-oriented approach is considered
more likely to lead to an optimal reso-
lution, than the value-oriented approach
[Kersten and Szpakowicz 1994; Pruitt
1981], because it provides the freedom
to redefine both goals and the environ-
ment. Thus, it is not surprising that many
knowledge-based agents use some form
of problem restructuring to generate res-
olutions [Kersten and Szpakowicz 1994;
Klein 1991; Matwin et al. 1989; Sycara
1988, 1991]. Although many distributed
AI projects use the term negotiation to de-
scribe their work, conflict resolution typ-
ically involves some form of compromise,
goal relaxation, or goal dropping [AAAI
1994; Kannapan and Marskek 1993; Kwa
1988; Mostow and Voigt 1987; Sathi et al.

1986; Werkman 1990b]. In general, the fo-
cus of these projects is not on defining new
resolution-generation techniques, but on
incorporating resolution into a distributed
AI architecture.

One version of the structure-oriented
approach matches new conflicts with a
domain-dependent case base that con-
tains associations of previous conflicts
and their resolutions [Klein 1991; Sycara
1988, 1991]. Analysts can then derive new
resolutions from the resolutions of simi-
lar previous cases. Another implementa-
tion approach encodes structure-oriented
resolution knowledge into a domain-
dependent rule-based system [Kersten
and Szpakowicz 1994; Matwin et al. 1989].

Researchers can generalize such re-
structuring transformations using basic
negotiation principles. A theory-based,
rather than domain-based, approach
overcomes problems attributed to the
narrow expertise of expert systems
[Buchanan and Shortliffe 1984]. Negoti-
ation theory-based domain-independent
transformations apply across application
domains and still apply when faced with
unforeseen circumstances [Robinson
1997; Robinson and Volkov 1996; van
Lamsweerde et al. 1998]. (For example,
see Section 5.4.)

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 157

4.5. Resolution Selection

Issue: Given requirements resolutions,
how does the analyst select the “best” reso-
lutions?

Decision science theories suggest how to
select the best alternative from a set of al-
ternatives. The classic approach is based
on utility—the benefit derived from an al-
ternative [Raiffa 1968]. An overall utility
decomposes into multiple criteria, to form
a multiple-criteria utility function [Zeleny
1982]. In decision science, a criterion is the
same as a requirement attribute. Thus,
if requirements are given scaled non-
functional attributes, then stakeholders
can use those attributes to specify that
they seek to maximize, minimize, or reach
specific attribute values. Robinson [1993,
1994, 1997] has demonstrated the value
of using stakeholder multiple-criteria util-
ity functions to derive a preference order-
ing among requirements or conflict res-
olutions. Jacobs and Kethers [1994] also
demonstrated a specialization of this gen-
eral approach, based on the House of Qual-
ity methodology. Robinson [1993, 1994,
1997] has also suggested the value of
Zeleny’s [1982] Interactive Decision Evo-
lution Aid (IDEA)—an interactive deci-
sion procedure that provides feedback on
criteria tradeoffs among decision alterna-
tives. The analyst does not explicitly spec-
ify tradeoffs among criteria but rather
seeks to improve values of the current so-
lution along specific criteria. The analyst
invokes resolution generation to create
new alternatives in the search for a good
resolution. As this activity progresses, the
analyst will focus on a succeedingly nar-
rower solution set, thus subjectively de-
termining the optimal solution [Festinger
1964; Janis and Mann 1979]. The re-
sult is in effect a settlement of tradeoffs
among stakeholder positions [Robinson
1994; Zeleny 1982].

Issue: Can a strategy integrate resolution
selection into resolution generation?

Given that analysts know which solu-
tions are preferable, resolution generation
would be more efficient if it could incor-
porate that knowledge and thus limit the

search to the most promising resolutions.
An approach that incorporates selection
information would weed out all but reso-
lutions with the preferred characteristics
using some kind of matching For example,
a case-based approach finds resolutions
by matching conflict contexts [Klein 1991;
Sycara 1988, 1991]. Neural networks pro-
vide another means of matching [Oliver
1996].

The drawback of a match-based ap-
proach is the difficulty of explaining what
led to a specific resolution. Alternatively,
the transformations in a transformation-
based approach can provide textual ex-
planations of the reasoning [Neches
et al. 1985] and formal analyses of the
transformations applied (e.g., refinement
[Darimont and van Lamsweerde 1996]).
Moreover, given selection preferences, an
approach can incorporate those prefer-
ences into preconditions of transformation
to make generation more efficient [Mostow
and Voigt 1987].

4.6. Methodological Issues

The RIM life-cycle activities described
in the previous five subsections raise
methodological issues about when and in
what context to use them.

Issue: When should the life-cycle activities
take place?

Methodological guidance as to when and
why analysts should engage in require-
ments management activities is rare. Tra-
ditional approaches, such as the classic
software life-cycle, suggest checking and
resolving interactions after any substan-
tial change to a document—especially, af-
ter each life-cycle phase [Boehm 1998].
Some methodologies explicitly seek inde-
pendent, and possibly inconsistent, par-
titions [Checkland 1981; Mullery 1979;
Nuseibeh et al. 1994; Robinson and
Volkov 1996; Schuler and Namioka 1993].
Nuseibeh [1996] summarized ways in
which various software methodologies ad-
dress conflicts in descriptions, including
ignoring, circumventing, removing, and
ameliorating them. He went on to suggest
metrics that analysts should track as part

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

158 Robinson et al.

of inconsistency management, including
the likelihood of failures due to unresolved
conflict, and dependent decisions that the
status of a conflict might affect. Unintru-
sive “reminders” could aid in tracking con-
flict status. Unfortunately, not much work
considers when to apply conflict detection
and resolution if conflicts are unresolved
for some time.

Issue: How can automated support for
interaction management be provided for
multiple analysts?

Many projects address the management
of requirements interactions for multi-
ple analysts. Chen and Nunamaker have
proposed a collaborative CASE environ-
ment, tailoring GroupSystems decision-
room software, to facilitate requirements
development [Chen 1991]. Using C-CASE,
the software tracks and develops require-
ments consensus. Potts et al. [1994] have
defined the Inquiry Cycle Model of devel-
opment to instill some order into analyst
dialogs about requirements interactions—
specifically, interactions that arise as part
of scenario analysis. The model devel-
ops requirements from analyst discus-
sions and categorizes them as questions,
answers, and assumptions. By tracking
these types of dialog elements (and their
refinements), the model maintains dia-
log while keeping inconsistency, ambigu-
ity, and incompleteness in check through
specific development operations and re-
quirements analysis (e.g., scenario anal-
ysis).

The ViewPoints project has stimulated
substantial research into the manage-
ment of multiple requirements represen-
tations [Easterbrook 1994; Finkelstien
1996; Finkelstein et al. 1994a; Kotonya
and Sommerville 1996; Mullery 1979;
Sommerville and Sawyer 1997]. At its
core is the representation of multiple
development documents, which may be in
different languages (dataflow diagrams,
Petri nets, and so on), as well as different
stakeholder views (Manager, Employee,
and so on).

WinWin also provides groupware sup-
port for tracking team requirements de-
velopment, including conflict detection

and resolution [Boehm 1996; Egyed and
Boehm 1996]. In addition to issue track-
ing, the tool aids conflict characteriza-
tion with its hierarchy of common require-
ments conflict criteria.

Still other collaborative CASE efforts
use meta-models to aid analysis across
stakeholder views [Nissen et al. 1996;
Ramesh and Dhar 1992; Hahn et al. 1991].

In addition to direct support for analyz-
ing the requirements themselves, many
projects indirectly support requirements
analysis by giving analysts tools to aid
dialogs about requirement analysis. Ba-
sic problems of collaborative CASE include
information control, sharing, and mon-
itoring [Vessey and Sravanapudi 1995].
Collaboration problems include how to
support task, team, and group analysis
[Vessey and Sravanapudi 1995]. Collab-
orative tools like electronic whiteboards
and videoconferencing can capture the di-
alog surrounding analysis. Tools can link
such rationale to the requirements dia-
log in the way that similar tools link
source documents to specific requirements
[Christel et al. 1993]. Analysts can adapt
these collaborative tools to aid conflict res-
olution and capture rationale for selected
resolutions.

Issue: How can the status of the activ-
ities be monitored: through development
and through system operation?

Most collaborative CASE tools support
the tracking of document annotations, up-
dating a document’s annotated status as it
passes from one activity to another. Fewer
tools support the explicit specification,
achievement, and tracking of methodology
goals. For example, consider the goal, “All
requirements must have a defined user
priority”:

∀ R ∈ Requirement, ∃ P ∈ UserPriority •
(HasPriority R P)

(This requirement supports standard
PSS05, which specifies that under in-
cremental development, all requirements
will have a user-defined priority [Mazza
et al. 1994].) It is desirable to support

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 159

Table VII. RIM Support in Seven Projects
Activity WinWin NFR ViewPoints KAOS DDRA SCR M Telos
Requirements partitioning A+ A M A N A A
Interaction identification A+ A A+ A+ A+ A A+
Interaction focus A A M N A N N
Resolution generation A M A A+ A+ N N
Resolution selection A A+ N N A+ N N

Key: M = some manual support, A = some computer automation, A+ = computer automation specifically
designed to solve the problem, N = no support described.

analysts in their specification, achieve-
ment and tracking of such methodology
goals.

Workflow and process modeling may
provide some solutions for managing re-
quirements development [Sheth 1996].
Some approaches, for example, generate
a work environment from a hierarchical
multiagent process specification [Miller
et al. 1997]. Others have incorporated
such process models into CASE tools [Mi
and Scacchi 1992], but these tools gener-
ally enforce processes constraints.

Process enforcement solutions ignore
Osterweil and Sutton’s [1996] observation
about task sequencing:

Experience in studying actual processes, and in
attempting to define them, has convinced us that
much of the sequencing of tasks in processes con-
sists of reactions to contingencies, both foreseen
and unexpected. [Osterweil and Sutton 1996,
p. 159]

Requirements development is fraught
with contingencies, as requirements and
their dependencies are discovered as part
of the requirements development method-
ology. Thus, requirements interactions
management tools tend to downplay pro-
cess enforcement and support the ex-
pression and monitoring of methodology
goals [Emmerich et al. 1997; Robinson and
Pawlowski 1999].

Emmerich et al. [1997] have illus-
trated how a tool can monitor the vi-
olation of methodology goals as part of
a process-compliance-checking technique.
Their work builds on Fickas and Feather’s
[1995] requirements-monitoring concept.
(See Section 4.2.2.6.) Similarly, DealScribe
can monitor a changing requirements doc-
ument according to process goals. By ap-
plying consistency rules, it automatically
detects inconsistencies, sends appropri-

ate notifications, and even applies reso-
lution methods [Robinson and Pawlowski
1999].

5. ILLUSTRATIVE PROJECTS

We have identified seven projects that il-
lustrate some aspect of RIM. Although
each project has a different research goal,
each provides representations of require-
ments interactions, reasoning about in-
teractions and conflict removal, and com-
puter support for analysis. Together, the
seven projects give a sample of the sup-
port possible for RIM.

Tables VII though IX provide an
overview of the conflict detection and res-
olution support for the seven projects.
Table VII provides an overview according
to the activities of Figure 3. Table VIII
overviews the interaction support pro-
vided by the projects. (The interac-
tion types are defined in Table XI in
Section 5.4.) Finally, Table IX provides an
overview of the conflict resolution sup-
port according to the methods of Table VI.
In all three tables, we subjectively as-
signed a value as a means to overview the
level of automated support. We inferred
the values from the project literature,
because the literature does not directly
indicate each project’s support for all
issues.

We now summarize each project in
terms of the RIM activities and products.

5.1. Win Win

The WinWin project supports collabora-
tion among a wide set of system stake-
holders. Too often, software development
solutions satisfy only a subset of all stake-
holders, the “winners.” Table X illustrates
the distribution of winners and losers

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

160 Robinson et al.

Table VIII. Support for Conflict Detection Methods in Seven Projects
Interaction type WinWin NFR ViewPoints KAOS DDRA SCR M Telos
Process-level deviation
A deviation in development enactment from the

defined development process.

N N A+ N N N N

Instance-level deviation
A class instance of the implementation violates

requirements.

N N N N N N N

Terminology clash
A single real-world concept is given different

terms in the requirements.

N N A N N N N

Designation clash
A term in the requirements designates multiple

real-world concepts.

N N A+ N N A N

Structure clash
A term in the requirements is represented with

multiple structures.

M N A N N N A

Conflict
A set of requirements are logically inconsistent.

A A A+ A+ A+ A+ A+

Divergence
A set of requirements can be shown to be logically

inconsistent when a certain sequence of
environmental and system events can occur.

M A N A+ A+ A+ N

Competition
A kind of divergence where particular instances

of a requirement class cause a divergence.

M A N A+ A+ A+ N

Obstruction
A kind of divergence where a requirement fails

when a certain sequence of environmental and
system events can occur.

M A N A+ A+ A+ N

Key: M = some manual support, A = some computer automation, A+ = computer automation specifically
designed to solve the problem, N = no support described. KAOS automation is described rather than imple-
mented.

Table IX. Support for Conflict Resolution Methods in Seven Projects
Method WinWin NFR ViewPoints KAOS DDRA SCR M Telos
Relaxation: generalization, value-range extension M N N A+ A+ N N
Refinement: specialization M N N A+ A+ N N
Compromise M N N A+ A+ N N
Restructuring: reenforcement, replanning M N N A+ A+ N N
Other: postponement, abandonment M N N A+ A+ N N
Key: M = some manual support, A = some computer automation, A+ = computer automation specifi-
cally designed to solve the problem, N = no support described. KAOS automation is described rather than
implemented.

Table X. Frequent Software Development Win-Lose Patterns
Proposed solution “Winning” stakeholders “Losing” Stakeholders
Quick, cheap, sloppy product Developer, Customer User
Lots of features (“bells & whistles”) Developer, User Customer
Driving too hard a bargain Customer, User Developer
Source: Table reproduced from Boehm et al. [1994].

for some typical software development
solutions.

To have a winning outcome for all stake-
holders, WinWin offers software support
for multistakeholder requirements analy-
sis and integrates such analysis into the
larger software development life-cycle.

As Figure 4 shows, the development
of winning stakeholder requirements is
an activity. The activity model combines
the risk reduction strategy of the spiral
model [Boehm 1988] with the negotiation-
oriented philosophy of Theory-W [Boehm
1989]. In each cycle, developers do

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 161

Fig. 4 . The WinWin spiral activity model.

the following:

—Identify stakeholders.
—Identify the requirements of each stake-

holder, called win-conditions.
—Identify requirements interactions,

called Conflict/Risk/Uncertainty Spec-
ifications (CRU’s) and capture their
resolution as Points of Agreement
(POA’s).

—Elaborate the product and activity de-
scriptions according to the new require-
ments. They also consider alternative
means of satisfying the new collabora-
tive requirements and select solutions
with an eye toward risk reduction.

—Plan, validate, and review the next
cycle.

The WinWin spiral activity model has
three major milestones: Life-Cycle Ob-
jectives (LCO), Life-Cycle Architecture
(LCA), and Initial Operational Capabil-
ity (IOC). Requirements are among the
six attributes that characterize each mile-
stone. Stakeholders must commit to mile-
stones between project inception, elabora-
tion, and construction [Boehm et al. 1978].

5.1.1. Activities. The WinWin tool sup-
ports collaborative requirements analysis
among stakeholders. In the context of RIM
life-cycle activities (see Figure 3), this sup-
port includes the following:

—Partitioning. WinWin lets analysts
partition requirements according to

Fig. 5 . WinWin artifacts. (Adapted from Boehm and
Egyed [1998].)

their associated attributes. These in-
clude project-defined attribute types,
such as those listed in Figure 5 (from
Boehm and Egyed [1998]). Each at-
tribute type is also linked to stakeholder
roles, interattribute relationships, and
strategies for reducing conflict. The at-
tribute types enable certain kinds of
analysis, including the following:

—Attribute importance. Stakeholders
vary in the importance they place
on attribute types. QARCC, a com-
ponent of WinWin, predefines an
association of stakeholder roles to
attribute types. For example, the User
stakeholder role cares about Usability
and Performance, while the Developer
stakeholder role cares more about Cost
and Schedule [Boehm 1996].

—Attribute conflicts. Analysts may
know that certain attribute types
conflict with others. In QARCC, each

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

162 Robinson et al.

Fig. 6 . A WinWin project-specific taxonomy of attribute types.

attribute type has an associated
set of supportive and detracting at-
tribute types, which QARCC uses to
identifying potential requirements
conflict.

—Attribute conflict reduction. Analysts
may also know that certain attribute
type conflicts can be reduced through
a set of general strategies. In QARCC,
each attribute type has an associated
set of textual activity and product
strategies that stakeholders may con-
sider when confronted with a conflict.

—Identification. When the analyst en-
ters a requirement (win-condition) into
QARCC, it generates a list of poten-
tially conflicting requirements. To gen-
erate the list, QARCC first retrieves
the attribute types associated with the
new requirement, then retrieves the as-
sociated set of potentially conflicting
attribute types, and finally finds the
set of other requirements with those
types [Boehm 1996]. For each such con-
flict, QARCC sends a Conflict Advisor
Note message to stakeholders who have
indicated concern about the attribute
type.

—Focus. WinWin artifacts, such as re-
quirements and resolutions, can be
sorted by artifact attributes, such as
owner, status, priority, revision date,
etc.

—Resolution. When a potential conflict
is identified, QARCC presents users
with a list of predefined (text) strategies
that may apply to the given attribute
type conflict. A user may use this infor-
mation to define a resolution Option.

—Selection. The user selects a resolution
Option from the set of Options that all
users have defined.

5.1.2. Products. Major requirements ar-
tifacts in WinWin include requirements,
conflicts, resolutions, and agreements.
Figure 5 illustrates the relationship
among them. WinWin defines require-
ment terms in a project-specific taxonomy
(Figure 6). However, QARCC does have
an attribute-type taxonomy that includes
an a priori model of requirements in-
teractions and resolution strategies. This
model enables QARCC to provide lists
of potential requirements conflict and
suggestions on possible ways to resolve
them.

5.1.3. Case-Study Results. Since 1995,
the WinWin project members have pub-
lished articles describing case studies of
software analysis using WinWin. Several
results of those case-studies are notewor-
thy for RIM:

—Between 40% and 60% of requirements
involved conflicts. In a 2-year compar-
ison of projects involving 37 student
teams, a significant number of require-
ments raised conflict [Egyed and Boehm
1998].

—Most conflicts were simple to resolve.
This result seemed to depend on the
complexity of the project, stakeholders’
domain experience, and development
resource constraints. Moreover, the time
to create even a single resolution could
be significant. Nevertheless, in 37 Win-
Win projects, between 45% and 69% of
conflicts required only one resolution

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 163

Fig. 7 . An illustration of functional and nonfunctional and requirements, and the i∗ model.

option before stakeholders reached an
agreement [Egyed and Boehm 1998].

—Developers contributed the most to iden-
tifying and resolving conflicts. The
stakeholder roles of User, Customer, and
Developer contributed in varying ways
to the project. Users and Customers con-
tributed more to requirements identi-
fication, while Developers contributed
more to conflict and resolution identifi-
cation [Egyed and Boehm 1998].

—System quality (nonfunctional require-
ments) involved the greatest conflict. The
next most controversial attribute type,
operations, had nearly half as many con-
flicts as system qualities [Boehm and
Egyed 1998].

5.2. Nonfunctional Requirements

Since 1992, the requirements project
members from the University of Toronto
have published articles describing the

modeling and analysis of nonfunctional
requirements and agent-oriented require-
ments (i∗) [Mylopoulos et al. 1992]. Al-
though the literature typically presents
these two topics separately, we present
them together here because they are sim-
ilar in the context of RIM.

Formal modeling of high-level business
requirements has been the mainstay of
this work. With the Requirements Mod-
eling Language (RML) [Greenspan et al.
1994] as a precursor, the Toronto group
has developed and formalized require-
ments semantics, methods for elaborating
requirements, and relationships among
requirements, including the linkage of
agent-oriented system requirements to
high-level business requirements.

5.2.1. Products. Figure 7 illustrates
functional and nonfunctional require-
ments in relation to an i∗ model of
agent-dependencies, where i∗ denotes
the distributed intentionality among

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

164 Robinson et al.

the agents. The i∗ model “views an or-
ganization as a network of intentional
dependencies among actors in a social
environment” [Yu and Mylopoulos 1993,
p. 484]. The dependencies, in turn,
provide a context in which to under-
stand how functional and nonfunctional
requirements interact in relation to
organizational intentions.

Functional requirements, such as
ScheduleMeeting, are represented as an
AND/OR hierarchy [Mylopoulos et al.
1999]. Thus, Figure 7 illustrates that
to achieve ScheduleMeeting, two sub-
requirements must be achieved: obtain
participant schedules, and find a match
among the schedules.

Nonfunctional requirements shown in
the middle part of Figure 7 are also
represented as an AND/OR hierarchy.
Because nonfunctional requirements de-
scribe the qualities of functional re-
quirements, Figure 7 parameterizes them
by topic—a class that a requirement
may reference. (Figure 7 shows require-
ment names instead of the more indi-
rect topic names to reinforce the rela-
tionship between nonfunctional and func-
tional requirements.)

The satisfaction of nonfunctional re-
quirements can be aggregated. The over-
all satisfaction of a nonfunctional require-
ment is determined by combining the
satisfaction of its subrequirements. For
example, the Effort of ScheduleMeeting
is determined by the Effort to ob-
tain calenderInput and the Effort to
FindMatching schedules.

Interactions between nonfunctional and
functional requirements are diagramed—
either supporting (+) or detracting (−).
For example, Update[calendar], which
automates the task of providing updates
to the system and thus reduces partici-
pant effort, supports the nonfunctional
requirement of (minimizing) Effort.
These interactions can be useful in
determining the satisfaction of a non-
functional requirement. For example,
Update[calendar] has been satisfied
(indicated with a check-mark “

√
” in

the bottom center of the functional
requirement box). If all AND subrequire-

ments have similarly been satisfied,
the overall requirement is satisfied. Of
course, the satisfaction of other require-
ments may interfere. As Figure 7 shows,
ManuallyObtain[participant,schedule]
detracts from the satisfaction of Effort.
However, the figure does not show
that ManuallyObtain[participant,
schedule] (or its descendents) has been
satisfied, so Effort[calenderInput] is
indeed satisfied.

In general, determining the satisfaction
of a nonfunctional requirement can be
quite difficult. Some functional require-
ments can detract from it; others can
support it. Moreover, the satisfaction of
one nonfunctional requirement can de-
tract from another. In Figure 7, the nega-
tive link from Effort to Maintainability
means that satisfying Effort (via mini-
mizing) will detract from the satisfaction
of Maintainability.

Despite such complexity, a qualita-
tive label propagation algorithm has been
developed that can determine if a nonfunc-
tional requirement has been satisfied, de-
nied, or undetermined [Mylopoulos et al.
1992]. Applying the algorithm to Figure 7,
the satisfaction of Update[calendar] is
propagated to AutomaticallyObtain
[participant,schedule], and then to
Obtain[participant,schedule]. How-
ever, the algorithm labels Schedule
Meeting[participant] as undetermined
because FindMatch[participants,time]
is undetermined and it is an AND subgoal
of ScheduleMeeting[participant].

Research has produced catalogs of
nonfunctional requirements interactions
[Chung et al. 1994, 1995] that describe
how the satisfaction of one nonfunctional
requirement can detract from the satisfac-
tion of another. (See Section 4.2.) Although
these catalogs are project specific, non-
functional requirement interactions are
arranged in a hierarchy of abstractions pa-
rameterized by topic. Thus, the more ab-
stract nonfunctional requirement descrip-
tions are reusable across projects.

In the i∗ model at the top of Figure 7
[Mylopoulos et al. 1997], Participant and
Scheduler are the actors, denoted by ovals.
Although the model shows the intentional

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 165

relationships of organizational actors, it is
accepted practice to show the intention of
the automated Scheduler.

The model shows four dependencies:

—Goal dependency. The Participant
depends on the Scheduler to have the
goal has[schedule]. It is unspecified
how the Schedulermay satisfy this goal.

—Task dependency. The Participant
depends on the Scheduler to carry out
the task ArrangeAMeeting. Arrange
AMeeting could be a task that im-
plements the functional requirement
ScheduleMeeting[participant] that
satisfies the goal has[schedule]; how-
ever, such intermodel relationships
have not yet been defined.

—Soft-goal dependency. A soft goal has
“no clear-cut definition and/or crite-
ria as to whether it is satisfied or
not” [Chung et al. 1999, p. 4]. The
Participant depends on the Scheduler
to perform some task that satisfies
the soft goal Effort[ScheduleMeeting].
Like the goal dependency, the soft-goal
dependency does not indicate which
task the Scheduler should do to satisfy
Effort[ScheduleMeeting].

—Resource dependency. The Scheduler
depends on the Participant to make his
or her schedule available; this resource
is denoted as Schedule[Participant].

5.2.2. Activities. The University of
Toronto projects have resulted in a
number of prototypes. Collectively they
provide considerable support to RIM
activities:

—Partitioning. The framework allows
for the partitioning of requirements into
functional and nonfunctional type hier-
archies parameterized by topic classes.
Moreover, requirements can be stored in
an object-oriented database [Jarke et al.
1995], so other attributes can be used to
partition requirements. Finally, the in-
terrelationship of the requirements and
the i∗ model can be used to partition
requirements.

—Identification. When a requirement is
entered into a CASE tool and as-

sociated with existing nonfunctional
requirements, it can be determined,
via the a priori supports and de-
tracts links, which other requirements
are directly affected. Label propagation
from selected requirements can deter-
mine the cumulative effect of require-
ments on nonfunctional requirements
satisfaction.

—Focus. Requirements can be sorted by
their attributes and their associated
interactions.

—Resolution. When an analyst identi-
fies a negative interaction, she or he can
generate alternative resolutions and
add them to the requirements OR nodes.

—Selection. An analyst can select a re-
quirement as a resolution by marking it
as selected (“

√
”). A CASE tool supports

the recording and analysis of claims,
for or against, requirement decomposi-
tion. Such argumentation can be used
to select a requirement [Chung et al.
1996].

5.3. Viewpoints

Since 1992, ViewPoints project members
from Imperial College have published
articles describing multiviewpoint mod-
eling and analysis of systems [Finkel-
stein et al. 1992]. Their ViewPoints
framework provides a means to par-
tition requirements and analyze rela-
tionships between partitions [Nuseibeh
et al. 1994]. (The work of Sommerville
et al. [1997] described a closely re-
lated project called PreView [Kotonya
and Sommerville 1996; Spacappietra and
Parent 1994]. “Unlike the viewpoint model
proposed by Finkelstein et al., our model
is geared to elicitation and is not primar-
ily intended for requirements validation”
[Sommerville et al. 1997, p. 3].)

ViewPoints research addresses the
integration of the heterogeneous repre-
sentations that are normally part of re-
quirements development. In particular,
the research addresses [Nuseibeh et al.
1994] the following:

(1) the integration of the methods used to
specify system requirements,

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

166 Robinson et al.

(2) the integration of the tools that sup-
port these methods, and

(3) the integration of the multiple specifi-
cation fragments produced by applying
these methods and tools.

ViewPoints researchers have developed
formalisms and tools that aid in reasoning
about inconsistencies within and among
viewpoints.

5.3.1. Products. The ViewPoints frame-
work supports multiple views of require-
ments. A view typically captures only
a portion of the overall system descrip-
tion (i.e., a partial specification). Moreover,
views of a system can vary in scope, repre-
sentation, stakeholder ownership, or other
dimensions. Easterbrook and Nuseibeh
[1996, p. 37] summarized ViewPoints, as
follows:

ViewPoints are loosely coupled, locally man-
aged, distributable objects which encapsulate
partial knowledge about a system and its do-
main, specified in a particular, suitable repre-
sentation scheme, and partial knowledge of the
process of development.

Each ViewPoint has the following slots:r a representation style, the scheme and notation by
which the ViewPoint expresses what it can see;r a domain, which defines the area of concern ad-
dressed by the ViewPoint;r a specification, the statements expressed in the
ViewPoint’s style describing the domain;r a work plan, which comprises the set of actions by
which the specification can be built, and a process
model [Finkelstein et al. 1994b] to guide applica-
tion of these actions;r a work record, which contains an annotated history
of actions performed on the ViewPoint.

Analysts can determine relationships
among ViewPoints by the applying con-
sistency rules. These rules detect incon-
sistencies among or within ViewPoints.
ViewPoints can be represented in dif-
ferent languages: for example, data flow
diagrams [Nuseibeh et al. 1994] or state
transition diagrams [Finkelstein et al.
1994b]. Each rule has the following form
(see Easterbrook [1994]):

∀ VPS: VPsource(t, d)
logicalQuantifier VPD :

VPDestination(t’, d’)
VPS < VPD
Where,logicalQuantifier is either
∀ or ∃

This rule pattern stipulates the follow-
ing:

—for any given source viewpoint of type
t and domain d , there is a correspond-
ing destination pattern of type t ′ and do-
main d ′ linked to it through relation <,
or

—every pair of source viewpoints of type t
and domain d and destination pattern of
type t ′ and domain d ′ are linked through
relation <.

As an example, the following inter-
viewpoint rule expresses that “Process
names must be unique across all DFD’s”
[Easterbrook 1994, p. 215]:

∀ VPS: VPsource(DFD, da)
∀ VPD: VPDestination(DFD, da)
VPS.ProcessName 6=
VPD.ProcessName

(In the above rule, da indicates that the
destination can be any domain.) It is im-
portant to note that such rules apply from
one viewpoint with respect to other view-
points; internal viewpoint consistency is
checked using other rules. Thus, the above
check fails if the source viewpoint, VPS ,
has a DFD process name that is also
found in another viewpoint (of any do-
main). Complex rules, and interrule re-
lationships, can be expressed within the
ViewPoints framework.

5.3.2. Activities. As part of the View-
Points project, computerized support has
been specified; some support is provided in
the software prototype, called the Viewer
[Nuseibeh and Finkelstein 1992]. Collec-
tively, the specified ViewPoints tools could
provide considerable support to RIM ac-
tivities:

—Partitioning. The ViewPoints frame-
work allows for the partitioning of re-
quirements into any subsets an analyst
chooses. The framework itself does not
provide categories; rather, it provides

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 167

the views into which one can place re-
quirements.

—Identification. Once requirements are
represented in ViewPoints, an analyst
can apply the consistency rules to de-
termine inconsistencies between View-
Points.

—Focus. Inconsistencies correspond to
rule violations. Thus, an inconsistency
can be labeled by the corresponding
rule being violated. It has not been
demonstrated how the framework could
prioritize the further analysis or the
resolution process. However, interrule
relationships can specify dependencies
for the ordered application of consis-
tency rules [Easterbrook 1994].

—Resolution. An analyst may apply a
resolution rule that is associated with
a violated consistency rule [Easterbrook
1994]. Alternatives can be considered in
the scope of a hierarchy of consistent
ViewPoints [Easterbrook 1993]; how-
ever, in general, resolution alternatives
are not explicitly represented.

—Selection. Resolutions are not explic-
itly represented in the ViewPoints
framework; thus resolution selection is
not directly supported.

5.4. KAOS

Since 1991, the KAOS project mem-
bers from the Université catholique de
Louvain have published papers on mod-
eling and analysis of system require-
ments [van Lamsweerde et al. 1991];
KAOS denotes Knowledge Acquisition in
autOmated Specification of software. The
project is broad in its scope, and includes
meta-modeling, specification methodol-
ogy, learning, and reuse.

5.4.1. Products. The KAOS language
provides two basic levels of descriptions:
“an outer semantic net layer for declaring
a concept, its attributes and its various
links to other concepts; an inner formal
assertion layer for formally defining the
concept” [Darimont and van Lamsweerde
1996, p. 181]. At the semantic net layer,
KAOS provides an ontology of classes

(cf. Dardenne et al. [1993] and van
Lamsweerde et al. [1998]):

—Object. An object is a thing whose in-
stances may evolve from state to state.
(An object is similar to a UML class.)
An object can be specialized to be an en-
tity, relationship, or event if the object
is autonomous, subordinate, or instan-
taneous, respectively.

—Operation. An operation is an input-
output relation over objects; it defines
state transitions.

—Agent. An agent is an autonomous ob-
ject that can perform the operations as-
signed to it.

—Goal. A goal represents an objective
that a system should meet. Goals can be
refined into an AND/OR directed acyclic
graph.

—Requisite, requirement, assumption. A
requisite is a goal that can be formu-
lated in terms of states controllable by a
single agent. In other words, a requisite
is a goal that can be assigned to an agent
with the expectation that the agent can
satisfy the goal through performing op-
erations. A requirement is a requisite
that has been assigned to a software
agent. An assumption is a requisite that
has been assigned to an environmental
agent.

—Scenario. Typically, scenarios show
how goals can be achieved. A scenario is
a composition of operation applications.
A composition of scenario operations
must satisfy the pre- and postconditions
of operations. Additionally, objects can
have associated domain invariants that
must be satisfied.

5.4.2. Activities. As part of the KAOS
project, computerized support has been
specified; some support is provided in
the GRAIL software prototype [Darimont
et al. 1998]. Collectively, the specified
KAOS tools could provide considerable
support to RIM activities:

—Partitioning. All KAOS objects, includ-
ing requirements, are stored in an
object-oriented database. Thus, require-
ments and their associated categories,

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

168 Robinson et al.

patterns, objects, attributes, and agents
can be used to partition requirements
[Darimont et al. 1998].

—Identification. KAOS defines require-
ments interaction types, as summarized
in Table XI. Conflict is defined as a logi-
cal inconsistency among assertions. Di-
vergence, perhaps the most interesting
interaction type, is an inconsistency be-
tween goals and the environment. Con-
sider a requirements divergence in re-
source management requirements [van
Lamsweerde et al. 1998]. A user require-
ment might state, “If a user is using a re-
source, then she will continue to use the
resource until it is no longer needed”:

Requirement UserContinuesUseOf
Resource

Mode Achieve
InformalDef

‘‘If a user is using a
resource, then she will continue
to use the resource until it is no
longer needed.’’
FormalDef

∀ u:User, r:Resource
Using(u,r) ⇒o [Needs(u,r) →
Using(u, r)]

In contrast, the library staff might state
a requirement that “If a user is using a
resource, then she will no longer do so
after some d days”:

Requirement UserDiscontinuesUseOf
Resource

Mode Achieve
InformalDef

‘‘If a user is using a reso-
urce, then she will no longer do
so after some d days.’’
FormalDef

∀ u:User, r:Resource
Using(u,r) ⇒♦≤dUsing(u,r)

Although the two requirements are not
logically inconsistent, a problem does
arise when a user needs (and uses) a re-
source for more than d days:
♦(∃ u′ : User, r′: Resource) [Using(u′,r′)
∧ ≤d Needs(u′,r′)]

This is a boundary condition—a condi-
tion that makes requirements logically

inconsistent. Boundary conditions can
be expressed where two instantiations
of a requirement compete or where an
environmental condition conflicts with
a requirement (i.e., an obstacle [Potts
1995]).

In KAOS, there are several ways to
identify inconsistencies, as summarized in
Table XII. An analyst manually applies
the methods; however, some of the meth-
ods have been automated (e.g., Robinson
[1994]).

Assertion regression (also known as,
goal regression [Waldinger 1977]) is a par-
ticularly useful detection method. It is
used to identify a boundary condition that
leads to the divergence. In general, given
rules of the form X ⇒ Y , regression de-
termines what must be true if the rule is
to be applied to satisfy a specific asser-
tion A. Regression is essentially a back-
ward application of a rule. It requires that
the right-hand side of the rule, Y , be unifi-
able with the assertion, A; that is, the rule
can assert A. To use assertion regression
for divergence discovery, a requirement is
negated. Next, regression generates the
boundary condition. The preceding user
and manager requirements illustrate this
method:

(1) Negate one of the requirements. For
example, the negated staff ’s require-
ment is ♦ ∃ u:User, r:Resource Us-
ing(u,r) ∧ <d o Using(u,r).

(2) Now, the user’s requirement can be
rewritten for this specific context.
The user’s requirement becomes o
Needs(u,r) → o Using(u,r) by univer-
sal instantiation and modus ponens.

(3) Finally, regressing the negated staff
goal through the rewritten user goal
yields the boundary condition, ♦ ∃
u:User, r:Resource Using(u,r) ∧ <d o
Needs(u,r).

In the preceding example, regression
amounts to replacing the part of the goal
that unifies with the right-hand side of the
requirement with the left-hand side of the
requirement. In general, unifying Y with
part of an assertion ¬Ai produces a match

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 169

Table XI. KAOS Inconsistency Types
Inconsistency Description Illustration
Process-level

deviation
A state transition in the RE process that

results in an inconsistency between an
RE process rule and a state of the RE
process.

Assigning responsibility for a goal (e.g.,
InitiatorKnowsConstraints) to two
agents would violate a process-level
rule that required single agent
responsibility assignment. (See
section 2.3.)

Instance-level
deviation

A state transition in the running system
that results in an inconsistency between
a product level requirement and a state
of the running system.

An individual, Jeff, failing to reply to a
scheduler’s request for updated
constraints would violate the product-
level requirement InviteeResponds
WithUpdatedConstraints.

Terminology
clash

A single real-world concept is given
different syntactic names in the
requirements.

Participant meeting attendance may be
formalized two different ways:
Attends(participant, meeting),
Participates(participant, meeting)

Designation
clash

A single syntactic name in the
requirements specification designates
different real-world concepts [Zave and
Jackson 1997].

The designation, Attends(participant,
meeting), may be interpreted
differently: (a) “attending meeting m
until the end,” or (b) “attending part of
meeting m.”

Structure
Clash

A single real-world concept is represented
with different structures in the
requirements specification.

The ExcludeDates attribute may be
represented in two different ways:
(a) SetOf[TimePoint],
(b) SetOf[TimeInterval].

Conflict A conflict among assertions occurs within
a domain theory when (1) the set of
assertions are logically inconsistent
within the domain, (2) removing
any one of the assertions removes the
inconsistency.

Consider three views of a device’s state:

(1) InOperation⇒ Running
(2) InOperation⇒ Running ∧

Startup⇒ ¬Running
(3) InOperation

Divergence A divergence among assertions occurs
within a domain theory iff there exists
a boundary condition B such that (1) the
set of assertions become logically
inconsistent within the domain when
B is true, (2) removing any one of the
assertions removes the inconsistency,
and (3) there exists a feasible scenario
S that satisfies B.

(1) UserContinuesUseOfResource
(2) UserDiscontinuesUseOfResource
B: ♦ (∃ u′:User, r′:Resource)

[Using(u′,r′) ∧ ≤d Needs(u′,r′)]
See Section 5.4.2.

Competition Competition is a particular type of
divergence that occurs when
different instances A[xi] of the same
universally quantified requirement
x: A[x] are divergent.

Consider the scheduling goal:
∀m:Meeting, i:Initiator, p: Participant
Requesting(i,m) ∧ Invited(p,m)
⇒ ♦ (∃d: Calendar)

[m.Date = d ∧ Convenient (d,m,p)]
Two meetings, m and m′, can compete
for a single convenient date.

Obstruction An obstruction is a borderline case of
divergence in that it only involves
one assertion. The boundary condition
amounts to an obstacle to the
satisfaction of a requirement [Potts
1995].

The goal, InformedParticipantsAttend:
∀m:Meeting, p: Participant
Invited(p,m) ∧ Informed(p,m) ∧

Convenient(d,m,p)]
⇒ ♦ Participates (p,m)

is obstructed by the LastMinute
Impediment obstacle:
∀m:Meeting, p: Participant
Invited(p,m) ∧ Informed(p,m) ∧
Convenient(d,m,p)]
∧ (IsTakingPlace(m)→ ¬Convenient
(m.Date,m,p))

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

170 Robinson et al.

Table XII. KAOS Techniques for Inconsistency Detection
Method Description Illustration
Assertion

regression
Given a divergence that involves assertions
∧1≤ι≤n Ai and a set of domain properties,
one can derive a boundary condition B
by regressing the negation of an assertion
¬Ai through the other assertions and
domain properties.

Consider two goals of Section 5.4.2: User
ContinuesUseOfResource and User
DiscontinuesUseOfResource. Negate
the second goal and regress it through
the first. The resulting boundary
condition has users needing a resource
beyond its due date, thereby causing its
use beyond the due date.

Pattern
detection

Apply divergence patterns that have been
proven to generate boundary conditions
given certain patterns of assertions.

Given assertions of the Achieve-Avoid
pattern: (P⇒ ♦Q) ∧ (R⇒ ¬ S) ∧
(Q⇒ S) Consider the boundary
condition: ♦ (P ∧ R)

Detection
heuristics

Apply informal divergence heuristics that
can suggest boundary conditions given
certain types of goals.

If there is a InformationGoal and a
ConfidentialityGoal concerning the
same object, then consider a divergence
between the two goals.

µ that can be substituted into ¬Ai to pro-
duce the boundary condition, B. Thus, B
applied to X ⇒ Y yields ¬Ai.

Given a set of requirements, assertion
regression can be applied to find various
boundary conditions. Different boundary
conditions can be had by (1) selecting dif-
ferent assertions in ¬ Ai, (2) selecting dif-
ferent rules X ⇒ Y , (3) backchaining
through the rules (e.g., X ⇒ Y , W ⇒ X),
and (4) selecting different unifications in
the case where there is more than one
maximally general unification. Of course,
it is critical to know which requirements
to consider, as not all subsets of will have
a divergence.

Pattern-based detection is another
KAOS identification. Consider the fol-
lowing two goals [van Lamsweerde et al.
1998]:

Requirement RequestSatisfied
Mode Achieve
FormalDef

∀ u:User, r:Resource
Requesting(u,r) ⇒ ♦Using(u,r)

Requirement UnReliableResourceUsed
Mode Avoid
FormalDef

∀ u:User, r:Resource
¬ Reliable(r) ⇒ ¬Using(u, r)

The two goals match the Achieve-Avoid
pattern of Table XII, as follows: P: Re-
questing(u,r), Q: Using(u,r), R: ¬ Reli-

able(r), and S: Using(u,r). Applying the
Achieve-Avoid pattern correctly generates
the following boundary condition:

♦ ∃ u : User, r : Resource
Requesting(u, r) ∧ ¬Reliable(r)

Finally, KAOS has detection heuris-
tics that suggest where to look for
boundary conditions. For example,
given an InformationGoal and a
ConfidentialityGoal involving the same
object, consider a boundary condition for
the object.

—Focus. Inconsistencies are not explic-
itly represented in KAOS. Thus, focus-
ing on a subset of inconsistencies is not
considered.

—Resolution. KAOS defines require-
ments resolutions methods, as sum-
marized in Table XIII. (These are
the formalized and specialized coun-
terparts of the resolution methods
found in Table VI, of Section 4.4.) An
analyst manually applies the methods.
As an example, Table XIII describes
the Avoiding Boundary Conditions
technique. It specifies that a diver-
gence can be prevented by ensuring
that the boundary condition is never
satisfied. Applying this technique to the

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 171

Table XIII. KAOS Techniques for Resolution Generation
Method Description Illustration
Avoiding

boundary
condition

Given that a boundary condition B leads to
a divergence, always avoid B.

Given a flight control system for which a
rain-soak runway leads to a divergence
(as in Section 2.2), then always avoid
rain-soak runways.

Restore goal If a boundary condition B cannot be avoided,
then when it occurs restore the
assertions involved in the divergence
sometime thereafter.

The boundary condition derived for
UserContinuesUseOfResource can be
avoided by temporarily forcing the
return of resource; that is, ♦≤d ¬
Using(u,r).

Anticipate
conflict

Where a persistent condition P can
eventually lead to conflict, anticipate the
time period d that leads to conflict and
introduce a new goal to negate the
condition P before the time period
elapses.

Consider a hospital patient monitoring
system. If a monitored value exceeds
its threshold for a long time (d), a
patient could expire. So, prevent the
persistent problem:

“monitor working” ∧ “monitored value
exceeded”⇒

♦≤d¬ “monitored value exceeded”
Weaken goal Weaken the goal (requirement) so that a

boundary condition is not met, and
thereby a divergence is removed. This
can be done by “adding a disjunct,
removing a conjunct, or adding a conjunct
in the antecedent of an implication” [van
Lamsweerde et al. 1998, p. 924].

As shown in Section 5.4.2, the goal,
Requesting(u,r)⇒ ♦ Using(u,r), has
boundary condition, Requesting(u,r)
∧¬ Reliable(r). Incorporate the
boundary condition into the goal:
Requesting(u,r) ∧ Reliable(r)⇒
♦Using(u,r)

Instantiate
resolution
patterns

Apply resolution patterns that have been
proven to remove boundary conditions
given certain patterns of assertions. For
example, given that A must hold before
d time units, extend the time bound to c,
where c is greater than d .

Consider this goal sacrificing example:
given two inconsistent goals,
(a) Have(cake), and (b) Eat(cake),
deleting goal (a) resolves the
inconsistency.

Select
alternative
goal
refinement

Given a goal G refined into subgoals, some
of which being involved in a divergence,
consider alternative refinements of G in
which the diverging subgoals no longer
appear.

As shown in Section 2.3, the goals
InitiatorKnowsConstraints and
InitiatorNeverKnowsConstraints
have a boundary condition that can be
resolved by substituting a scheduler
for the initiator. This is an alternative
refinement of the ConstraintsKnown
goal.

Apply
resolution
heuristics

Apply informal resolution heuristics that
can suggest how to manage boundary
conditions given certain types of goals.

If there is a Competition divergence
among agent instances, then consider
the introduction of a reservation
policy. A library’s Reservation Desk is
a common example.

Refine object Given a boundary condition B that leads to
a divergence, specialize an object into
disjoint subtypes and restrict (via a
conditional) the applicability of the
divergent assertions into disjoint
conditions (cf. Robinson and Volkov
[1997]). This case-by-case approach
applies different requirements to
different object subtypes.

Consider three divergent scheduling
goals, “Maintain schedule privacy,”
“Maintain schedule accuracy,” and
“Minimize participant effort.” If the
third goal is most important, then
some refinements of the participant
agent, such as a secretary, can view
and maintain the schedule, but other
agents cannot.

preceding resource boundary condition
yields a new goal that limits requests to
reliable resources:

Requirement ReliableResources
Mode Achieve

FormalDef
∀ u:User, r:Resource
Requesting(u,r) ⇒

Reliable(r)

The other techniques of Table XIII
similarly modify the requirements. For

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

172 Robinson et al.

example, Goal Restoration allows a goal
to fail; however, afterwards, the condi-
tions of the goal must be restored.

—Selection. Resolutions are not explic-
itly represented in the KAOS frame-
work; thus resolution selection is not di-
rectly supported.

5.5. Deficiency-Driven Requirements
Analysis

Since 1985, the University of Oregon re-
quirements project members have pub-
lished articles describing requirements
analysis [Fickas 1985]. The group has
relied on a AI techniques to construct
automated assistants that critique re-
quirements as part of a deficiency-driven
design activity. KATE was the gene-
sis, denoting Knowledge-Based Acqui-
sition of Specifications [Fickas 1985].
Since then, various prototypes have been
constructed under the KATE umbrella:
Critic [Fickas and Nagarajan 1988], OPIE
[Fickas and Anderson 1989], Oz[Robinson
1993; Robinson 1994], SC [Downing and
Fickas 1991], and Critter [Fickas and
Helm 1992].

In deficiency-driven design, violations
of system requirements or environmen-
tal constraints drive the state-based
search that generates alternative designs
through the applications of design oper-
ators [Fickas and Helm 1992]. In KATE,
a design is a detailed representation in
which the interaction among selected con-
straints can be analyzed through simula-
tion. The failure of a design to satisfy a re-
quirement or constraint is characterized
as a deficiency. Deficiencies are remedied
by the application of operators. An opera-
tor may (1) add new agents, (2) reassign
the responsibility for activities to differ-
ent agents, (3) alter the communication
among agents, or (4) weaken constraints.
Operator application leads to a new design
state, which can be analyzed for deficien-
cies. Design stops when all requirements
are satisfied and there are no deficiencies.

5.5.1. Products. KATE projects do not
create new requirements languages.
Rather, they adapt existing representa-

tions (e.g., Numerical Petri Nets [Fickas
and Helm 1992], Qualitative Physics
[Downing and Fickas 1991], STRIPS
predicates [Fickas and Anderson 1989]) to
meet the needs of an automated assistant.

5.5.2. Activities. As part of the KATE
project, computerized support has been
specified and implemented. Collectively,
the specified KATE tools provide consid-
erable support to RIM activities:

—Partitioning. For the most part, KATE
prototypes do not address the partition-
ing of requirements prior to analysis.
Critter does form a decomposition
of requirements through agent as-
signment (cf. Feather [1987]). Such a
decomposition does aid analysis, but it
has not been used to reduce the scope
of analysis.

—Identification. Requirements interac-
tions can be identified by simulation.
The abstract planner, OPIE, can find
a scenario of agent and environmental
actions that lead to the satisfaction
of a single requirement. Conversely,
OPIE can find a failure scenario for
a requirement. The conjunction of
requirements can also be analyzed. In
Oz, the conjunction of requirements
held by different stakeholders was
analyzed (using OPIE). If requirements
conflicted, then Oz regressed the re-
quirements through the scenario to
identify the predicates that caused
the conflict. Another KATE prototype,
SC, demonstrated how qualitative
interactions could be discovered using
qualitative physics envisonment.1 Fi-
nally, Critic demonstrated a case-based
approach to interaction identification.

—Focus. Generally, conflicts are not
explicitly represented in KATE. Deal-
Maker is the exception. As a descen-
dent of Oz, it defines an approach
to focus on important conflicts. Its

1Qualitative physics envisonment is a method of
qualitative simulation. Given qualitative constraints
and behaviors as input, the simulation derives pos-
sible behavioral sequences; this process is called en-
visionment [Kuipers 1986].

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 173

Fig. 8 . An example of a root requirements interac-
tions graph. The percentages show how each require-
ment interacts with all other requirements for five
relationship types—from Very Conflicting (bottom)
to Very Supporting (top).

Root Requirement Analysis supports
(1) analysis of requirements interac-
tions, and (2) ordering requirements by
their degree of conflict [Robinson and
Pawlowski 1998]. Using this informa-
tion, one can iteratively resolve conflicts
in a large requirements document. Root
Requirements Analysis consists of
four steps: (1) structure the require-
ments, (2) identify root requirements,
(3) identify central interactions, and
(4) iteratively resolve conflicts. A root
requirement is an abstract requirement
that implies significant interactions—
typically, conflicts. After step 3, one can
graph a requirement’s contentiousness,
which is the percentage of all conflicts
in which the requirement participates.
Figure 8 shows a contention graph. No-
tice that R8 and R3 are among the most
contentious of all root requirements.
Using such graphs, an analyst can
guide analysis toward the central con-
flicts. By iteratively resolving the most
contentious conflicts first, the number
of conflicts can monotonically decrease,
thereby providing an efficient resolution
process [Robinson and Pawlowski 1998].

—Resolution. Oz, Critic, and Critter
generate resolutions. Critter supports
the Brinkmanship resolution heuristic
that applies to a specific type of brink
transition. A transition, T, is considered
a brink transition if its application re-

sults in an inconsistent state. In Critter,
a transition, T, is defined according to
relations, P, over the vectors of a Numer-
ical Petri Net [Wilbur-Ham 1985]. Thus,
the following defines a brink transition:

T⇒ o ¬∃ (x, y, z : Vector)
P(x, z) ∧ P(y, z) ∧ x 6= y

A brink conflict occurs as the system
transitions to a state in which the brink
constraint fails. An instantiation of the
brink conflict for a train control system
follows:

StartTrain⇒ o ∃(x, y : Train, z :
Location) Location (x, z) ∧
Location (y, z) ∧ x 6= y

Given the (uncontrolled) StartTrain
transition, it is possible to place two
trains on the same block of track, pos-
sibly leading to a wreck. To resolve this
conflict, the transition is replaced with
a controlled transition: StartTrain-
Controlled. In the controlled transition,
if the brink condition can occur, then the
controlled transition cannot execute; to
ensure this, the analyst introduces a de-
sign fragment. Generalizing this reso-
lution technique, we have the following:

Avoid Brink Transition
Given T, such that
T ⇒ o ∃ (x, y, z: Vector) P(x, z)
∧ P(y, z) ∧ x = y

Replace T with T′ ≡
If o∃ (x, y, z: Vector) P(x, z)
∧ P(y, z) ∧x 6= y Then T Else nil

Avoid Brink Transition states that,
if a transition can lead to a constraint
failure in the next state, then incorpo-
rate the constraint as a condition of the
transition.

Critic supports some conflict res-
olution. It recognizes certain design
fragments as bad (i.e., should be ab-
sent), and others as good (i.e., should be
present). It can map design fragments
to requirements patterns. Thus, when
it recognizes a design fragment it sug-
gests elements to remove or add in order
to satisfy the specified requirements,
and remove the recognized conflicts.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

174 Robinson et al.

Fig. 9 . Two bar charts illustrating the valuation of two different loan periods as perceived by a librarian
and patron.

Finally, Oz supports many of the
conflict resolution methods character-
ized in Section 5.4. A case study of
DealMaker [Robinson and Volkov 1996,
1997], an Oz descendent, resulted in
the following observations:
—Automated resolution simplifies con-

flict resolution. Once an analyst
is familiar with the operations,
application becomes routine.

—Automated resolution can provide
creative resolutions. Contrary to ex-
pectations, the resolution operations
routinely produced interesting resolu-
tions that were not readily apparent.

—Automated resolution can produce a
large number of resolutions. Resolu-
tion created, on average, 10 resolution
types per conflict.

—Resolutions of different conflicts often
overlap. Many of the conflicts in-
volve the same objects, partly because
of the common analysis used to derive
the different views. Thus, resolution
of one conflict can eliminate other
conflicts.

—Selection. Oz and DealMaker support
an interactive search procedure that
(1) iteratively shows a multicriteria
evaluation of resolution alternatives,
and (2) allows for the application of new
resolution methods. After an analyst is
presented with conflicts, he or she can
focus on a particular conflict, applying
methods to generate resolutions.

Figure 9 illustrates the valuation
of two resolutions. The resolutions
concern a library loan policy conflict.
The bar charts show the degree of sat-
isfaction each participant receives for
three criteria that have been associated
with load period: renewal cost, usage,
and duration. Thus, an analyst can see
how each view values resolutions by
observing the shading.

In an attempt to find a better solution,
the analyst iteratively applies resolu-
tion methods. The overall result of this
process is an AND/OR tree representing
the resolutions explored. During the
search process, the analyst need not
explicitly define the satisfaction of
each view. Instead, the analyst simply
attends to alternatives that are deemed
desirable, thereby implicitly settling on
tradeoffs among views [Zeleny 1982].

5.6. Software Cost Reduction

Since 1978, the SCR project members
from the Naval Research Laboratory have
published articles describing software re-
quirements and specification [Heninger
et al. 1978]. Originally introduced to help
specify the A-7E software package, the
Software Cost Reduction (SCR) project
has been successful in specifying and an-
alyzing large, real-time, embedded sys-
tems. In SCR, a system and its en-
vironment are formally modeled. Then,
using the SCR toolset, one can analyze

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 175

Fig. 10 . The SCR four-variable model.

requirements for inconsistencies as well
as check that specified properties hold
(e.g., safety requirements).

SCR assumes a four-variable model,
as illustrated in Figure 10 [Parnas and
Madey 1995]. In this model, input de-
vices watch monitored variables of the
environment and produce values, called
input data items, that are processed by
the software. The software then produces
output data items that are processed by
output devices that affect controlled vari-
ables of the environment. The IN, SOFT,
and OUT relations specify the mapping
of monitored values to input values, in-
put values to output values, and output
values to controlled values, respectively.
The REQ relation specifies the relation-
ship of monitored variables to controlled
variables. Finally, NAT describes natural
laws, or constraints, of the environment.

An SCR requirements specification con-
sists of (1) definitions for monitored, con-
trolled, and intermediate term variables
(2) tables of transformations that describe
the software behavior (SOFT) by comput-
ing new variable values given changes to
variables; and (3) properties of the sys-
tem (REQ) and its environment (NAT).
From such a description, the SCR toolset
is able to check consistency within the re-
quirements, as well as ascertain if speci-
fied properties (REQ) hold during the sys-
tems execution [Heitmeyer et al. 1996].

5.6.1. Products. The SCR language sup-
ports the four-variable model. Thus, it pro-
vides constructs to define variables, trans-
formations, and properties. In SCR:

a system6 is represented as a 4-tuple,6 = (S, S0,
Em , T), where S is the set of states, S0 ⊆ S is the
initial state set, Em is the set of input events, and
T is the transform describing the allowed state

transitions. In the initial version of the SCR for-
mal model, the transform T is deterministic, i.e.,
a function that maps an input event and the cur-
rent state to a (unique) new state. Each transi-
tion from one state to the next state is called a
state transition or, alternately, a step. To compute
the next state, the transform T composes smaller
functions, called table functions. . . , These tables
describe the values of the dependent variables—
the controlled variables, the mode classes, and
the terms. Our formal model requires the infor-
mation in each table to satisfy certain properties.
These properties guarantee that each table de-
scribes a total function. [Heitmeyer et al. 1996,
p. 930]

Using SCR, the analyst defines trans-
forms in a tabular form. Each table de-
fines how an event will change a vari-
able’s value—shown as “mode” in the
tables. An “event is a predicate de-
fined on two consecutive system states
that indicates a change in system state”
[Heitmeyer et al. 1998b, p. 930]. It
is denoted @T(c) ≡ ¬ c ∧c′, where
c is a condition that was false and
then becomes true in the current state,
denoted as c′.

As an example the consider a transi-
tion table shown in Table XIV for the vari-
able InjectionPressure [Bharadwaj and
Heitmeyer 1997]. This table defines when
coolant can be injected into a pressurized
container according to the container’s wa-
ter pressure.

The first row of Table XIV indicates
that the mode of InjectionPressure
changes from TooLow to Permitted when
WaterPressure ≥ Low becomes true. A set
of such tables concerning typed variables
provides the basis for an SCR require-
ments specification.

Behavioral descriptions, such as those
of Table XIV, can be enhanced with re-
quirement properties, such as @T(Water
Pressure ≥ High) ⇒ AlarmSounding. It
indicates that AlarmSounding shall be true
when WaterPressure ≥ High is True. Such
a requirement property does not specify
the behavior of the software; rather it
specifies a property that should always
be true in the software (REQ). The SCR
toolset can check the validity of such prop-
erties. SCR semantics describe properties

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

176 Robinson et al.

Table XIV. An SCR Transition Table for InjectionPressure
Old Mode Event New Mode
TooLow @T(WaterPressure ≥ Low) Permitted
Permitted @T(WaterPressure ≥ Permit) High
Permitted @T(WaterPressure < Low) TooLow
High @T(WaterPressure < Permit) Permitted

on states or between two states, but it does
not have the full power of temporal logic,
which also includes properties over sets of
states, for example, P⇒ ♦Q.

5.6.2. Activities. The SCR project has re-
sults in prototypes that provide consider-
able support to RIM activities:

—Partitioning. Given a requirement
property, the SCR toolset can use a
“program-slicing” technique to define
only the relevant subset model of vari-
ables and transformations. Analysis on
the reduced model can be much more
efficient [Heitmeyer et al. 1996].

—Identification. The SCR toolset identi-
fies two types of interactions [Heitmeyer
et al. 1996]. First, inconsistencies
among requirements can be found
through static analysis of the re-
quirements definition. The toolset can
check that transformations are prop-
erly defined. This includes (1) dis-
joint definitions among table rows pairs
for a transformation (i.e., ∧row≤i≤row+1
Conditioni ⇒ False); for example, if
the third row of Table XIV were de-
fined as @T(WaterPressure ≤ Low), then
rows one and three would be nondis-
joint; (2) complete coverage of a transfor-
mation by its table rows (i.e.,∨1 ≤i≤ row

Conditioni ⇒ True); for example, if
the first row of Table XIV were not
included, then the transition from the
mode TooLow would not be defined;
(3) reachability of all of a variable’s
modes from its initial mode; for exam-
ple, if the third row of Table XIV were
not included, then the transition to the
mode TooLow would not be defined. Sec-
ond, the toolset can identify an interac-
tion that exists between a requirement
property and the software specification.
It translates the SCR specification into a
model checker, which explores all states

in an attempt to show where the re-
quirement property can fail [Holzmann
1997]. The resulting trace describes a
scenario by which a requirement prop-
erty can fail. During simulation of the
trace, an analyst can observe failures in
the highlighted SCR specification.

—Focus, resolution, and selection. Incon-
sistencies are not explicitly represented
in SCR. Thus, focusing on a subset of in-
consistencies or resolutions is not con-
sidered.

5.7. M-Telos

Two consecutive large European (ES-
PRIT) projects have focused on require-
ments engineering. From 1992 to 1995,
the NATURE project (which stands for
Novel Approaches to Theories Underly-
ing Requirements Engineering) produced
theories and tools for knowledge repre-
sentation, domain engineering, and pro-
cess engineering [Jarke et al. 1993, 1994].
The NATURE project led to the CREWS
project, from 1996 to 1999. The CREWS
(which stands for Cooperative Require-
ments Engineering with Scenarios) project
developed, evaluated, and demonstrated
the applicability of methods and tools for
cooperative scenario-based requirements
elicitation and validation [Jarke and Pohl
1994]. The results of both projects are too
numerous to summarize here. Instead, we
focus on one project, M-Telos, that defines
a technique to manage requirements in-
consistencies.

5.7.1. Products. As part of the CREWS
project, M-Telos was defined as a means
to manage multiple requirements views
[Nissen and Jarke 1999]. The formalized
framework provides an implementation
that supports requirements development
using a variety of notations, stakehold-
ers views, or other requirements views.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 177

Fig. 11 . An example illustrating perspective management in M-Telos.

As a means to support interview (and
intraview) analysis, the framework sup-
ports the following techniques:

—separation of multiple partial models,
—dynamic definition and customization of

notations,
—tolerance of conflicts,
—goal-orientated interview analysis, and
—dynamic definition and customization of

analysis goals.

The M-Telos framework is implemented
in ConceptBase, a deductive database
that supports meta-modeling [Jarke et al.
1995].

Figure 11 illustrates the M-Telos ap-
proach to view management. In the ap-
proach, requirement notations are instan-
tiated from a central meta-model (top of
figure). Requirements views are defined
in instantiated modules. Inconsistencies
among modules are represented in reso-
lution modules.

An exchanged medium goal was derived
through stakeholder dialogs. In a busi-
ness context, it means that documents
exchanged should have information (i.e.,
they should not be content free). Figure 11
defines the goal as constraints on the

meta-model; other specified constraints
are not shown:

Analysis Goal: ‘‘Each exchanged
MEDIUM must contain DATA’’

This is more formally represented in M-
Telos as the following formula:

forall med//Medium, supp//Agent!
supplies, with//Agent!supplies!with
(with from supp) and (with to med)
==> exists data//Data, cont//Medium!

contains
(cont from med) and (cont to data)

The forall quantification over med//
Medium defines the med variable as an in-
stance of Medium, which resides two instan-
tiation levels above med.

The exchanged medium goal is an ab-
straction of the two requirements views
(lower in Figure 11). For example, in
the lower right module of Figure 11, re-
quirements have the syntax: “A FORM must
include ITEMs.” The goal abstracts the
module, because a FORM is an instance
of MEDIUM and ITEM is an instance of
DATA. Similarly, the lower left module of
Figure 11 instantiates the meta-model.

The resolution module of Figure 11 char-
acterizes inconsistencies that can occur
between requirements in the two modules.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

178 Robinson et al.

M-Telos can automatically specialize the
exchanged medium goal to address the
combined context of the two modules:

Refined Goal: ‘‘For each sent
PACKAGE the corresponding FORM must
contain ITEMs.’’

Using the refined goal, the resolution
module is able to monitor the other two
modules. Every time a requirement in-
stance is defined using the notation of ei-
ther module, the resolution module checks
for a violation of the refined goal.

Inconsistency checking in M-Telos can
be conceptualized in terms of a stream of
transactions that add or delete require-
ments. After a new requirement is added
(or deleted), an analysis goal may become
violated. This is called a primary incon-
sistency with respect to the goal. In the
case of adding objects, those objects that
were added and caused the inconsistency
are considered provisionally inserted ob-
jects; deleting objects is analogous. As the
result of a transaction, a goal’s status
may change from violated to satisfied. If
the goal’s satisfaction depends on objects
that have been provisionally inserted (or
deleted), then it is called a secondary in-
consistency with respect to that goal. For
example, assume a goal, g1, is currently
violated. Next, a requirement, r, is as-
serted; it satisfies g1, but violates another
goal, g2. Thus, requirement r is provision-
ally inserted. Consequently, r creates a
primary inconsistency with g2, and a sec-
ondary inconsistency with g1.

At the lowest level, inconsistency man-
agement becomes the task of computing
goal satisfaction with respect to provi-
sional objects. At a higher level, the user
can specify the types of inconsistency that
will be allowed: primary inconsistency
(Allow/Not Allowed) and secondary incon-
sistency (Allow/Not Allowed). The combi-
nation provides for four levels of goal sat-
isfaction. Grouping the two levels where
some inconsistency is allowed gives us
goal satisfaction, qualified goal satisfac-
tion, and goal violation. Thus, the user of
M-Telos can control what types of incon-
sistency will be tolerated, from no incon-
sistency to goal violations.

5.7.2. Activities. The M-Telos project
provides support to RIM activities:

—Partitioning. The M-Telos framework
allows for the partitioning of require-
ments into any subsets an analyst
chooses. The framework itself does not
provide any categories; rather, it pro-
vides the views into which one can
place requirements. However, in re-
lated work, a subject’s situation param-
eters (agent, focus, notation, and time)
are proposed as means to systemati-
cally define bounded requirements sets
[Motschnig-Pitrig et al. 1997].

—Identification. Once requirements
and analysis goals are represented in
M-Telos, the automated system can
derive the inconsistencies incremen-
tally or on demand. In related work,
inconsistencies can be determined
by comparing requirements against
domain-independent analysis goals
[Spanoudakis and Constantopoulos
1996; Spanoudakis and Finkelstein
1997], or domain-dependent analysis
goals [Maiden and Sutcliffe 1994],
rather than M-Telos’s project-specific
meta-model and goals.

—Focus. Inconsistencies are associated
as goal violations. It has not been
demonstrated how the framework could
prioritize the further analysis or a reso-
lution activity. However, goals for order-
ing goal analysis could be developed to
specify the priority of consistency rules.

—Resolution. There is no resolution gen-
eration technique in M-Telos. Rather,
analysis goals are used to identify in-
consistencies, which are then repre-
sented in a resolution module. We be-
lieve that an interesting extension may
be to show users provisional objects
for qualified or violated analysis goals.
This is similar to finding the causes of
conflict through goal regression. With
such an inconsistency context, users
could generate alternative resolutions—
for example, avoiding a boundary con-
dition found among the provisional
objects.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 179

—Selection. Selection among resolutions
is outside the scope of M-Telos.

6. RESEARCH OPPORTUNITIES

Although the seven projects just described
support elements of RIM, much work re-
mains to evolve RIM into a mature disci-
pline. In this section, we present research
opportunities for the five RIM activities
and examine unifying approaches to mak-
ing RIM more widely accepted.

6.1. Requirements Partitioning

A partitioning strategy suggests how to
partition requirements to achieve a de-
velopment goal, such as completeness,
consistency, or efficiency. Although most
of the seven RIM projects we have de-
scribed have some partitioning support,
it is not strategic. Typically, a database
stores attributed requirements that sup-
port attribute-based retrieval. Ideally, a
strategic tool would use the database to
guide analysis toward requirement parti-
tions containing the most significant re-
quirements interactions. For example, in
DealMaker (see Section 5.5) grouping re-
quirements into classification hierarchies
made conflict resolution more efficient
for root requirements analysis [Robinson
and Pawlowski 1998]. More strategies and
tools are needed to assist the activities in
all seven projects.

6.2. Interaction Identification

Most of the RIM projects do well at
identifying requirements interactions. M-
Telos does well at identifying logical re-
quirement inconsistencies, for example,
and WinWin effectively aids in identify-
ing qualitative relationships according to
an interaction model. Few projects track
positive interactions, however. Traceabil-
ity, in general, is a common part of require-
ments engineering [Gotel and Finkelstein
1995]. Tracing both the negative and
positive interactions in which a require-
ment participates can facilitate interac-
tion management. When resolving a con-
flict, for example, it may not be helpful to
weaken a requirement that supports the

satisfaction of many other requirements.
Although the RIM projects effectively sup-
port the identification of individual inter-
actions, they offer less support for identify-
ing the complete set of requirements that
either lead to an interaction or are affected
by an interaction.

6.3. Interaction Focus

The RIM projects show mixed support
for focusing on a subset of interactions.
As with interaction identification, there
is little support for addressing subsets
of interactions, particularly in identifying
dependencies among interactions. Which
conflict, if resolved, will reduce the most
dependent conflicts? Root requirements
analysis addresses this problem [Robinson
and Pawlowski 1998], and as interaction
identification improves, interaction focus
will become increasingly important.

6.4. Resolution Generation

Although negotiation is popular [Robinson
and Volkov 1998], few of the RIM projects
support the automated generation of cre-
ative resolutions. WinWin shows the an-
alyst predefined text describing strate-
gies to guide in conflict removal, and
KAOS has formalized various methods,
but only Oz [Robinson 1994] and Deal-
Maker [Robinson and Volkov 1997], de-
scendants of DDRA, provide tools that
generate resolutions. A preliminary study
indicated that automated resolution can
be as successful as an analyst in generat-
ing many creative resolutions [Robinson
and Volkov 1996]. Given the complexity
of requirements documents, with the de-
pendencies among requirements and re-
quirements interactions, automated sup-
port for resolution generation would be
well received.

6.5. Resolution Selection

Few RIM projects aid in resolution selec-
tion, leaving this decision process to the
analyst. However, as tool support grows
for the other RIM activities, analysts
will become overwhelmed with analyzing
the consequences of selecting particular

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

180 Robinson et al.

resolutions. Both Oz [Robinson 1994] and
DealMaker [Robinson and Volkov 1997]
build on work in decision support systems
to partially automate resolution selection
and DealMaker.

6.6. Incorporating Rim into
Standard Practice

RIM is more than just individual tech-
niques. It is the management of interac-
tions that naturally occur as part of the
development process. Research has clearly
defined many individual techniques, but
few projects integrate them, and no project
has combined all aspects into a unified
approach.

We see four areas that researchers
must address to make RIM more widely
accepted:

—Strategies. There are few guiding
strategies for RIM. For example, one
project has suggested that conflicts be
tolerated [Nuseibeh 1996]. However,
there is no description of how long
they should be tolerated, what kind
of conflicts should be tolerated, which
conflicts should be resolved first, and
how much conflict should be allowed in
a document. The strategic application of
RIM techniques, as a means to improve
software development, has not been
addressed adequately.

—Integration. Individual RIM tech-
niques have been successful, but no
project has addressed the total of RIM—
from high-level informal strategies to
low-level automated inconsistency
identification. As a result, an analyst
faced with RIM problems must attempt
ad hoc to fill in the gaps of methodology
and tool support.

—Visualization. RIM is about managing
the complexity of interacting require-
ments. As tools are better able to detect
and describe interactions, resolutions,
and dependencies, analysts will increas-
ingly bear the burden of understanding
ever more complex analyses. A graph-
ical user interface for visualizing and
conducting RIM activities will be impor-
tant.

—Case studies and experiments. Few
RIM case studies or experiments have
been conducted. At this early evolution-
ary stage of RIM, feedback from these
evaluations will be critical in guiding
the development of RIM techniques and
application.

As researchers address these four areas,
RIM will mature into a critical and in-
tegral area of requirements engineering.
The results should be higher stakeholder
satisfaction and fewer system failures.

ACKNOWLEDGMENTS

This article has been improved through the gener-
ous support of Steve Easterbrook, Martin Feather,
Sol Greenspan, and Axel van Lamsweerde, who have
commented on earlier drafts. Like most publications,
this article has been improved in response to the
critiques of the anonymous reviewers. For this arti-
cle, the anonymous reviewers (specifically, Axel van
Lamsweerde!) provided some of the most detailed
and thoughtful remarks these authors have seen.
Thank you! Nancy Talbert assisted in the editing.
Thanks Nancy!

REFERENCES

AAAI. 1994. Proceedings of the Workshop on Mod-
els of Conflict Management in Cooperative Prob-
lem Solving. (Seattle, WA, Aug. (4). American
Association for Artificial Intelligence, Menlo
Park, CA.

ABRIAL, J. R. 1996. The B-Book: Assigning Pro-
grams to Meanings. Cambridge University
Press, Cambridge, U.K.

ADLER, M. R., DAVIS, A. B., WEIHMAYER, R., AND

WORREST, R. W. 1989. Conflict-Resolution
Strategies for Nonhierarchical Distributed
Agents. Morgan Kaufmann, San Francisco, CA.

AINSWORTH, M., RIDDLE, S., AND WALLIS, P. J. L. 1996.
Formal validation of viewpoint specifications.
Softw. Eng. J. pp. 58–66.

ATLEE, J. M. 1993. State-based model checking of
event-driven system requirements. IEEE Trans.
Softw. Eng. 19, 24–40.

AVISON, D. E. AND WOOD-HARPER, A. T. 1990. Mul-
tiview: An Exploration in Information Systems
Development. Blackwell Scientific Publications,
Cambridge, MA.

BARBACCI, M., KLEIN, M. H., AND WEINSTOCK, C. B.
1995. Principles for evaluating quality at-
tributes of software architecture. Tech. Rep.
CMU/SEI-95-TR-021. Software Engineering In-
stitute, Pittsburgh, PA.

BARBACCI, M., LONGSTAFF, T. H., KLEIN, M. H., AND

WEINSTOCK, C. B. 1997. Quality Attributes.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 181

Tech. Rep. CMU/SEI-96-TR-036. Software Engi-
neering Institute, Pittsburgh, PA.

BARKI, H. AND HARTWICK, J. 1989. Rethinking the
concept of user involvement. MIS Quart. 13, 1,
53–61.

BATINI, C., LENZERINI, M., AND NAVATHE, S. B. 1986.
A comparative analysis of methodologies for
database schema integration. ACM. Comput.
Surv. 18, 4, 323–364.

BENDIFALLAH, S. AND SCACCHI, W. 1989. Work struc-
tures and shifts: An empirical analysis of soft-
ware specification teamwork. In 11th Inter-
national Conference on Software Engineering.
IEEE Press, Los Alamitos, CA, 260–270.

BENSALEM, S., LAKHNECH, Y., AND SAı̈DI, H. 1996.
Powerful techniques for the automatic genera-
tion of invariants. In CAV’96—8th International
Conference on Computer-Aided Verification. Lec-
ture Notes in Computer Science, vol. 1102
Springer-Verlag, Berlin, Germany, pp. 323–335.

BERNOT, G., GAUDEL, M. C., AND MARRE, B. 1991.
Software testing based on formal specifications:
A theory and a tool. Softw. Eng. J. 9, 6, 387–405.

BHARADWAJ, R. AND HEITMEYER, C. L. 1997. Model
checking complete requirements specifica-
tions using abstraction. NRL Mem. Rep.
NRL/MR/5540—97-7999. Naval Research
Laboratory, Washington, DC.

BOEHM, B. 1981. Software Engineering Eco-
nomics. Prentice-Hall, Englewood Cliffs, NJ.

BOEHM, B. AND EGYED, A. 1998. WinWin require-
ments negotiation processes: A multi-project
analysis. In Proceedings of the 5th International
Conference on Software Processes.

BOEHM, B., AND IN, H. 1996. Identifying quality-
requirement conflicts. IEEE Softw. 13, 2
(March), 25–36.

BOEHM, B. W. 1988. A spiral model of software de-
velopment and enhancement. Comput. 21, 61–
72.

BOEHM, B. W. 1998. Seven basic principles of soft-
ware engineering. J. Syst. Softw. 3, 1 (March),
3–24.

BOEHM, B. W., BROWN, J. R., KASPAR, H., LIPOW, M.,
MACLEOD, G. J., AND MERRITT, M. J. 1978. Char-
acteristics of Software Quality. North-Holland,
New York, NY.

BOEHM, B. W. AND ROSS, R. 1989. Theory W soft-
ware project management: Principles and exam-
ples. IEEE Trans. Softw. Eng. 15, July, 902–916.

BOEHM, P. B., HOROWITZ, E., AND LEE, M. J. 1994.
Software requirements as negotiated Win con-
ditions. In Proceedings of the First International
Conference on Requirements Engineering. IEEE.
Press, Los Alamitos, CA.

BOTTEN, N., KUSIAK, A., AND RAZ, T. 1989. Knowl-
edge bases: Integration, verification, and parti-
tioning. Eur. J. Operat. Res. 42, 111–128.

BROOKS, F. P. 1987. No silver bullet: Essence and
accidents of software engineering. Comput. 20,
10–19.

BUCHANAN, B. G. AND SHORTLIFFE, E. H. 1984. Rule-
Based Expert Systems: The MYCIN Experiments
of the Stanford Heuristic Programming Project.
Addison-Wesley, Reading, MA.

CHECKLAND, P. 1981. Systems Thinking, Systems
Practice. John Wiley & Sons, New York, NY.

CHEN H. L. K. J. 1992. Automatic construction of
networks of concepts characterizing document
databases. IEEE Trans. Syst., Man Cybernet. 22,
885–902.

CHEN H. L. K. J., BASU, K., AND NG, T. 1993. Gen-
erating, integrating, and activating thesauri for
concept-based document retrieval. IEEE Expert
(Special Series on Artificial Intelligence in Text-
Based Information Systems) 8, 25–34.

CHEN, M. AND NUNAMAKER, J. 1991. The architec-
ture and design of a collaborative environ-
ment for systems definition. Data Base, 22, 1/2
(Winter/Spring), 22–28.

CHIKOFSKY, E. J. AND RUBENSTEIN, B. L. 1993. CASE:
Reliability engineering for information sys-
tems, in Computer Aided Software Engineering
(CASE). IEEE Expert (Special Series on Artifi-
cial Intelligence in Text-Based Information Sys-
tems) 8, 11–16.

CHRISTEL, M. G., WOOD, D. P., AND STEVENS, S. M.
1993. AMORE: The Advanced Multimedia Or-
ganizer for Requirements Elicitation. Tech. Rep.
Software Engineering Institute, Pittsburgh, PA.
CMU/SEI-93-TR-12.

CHUNG, L., NIXON, B., AND YU, E. 1994. Using qual-
ity requirements to systematically develop qual-
ity software. Fourth Conference on Software
Quality (McLean, VA).

CHUNG, L., NIXON, B., AND YU, E. 1995. Using
non-functional requirements to systematically
support change. In Proceedings of the Second
International Symposium on Requirements En-
gineering. IEEE Press, Los Alamitos, CA. 132–
139.

CHUNG, L., NIXON, B., AND YU, E. 1996. Dealing with
change: An approach using non-functional re-
quirements. Requirements Eng. J. 1, 4, 238–260.

CHUNG, L., NIXON, B. A., YU, E., AND MYLOPOULOS, J.
1999. Non-Functional Requirements in Soft-
ware Engineering. Kluwer, Boston, MA.

CLARKE, E. M., AND EMERSON, E. A. 1986. Auto-
matic verification of finite-state concurrent sys-
tems using temporal logic specifications. ACM
Trans. Program. Lang. Syst. 8, 244–263.

CLARKE, E. M., GRUMBERG, O., AND PELED, D. 1999.
Model Checking. MIT Press, Cambridge, MA.

CONRY, S. E., KUWABARA, K., LESSER, V. R., AND MEYER,
R. A. 1991. Multistage negotiation for dis-
tributed satisfaction. Trans. syst. man, Cybernet.
21, 1462–1477.

CONRY, S. E., MEYER, R. A., AND LESSER, V. R. 1988.
Multistage negotiation in distributed planning.
In Readings in Distributed Artificial Intelli-
gence, L. G. A. H. Bond, Ed. Morgan Kaufmann,
San Meteo, CA, 367–384.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

182 Robinson et al.

CORNFORD, S. L., FEATHER, M. S., KELLY, J. C., LARSON,
T. W., SIGAL, B., AND KIPER, J. 2000. Design
and development assessment. In Proceedings
of the 10th International Workshop on Soft-
ware Specification and Design. IEEE Com-
puter Society Press, Los Alamitos, CA, 105–
114.

CROW, J., OWRE, S., RUSHBY, J., SHANKAR, N., AND

SRIVAS, M. 1995. A tutorial introduction to
PVS. In Proceedings of WIFT’95—Workshop on
Industrial-Strength Formal Specification Tech-
niques (Boca Raton, FL).

CUGOLA, G., DI NITTO, E., GUGGETTA, A., AND GHEZZI, C.
1996. A framework for formalizing inconsis-
tencies and deviations in human-centered sys-
tems. ACM Trans. Softw. Eng. Meth. 5, 191–230.

DARDENNE, A., VAN LAMSWEERDE, A., AND FICKAS, S.
1993. Goal-directed requirements acquisition.
Sci. Comput. Programm. 20, 3–50.

DARIMONT, R., DELOR, E., MASSONET, P., AND VAN

LAMSWEERDE, A. 1998. GRAIL/KAOS: an envi-
ronment for goal-driven requirements engineer-
ing. In Proceedings of the 20th International
Conference on Software Engineering (Kyoto)
vol. 2. 58–62.

DARIMONT, R. AND VAN LAMSWEERDE, A. 1996. For-
mal refinement patterns for goal-driven require-
ments elaboration. In Proceedings of the Fourth
ACM SIGSOFT Symposium on the foundations
of Software Engineering (FSE’4, San Francisco,
CA). ACM Press, New York, NY, 179–190.

DAVIS, A. 1993. Software Requirements: Objects,
Functions, and States. Prentice Hall, Englewood
Cliffs, NJ.

DELUGACH, H. S. 1992. Specifying multiple-viewed
software requirements with conceptual graphs.
J. Syst. Softw. 19, 207–224.

DELUGACH, H. S. 1996. An approach to conceptual
feedback in multiple viewed software require-
ments modeling. In Proceedings of Viewpoints
96: International Workshop on Multiple Perspec-
tives in Software Development (San Francisco,
CA).

DOUGLAS, J. AND KEMMERER, R. A. 1994. Aslantest:
A symbolic execution tool for testing ASLAN
formal specifications. In Proceedings of ISTSTA
’94—International Symposium on Software Test-
ing and Analysis. ACM. Press, New York, NY,
15–27.

DOWNING, K., AND FICKAS, S. 1991. A Qualitative
Modeling Tool for Specification Criticism, Con-
ceptual Modelling, Databases, and CASE: An In-
tegrated View of Information Systems Develop-
ment. Ablex, Norwood, NJ.

DRUCKER, P. F. 1954. The Practice of Management.
Harper & Row, New York, NY.

DUBOIS, E., BOIS, P. D., AND PETIT, M. 1993. Object-
oriented requirements analysis: An agent per-
spective. In ECOOP’93—7th European Confer-
ence on Object-Oriented Programming. Lecture
Notes in Computer Science, vol. 707. Springer-
Verlag, Berlin, Germany, 458–481.

DURFEE, E. H. 1988. Coordination of Distributed
Problem Solvers. Kluwer Academic Publishers,
Boston, MA.

EASTERBROOK, S. 1993. Domain modeling with hi-
erarchies of alternative viewpoints. In Proceed-
ings of the International Symposium on Require-
ment Engineering (San Diego, CA) IEEE Press,
Los Alamitos, CA, 65–72.

EASTERBROOK, S. 1994. Co-ordinating distributed
ViewPoints: The anatomy of a consistency check.
Concur. Eng.: Res. Appl. 2, 209–222.

EASTERBROOK, S. AND NUSEIBEH, B. 1996. Us-
ing ViewPoints for inconsistency management.
Softw. Eng. J. 11, 31–43.

EGYED, A. AND BOEHM, B. 1996. Analysis of soft-
ware requirements negotiation behavior pat-
terns. Tech. Rep., USC-CSE-96-504. University
of Southern California, Los Angeles, CA.

EGYED, A. AND BOEHM, B. 1998. A comparison study
in software requirements negotiation. Proceed-
ings of the 8th Annual International Symposium
on Systems Engineering (INCOSE’98).

EMMERICH, W., FINKELSTEIN, A., MONTANGERO, C., AND

STEVENS, R. 1997. Standards compliant soft-
ware development. In Proceedings of the In-
ternational Conference on Software Engineering
Workshop on Living with Inconsistency. IEEE
Computer Societies Press, Los Alamitos, CA.

FEATHER, M. S. 1987. Language support for the
specification and development of composite sys-
tems. Trans. Program. Lang. Syst. 9, 198–234.

FEATHER, M. S. 1989. Constructing specifications
by combining parallel elaborations. IEEE Trans.
Softw. Eng. 15, 198–208.

FEATHER, M. S., FICKAS, S., FINKELSTEIN, A., AND

VAN LAMSWEERDE, A. 1997. Requirements and
specification exemplars. Automat. Softw. Eng. 4,
4, 419–438.

FEATHER, M. S., FICKAS, S., VAN LAMSWEERDE, A.,
AND PONSARD, C. 1998. Reconciling system re-
quirements and runtime behavior. In Proceed-
ings of the International Workshop on Software
Specification and Design (IWSSD’98). IEEE
Computer Society Press, Los Alamitos, CA.

FESTINGER, L. 1964. Conflict, Decision, and Disso-
nance. Tavistock Publications, London, U.K.

FIADEIRO, J. L. AND MAIBAUM, T. 1995. Interconnect-
ing formalisms: Supporting modularity, reuse
and incrementality. In Proceedings of the 3rd
Symposium on the Foundations of Software En-
gineering. ACM Press, New York, NY, 72–80.

FICKAS, S. 1985. A knowledge-based approach
to specification acquisition and construction.
Tech. Rep. CIS-TR-85-13. University of Oregon,
Eugene, OR.

FICKAS, S. AND ANDERSON, J. 1989. A proposed per-
spective shift: Viewing specification design as a
planning problem. In Proceedings of the Fifth In-
ternational Workshop on Software Specification
and Design. IEEE Computer Society Press, Los
Alamitos, CA, 177–184.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 183

FICKAS, S. AND FEATHER, M. S. 1995. Requirements
monitoring in dynamic environments. In Pro-
ceedings of the 2nd International Symposium
on Requirements Engineering (York, England).
IEEE Computer Society Press, Los Alamitos,
CA, 140–147.

FICKAS, S. AND HELM, R. 1992. Knowledge repre-
sentation and reasoning in the design of com-
posite systems. IEEE Trans. Softw. Eng. 18, 6
(June), 470–482.

FICKAS, S. AND NAGARAJAN, P. 1988. Being suspi-
cious: Critiquing problem specifications. In Pro-
ceedings of the 7th National Conference on Artifi-
cial Intelligence. Morgan Kaufmann, San Mateo,
CA, 19–24.

FINKELSTEIN, A. AND FUKS, H. 1989. Multi-party
specification. In Proceedings of the 5th Inter-
national Workshop on Software Specification
and Design. IEEE Computer Society Press, Los
Alamitos, CA, 185–195.

FINKELSTEIN, A., GABBAY, D., HUNTER, A., KRAMER, J.,
AND NUSEIBEH, B. 1994a. Inconsistency han-
dling in multi-perspective specifications. IEEE
Trans. Softw. Eng. 20, 569–578.

FINKELSTEIN, A., KRAMER, J., AND NUSEIBEH, B., EDS.
1994b. Software Process Modelling and Tech-
nology. Research Studies Press Ltd. (Wiley),
A theory of action for multiagent planning.
Somerset, U.K.

FINKELSTEIN, A., KRAMER, J., NUSEIBEH, B., FINKELSTEIN,
L., AND GOEDICKE, M. 1992. Viewpoints: A
framework for multiple perspectives in system
development. Int. J. Softw. Eng. Knowl. Eng.
(Special Issue on Trends and Future Research
Directions in SEE) 2, 31–57.

FINKELSTIEN, A. E. 1996. Viewpoints 96: An in-
ternational workshop on multiple perspectives
in software development. ACM. In Proceed-
ings of the Symposium on the Foundations
of Software Engineering (San Francisco, CA),
A. Finkelstien, Ed. ACM Press, New York,
NY.

FISHER, R. AND WILLIAM, U. 1991. Getting to Yes: Ne-
gotiating Agreement Without Giving In. Penguin
Books, New York, NY.

FOX, M. S., BARBUCEANU, M., AND GRUNINGER, M.
1996. An organisation ontology for enterprise
modelling: Preliminary concepts for linking
structure and behaviour. Comput. Industry 29,
123–134.

FRANCALANCI, C. AND FUGGETTA, A. 1997. Integrat-
ing conflicting requirements in process model-
ing: A survey and research directions. Inform.
Softw. Tech. 39, 205–216.

GASSER, L. AND HUHNS, M. N. 1989. Distributed
Artificial Intelligence. Morgan Kaufmann, San
Mateo, CA.

GEORGEFF, M. P. 1984. A theory of action for mul-
tiagent planning. In Proceedings of 1984 Confer-
ence of the AAAI. Morgan Kaufmann, San Mateo,
CA, 121–125.

GILB, T. 1977. Software Metrics. Winthrop Pub-
lishers, Cambridge, MA.

GILB, T. 1988. Principles of Software Engineering
Management. Addison-Wesley, Reading, MA.

GIRGENSOHN, A., REDMILES, D., AND SHIPMAN, F. 1994.
Agent-based support for communication be-
tween developers and users in software de-
sign. In Proceedings of the 9th Knowledge-Based
Software Engineering Conference. (KBSE’94,
Monterey, CA). IEEE Computer Society Press,
Los Alamitos, CA, 22–29.

GORDON, M. AND MELHAM, T. F. 1993. Introduc-
tion to HOL. Cambridge University Press,
Cambridge, U.K.

GOTEL, O. AND FINKELSTEIN, A. 1995. Contribution
structures. In Proceedings of the 2nd Interna-
tional Symposium on Requirements Engineer-
ing (RE’95). IEEE Computer Society Press, Los
Alamitos, CA, 100–107.

GRAF, D. K. AND MISIC, M. M. 1994. The changing
roles of the systems analyst. Inform. Resources
Man. J. 7, 15–23.

GREENSPAN, S., MYLOPOULOS, J., AND BORGIDA, A. 1994.
On formal requirements modeling languages:
RML revisited. In Proceedings of the Sixteenth
International Conference on Software Engineer-
ing (Sorrento, Italy). 135–148.

GRUNINGER, M. AND FOX, M. S. 1995. Methodol-
ogy for the design and evaluation of ontologies.
In Proceedings of the Workshop on Basic Onto-
logical Issues in Knowledge Sharing (IJCAI’95,
Montreal, P.Q., Canada).

GUSTAS, R. 1995. On related pragmatic categories
and dependencies within enterprise modelling.
In Proceedings of the Second Scandinavian Re-
search Seminar on Information and Decision
Networks (Vaxjo University, Sweden).

HAHN, U., JARKE, M., AND ROSE, T. 1991. Teamwork
support in a knowledge-based information sys-
tems environment. IEEE Trans. Softw. Eng. 17,
467–482.

HALL, R. J. 1995. Systematic incremental vali-
dation of reactive systems via sound scenario
generalization. Automat. Softw. Eng. 2, 131–
166.

HALL, R. J. 1998. Explanation-based scenario gen-
eration for reactive system models. In Proceed-
ings of the Automated Software Engineering
(ASE’98). IEEE Computer Society Press, Los
Alamitos, CA.

HAMMER, W. 1980. Product Safety Management
and Engineering. Prentice-Hall, Englewood
Cliffs, NJ.

HAREL, D., LACHOVER, H., NAAMAD, A., PNUELI, A.,
POLITI, M., SHERMAN, R., SHTULL-TRAURING, A.,
AND TRAKHTENBROT, M. 1990. STATEMATE: A
working environment for the development of
complex reactive systems. IEEE Trans. Softw.
Eng. 16, 403–414.

HAUSER, J. R. C. D. 1988. The house of quality.
Harvard Bus. Rev. 66, 3, 63–73.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

184 Robinson et al.

HEARST, M. 1998. Information integration. IEEE
Intell. Syst. 13, 12–24.

HEIMDAHL, M. P. AND LEVESON, N. G. 1996. Com-
pleteness and consistency in hierarchical state-
based requirements. IEEE Trans. Softw. Eng. 22,
363–377.

HEIMDAHL, M. P. E. AND WHALEN, M. W. 1997. Re-
duction and slicing of hierarchical state ma-
chines. ACM SIGSOFT Softw. Eng. Notes 22,
450–467.

HEITMEYER, C., KIRBY, J., AND LABAW, B. 1998a.
Applying the SCR requirements method to
a weapons control panel: An experience re-
port. In Proceedings of the Formal Meth-
ods in Software Practice’98 (Clearwater Beach,
FL).

HEITMEYER, C. AND MANDRIOLI, D. 1996. For-
mal methods for real-time computing: An
overview. In Formal Methods for Real-
time Computing, C. Heitmeyer and D.
Mandrioli, Eds. J. Wiley, Chichester, U.K.,
1–32.

HEITMEYER, C. L., JEFFORDS, R. D., AND LABAW, B. G.
1996. Automated consistency checking of re-
quirements specifications. ACM Trans. Softw.
Eng. Method. 5, 231–261.

HEITMEYER, C. L., KIRBY, J., JR., LABAW, B., ARCHER, M.,
AND BHARADWAJ, R. 1998b. Using abstraction
and model checking to detect safety violations in
requirements specifications. IEEE Trans. Softw.
Eng. 24, 927–948.

HEKMATPOUR, S. AND INCE, D. 1988. Software Pro-
totyping, Formal Methods, and VDM. Addison-
Wesley, Reading, MA.

HENINGER, K., PARNAS, D. L., SHORE, J. E., AND

KALLANDER, J. W. 1978. Software require-
ments for the A-7E aircraft. Res. Rep., Naval Re-
search Laboratory, Washington, DC.

HENINGER, K. L. 1980. Specifying software re-
quirements for complex systems: New tech-
niques and their application. IEEE Trans. Softw.
Eng. 6, 2–13.

HEYM, M. AND H. OSTERLE. 1993. Computer-aided
methodology engineering. Inform. Softw. Tech.
35, 345–353.

HOLZMAN, G. 1991. Design and Validation of Com-
puter Protocols. Prentice Hall, Englewood Cliffs,
NJ.

HOLZMANN, G. J. 1997. The model checker SPIN.
IEEE Trans. Softw. Eng. 23, 279–295.

HORWITZ, S., PRINS, J., AND REPS, T. 1989. Integrat-
ing non-interfering versions of programs. ACM
Trans. Program. Lang. Syst. 11, 345–387.

HUNTER, A. AND NUSEIBEH, B. 1998. Managing in-
consistent specifications: Reasoning, analysis
and action. ACM Trans. Softw. Eng. Method. 7,
4, 335–367.

JACKSON, D. AND DAMON, C. A. 1996. Elements of
style: Analyzing a software design feature with
a counterexample detector. IEEE Trans. Softw.
Eng. 22, 484–495.

JACKSON, M. J. 1995. Software Requirements and
Specifications: A Lexicon of Practice, Principles,
and Prejudices. ACM Press and Addison-Wesley,
New York, NY, Wokingham, England, Reading,
MA.

JACOBS, S. AND KETHERS, S. 1994. Improving com-
munication and decision making within quality
function deployment. In Proceedings of the First
International Conference on Concurrent Engi-
neering, Research, and Application (Pittsburgh,
PA).

JANIS, I. L. AND MANN, L. 1979. Decision Making :
A Psychological Analysis of Conflict, Choice, and
Commitment. The Free Press, New York, NY.

JARKE, M., BUBENKO, J., ROLLAND, C., SUTCLIFFE,
A., AND VASSILIOU, Y. 1993. Theories under-
lying requirements engineering: An overview
of NATURE at Genesis. In Proceedings of the
First International Symposium on Requirements
Engineering. (San Diego, CA), 19–31.

JARKE, M., GALLERSDORFER, R., JEUSFELD, M. A., STAUDT,
M., AND EHERER, S. 1995. ConceptBase—a
deductive object manager for meta data
management. J. Intell. Inform. Syst. 4, 167–192.

JARKE, M. AND POHL, K. 1994. Requirements Engi-
neering in 2001: (Virtually) Managing a Chang-
ing Reality. Software Engineering Institute,
Pittsburgh, PA, 257–266.

JARKE, M., POHL, K., DŠMGES, R., JACOBS, S., AND NISSEN,
H. W. 1994. Requirements information man-
agement: The NATURE approach. Ingenerie des
Systemes d’Informations (Special Issue on Re-
quirements Engineering) 2, 6, 609–636.

JEFFORDS, R. AND HEITMEYER, C. 1998. Automatic
generation of state invariants from require-
ments specifications. In Proceedings of the 6th
ACM SIGSOFT International Symposium on the
Foundations of Software Engineering. (FSE’6),
Lake Buena Vista, FL. ACM Press, New York,
NY, 56–69.

JELASSI, M. T. AND FOROUGHI, A. 1989. Negotiation
support systems: An overview of design issues
and existing software. Decision Support Syst. 5,
2, 167–181.

JEUSFELD, M. A. AND JOHNEN, U. A. 1994. An
executable meta model for re-engineering of
database schemas. In Proceedings of the 13th In-
ternational Conference on Conceptual Modeling
(ER’94, Manchester, U.K.).

JOHANNESSON, P. AND JAMIL, M. H. 1994. Semantic
interoperability—context, issues, and research
directions. In Proceedings of the Second Inter-
national Conference on Cooperating Information
Systems. (Toronto, Ont. Canada).

JONES, C. 1995. Software challenges. Comput.
industry 28, 10, 102–103.

JONES, C. 1996. Patterns of Software Systems Fail-
ure and Success. International Thomson Com-
puter Press, London, U.K.

KANNAPAN, S. M. AND MARSKEK, K. M. 1993. An
approach to parametric machine design and

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 185

negotiation in concurrent engineering. In Intel-
ligent Design and Manufacturing, A. N. Kusiak,
Ed. John Wiley and Sons, New York, NY, 509–
534.

KANT, E. AND BARSTOW, D. 1981. The refinement
paradigm: The interaction of coding and effi-
ciency knowledge in program synthesis. Trans.
Softw. Eng. SE-7, 5, 458–471.

KARLSSON, J. AND RYAN, K. 1997. A cost-value
approach for prioritizing requirements. IEEE
Softw. 14, 5, 67–74.

KATZ, S., RICHTER, C. A., AND THE, K. S. 1987.
PARIS: A system for reusing partially inter-
preted schemas. In Proceedings of the 9th In-
ternational Conference on Software Engineering.
(ICSE’87, Monterey, CA). 377–385.

KAZMAN, R., KLEIN, M. M. B., LONGSTAFF, T., LIPSON,
H., AND CARRIERE, J. 1998. The architecture
tradeoff analysis method. In Proceedings of the
Fourth IEEE International Conference on Engi-
neering of Complex Computer Systems (ICECCS,
Monterrey, CA). 68–78.

KECK, D. O. AND KÜHN, P. J. 1998. The feature and
service interaction problem in telecommunica-
tions systems: a survey. IEEE Trans. Softw. Eng.
24, 779–796.

KERSTEN, G. E. AND SZPAKOWICZ, S. 1994. Negotia-
tion in distributed artificial intelligence: Draw-
ing from human experience. In Proceedings of the
27th Annual Hawaii International Conference
on Systems Sciences. IEEE Press, Los Alamitos,
258–270.

KIM, E. AND LEE, J. 1986. An exploratory contin-
gency model of user participation and MIS use.
Inform. Manage. 11, pp. 87–97.

KLEIN, M. 1991. Supporting conflict resolution in
cooperative design systems. Trans. Syst. Man
Cybernet. 21, 1379–1390.

KLEIN, M. 2000. Towards a systematic repository
of knowledge about managing collaborative de-
sign conflicts. In Proceedings of the International
Conference on AI in Design (Boston, MA).

KOTONYA, G. AND SOMMERVILLE, I. 1996. Require-
ments engineering with viewpoints. BCS/IEE
Software Eng. J. 11, 5–18.

KOYMANS, R. 1992. Specifying Message Passing
and Time-Critical Systems with Temporal Logic.
Lecture Notes in Computer Science, vol. 651.
Springer-Verlag, Berlin, Germany.

KRAUS, S. AND WILKENFELD, J. 1990. The function
of time in cooperative negotiations. In Pro-
ceedings of the Ninth National Conference on
Artificial Intelligence. American Association for
Artificial Intelligence, Mento Park, CA, vol. 1,
179–184.

KUIPERS, B. 1986. Qualitative simulation. Art.
Intell. 29, 289–338.

KUMAR, K. AND WELKE, R. J. 1992. Methodology
engineering: A proposal for situation-specific
methodology construction. In Challenges and
Strategies for Research in Systems Development,

W. W. C. and J. A. Senn, Eds. John Wiley & Sons,
London, U.K., 257–269.

KUSIAK, A. 1993. Concurrent Engineering: Au-
tomation, Tools, and Techniques. John Wiley &
Sons, London, U.K.

KWA, J. B. 1988. Tolerant planning and negotia-
tion in generating coordinated movement plans
in an automated factory. In Proceedings of
the First International Conference on Indus-
trial and Engineering Applications of Artificial
Intelligence.

LADKIN, P. 1995a. In The Risks Digest (online ACM
moderated digest) 15.

LADKIN, P. 1995b. In The Risks Digest, Neumann,
Ed. ACM SIGSOFT Softw. Eng. Notes 15.

LAMSWEERDE, A. V. 2000. Formal specification: A
roadmap, FOSE 00. In The Future of Software
Engineering, A. Finkelstein, Ed. ACM Press,
New York, NY, 147–159.

LAMSWEERDE, A. V. AND SINTZOFF, M. 1979. Formal
derivation of strongly correct concurrent pro-
grams. Acta Inform. 12, 1–31.

LANDER, S. AND LESSER, V. R. 1989. A framework for
the integration of cooperative knowledge-based
systems. In Workshop on Integrated Architec-
tures for Manufacturing (Detroit, MI).

LANDER, S. E. AND LESSER, V. R. 1993. Understand-
ing the role of negotiation in distributed search
among heterogeneous agents. In Proceedings of
the Thirteenth International Joint Conference on
Artificial Intelligence (Chambéry, France). 438–
444.

LEMPP, P. AND RUDOLF, L. 1993. What productivity
increases to expect from a CASE environment:
Results of a user survey. In Computer Aided
Software Engineering (CASE), E. J. Chikofsky,
Ed. IEEE Computer Society Press, Los Alamitos,
CA, 147–153.

LEVENTHAL, N. 1995. Using groupware to auto-
mate joint application development. J. Syst.
Manage. 45, 16–22.

LEVESON, N. 1995. Safeware, System Safety and
Computers. Addison-Wesley, Reading, MA.

LEVESON, N. G., HEIMDAHL, M. P., AND HILDTRETH, H.
1994. Requirements specification for process-
control systems. IEEE Trans. Softw. Eng. 20,
684–706.

LIM, L. AND BENBASAT, I. 1992–1993. A theoretical
perspective of negotiation support systems. J.
Manage. Inform. Syst. 9, 27–44.

LIOU, Y. I. AND CHEN, M. 1993–1994. Using group
support systems and joint application develop-
ment for requirements specification. J. Manage.
Inform. Syst. 10, 25–41.

LIU, F. X. AND YEN, J. 1996. An analytic framework
for specifying and analyzing imprecise require-
ments. In Proceedings of the 18th International
Conference on Software Engineering (ICSE’18,
Berlin, Germany). 60–69.

LUBARS, M., POTTS, C., AND RICHTER, C. 1993. A re-
view of the state of practice in requirements

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

186 Robinson et al.

modeling. In First International Symposium
on Requirements Engineering. IEEE Press, Los
Alamitos, CA.

LYYTINEN, K. AND HIRSCHHEIM, R. 1987. Information
systems failures—a survey and classification of
the emperical literature. In Oxford Surv. Inform.
Tech. 4, 257–309.

MAGAL, S. AND SNEAD, K. 1993. The role of causal
attributions in explaining the link between user
participation and information system success.
Inform. Resources Manage. J. 6, 19–29.

MAIDEN, N., MINOCHA, S., RYAN, M., HUTCHINGS, K., AND

MANNING, K. 1997. A co-operative scenario-
based approach to the acquisition and vali-
dation of systems requirements. In Proceed-
ings of Human Error and Systems Development
(Glasgow University, Scotland).

MAIDEN, N. A. M. 1998. CREWS-SAVRE: scenar-
ios for acquiring and validating requirements. J.
Automat. Softw. Eng. 5, 4, 419–446.

MAIDEN, N. A. M. AND SUTCLIFFE, A. G. 1994. Re-
quirements critiquing using domain abstrac-
tions. In Proceedings of the International Con-
ference on Requirements Engineering (Colorado
Springs, CO).

MALONE, T. W. AND CROWSTON, K. G. 1994. The
interdisciplinary study of coordination. ACM
Comput. Surv. 26, 87–119.

MANDRIOLI, D., MORASCA, S., AND MORZENTI, A. 1995.
Generating test cases for real-time systems from
logic specifications. ACM Trans. Comput. Syst.
13, 365–398.

MANNA, Z. AND GROUP, T. S. 1996. STeP: Deductive-
algorithmic verification of reactive and real-time
systems. In CAV’96—8th International Confer-
ence on Computer-Aided Verification. Lecture
Notes in Computer Science, vol. 1102. Springer-
Verlag, Berlin, Germany, 415–418.

MARKUS, L. AND KEIL, M. 1994. If we build it, they
will come: Designing information systems that
people want to use. Sloan Management Review
35, 4, 11–25.

MASSONET, P. AND VAN LAMSWEERDE, A. 1997. Ana-
logical reuse of requirements frameworks. In
Proceedings of the 3rd International Symposium
on Requirements Engineering (RE).

MATWIN, S., SZPAKOWICZ, S., KOPERCZAK, Z., KERSTEN,
G. E., AND MICHALOWSKI, W. 1989. Negoplan:
An expert system shell for negotiation support.
IEEE Expert 4, 50–62.

MAZER, M. S. 1989. A knowledge-theoretic account
of negotiated commitment. Tech. Rep. CSRI-237.
University of Toronto, Toronto, Ont., Canada.

MAZZA, C., FAIRCLOUGH, J., MELTON, B., DE PABLO,
D., SCHEFFER, A., AND STEVENS, R. 1994. Soft-
ware Engineering Standards. Prentice Hall,
Englewood Cliffs, NJ.

MCKEEN, J. AND GUIMARAES, T. 1997. Successful
strategies for user Participation in systems de-
velopment. J. MIS 14, 133–150.

MCMILLAN, K. L. 1992. Symbolic model checking—

an approach to the state explosion prob-
lem. Tech. Rep. Computer Science Department,
Carnegie-Mellon University, Pittsburgh, PA.

MCMILLAN, K. L. 1993. Symbolic Model Checking:
An Approach to the State Explosion Problem.
Kluwer, Boston, MA.

MI, P. AND SCACCHI, W. 1992. Process integration
for CASE environments,. IEEE Softw. 9, 45–53.

MILLER, J., PALANISWAMI, D., SHETH, A., KOCHUT, K., AND

SINGH, H. 1997. WebWork: METEOR’s web-
based workflow management system. Tech. Rep.
Department of Computer Science, University of
Georgia, Athens, GA.

MOFFETT, J. D. A. A. J. V. 2000. Behavioural con-
flicts in a causal specification. Automat. Softw.
Eng. 7, 215–238.

MORGAN, C. 1990. Programming from Specifica-
tions. Prentice Hall, Englewood Cliffs, NJ.

MOSTOW, J. AND VOIGT, K. 1987. Explicit integra-
tion of goals in heuristic algorithm design. In
IJCAI’87.

MOTSCHNIG-PITRIG, R., NISSEN, H. W., AND JARKE, M.
1997. View-directed requirements engineer-
ing: A framework and metamodel. In Proceed-
ings of the 9th International Conference on Soft-
ware Engineering and Knowledge Engineering
(SEKE’97, Madrid, Spain).

MULLERY, G. 1979. CORE—a method for con-
trolled requirements expression. Proceedings of
the Fourth International Conference on Software
Engineering. In IEEE Computer Society Press,
Los Alamitos, CA, 126–135.

MUMFORD, E. AND WEIR, M. 1979. Computer sys-
tems in work design—the ETHICS method. As-
sociated Business Press, London, U.K.

MYLOPOULOS, J., BORGIDA, A., AND YU, E. 1997. Rep-
resenting software engineering knowledge. Au-
tomat. Softw. Eng. 4, 291–317.

MYLOPOULOS, J., CHUNG, L., AND NIXON, B. 1992.
Representing and using non-functional require-
ments: A process-oriented approach. IEEE
Trans. Softw. Eng. 18, 483–497.

MYLOPOULOS, J., CHUNG, L., AND YU, E. 1999. From
object-oriented to goal-oriented requirements
analysis. Commun. ACM, 42, 31–37.

NECHES, R., SWARTOUT, W., AND MOORE, J. D. 1985.
Enhanced maintenance and explanation of ex-
pert systems through explicit models of their
development. Trans. Softw. Eng. SE-11, 1337–
1351.

NEUMANN, P. G. 1995. Computer Related Risks.
Addison-Wesley, Reading, MA.

NISKIER, C., MAIBAUM, T., AND SCHWABE, D. 1989.
A pluralistic knowledge-based approach to
software specification. In Proceedings of the
ESEC’89—2nd European Software Engineering
Conference. Lecture Notes in Computer Science,
vol. 387. Springer-Verlag, Berlin, Germany, 411–
423.

NISSEN, H., JEUSFELD, A., JARKE, M., ZEMANEK, G.,
AND HUBER, H. 1996. Technology to manage

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 187

multiple requirements perspectives. IEEE
Softw. 13, 2, 37–48.

NISSEN, H. W. AND JARKE, M. 1999. Repository sup-
port for multi-perspective requirements engi-
neering. Inform. Syst. (Special Issue on Meta
Modeling and Method Engineering) 24, 131–158.

NORMAN, R. J. AND NUNAMAKER, J. F., JR. 1989.
CASE productivity perceptions of software engi-
neering professionals. Commun. ACM 32, 1102–
1108.

NUSEIBEH, B. 1996. To be and not to be: On man-
aging inconsistency in software development. In
Proceedings of the 8th International Workshop
on Software Specification and Design (IWSSD’8,
Schloss Velen, Germany). IEEE Computer Soci-
ety Press, Los Alamitos, CA, 164–169.

NUSEIBEH, B. AND FINKELSTEIN, A. 1992. View-
Points: A vehicle for method and tool integration.
In Proceedings of the 5th International Work-
shop on Computer-Aided Software Engineering
(CASE’92), Montreal, P.Q., Canada). IEEE Com-
puter Society Press, Los Alamitos, CA, 50–
60.

NUSEIBEH, B., KRAMER, J., AND FINKELSTEIN, A. 1994.
A framework for expressing the relationship be-
tween multiple views in requirements specifi-
cation. IEEE Trans. Softw. Eng. 20, 10, 760–
773.

OLIVER, J. R. 1996. On artificial agents for negoti-
ation in electronic commerce. In Proceedings of
the 29th Annual Hawaii International Confer-
ence on Systems Sciences. IEEE Computer Soci-
ety Press, Los Alamitos, CA, 337–346.

OLSEN, G. R., CUTKOSKY, M., TENENBAUM, J. M., AND

GRUBER, T. R. 1994. Collaborative engineer-
ing based on knowledge sharing agreements. In
Proceedings of the 1994 ASME Database Sympo-
sium (Minneapolis, MN).

OSTERWEIL, L. AND SUTTON, S. 1996. Using software
technology to define workflow processes. In Pro-
ceedings of the NSF Workshop on Workflow &
Process Automation (Athens, GA).

OSTERWEIL, L. J. 1987. Software processes are soft-
ware too. In Proceedings of the Ninth Inter-
national Conference on Software Engineering.
(Monterey CA, March). 2–13.

OWRE, S., RUSHBY, J., AND SHANKAR, N. 1995. For-
mal verification for fault-tolerant architectures:
Prolegomena to the design of PVS. IEEE Trans.
Softw. Eng. 21, 107–125.

PARK, D. Y., SKAKKEBAEK, J., AND DILL, D. L. 1998.
Static analysis to identify invariants in RSML
specifications. In Proceedings of FTRTFT’98—
Formal Techniques for Real Time or Fault Tol-
erance.

PARNAS, D. L. AND MADEY, J. 1995. Functional doc-
umentation for computer systems engineering.
Sci. Comput. Program. 25, 41–61.

PERROW, C. 1984. Normal Accidents: Living with
High-Risk Technology. Basic Books, New York,
NY.

PERRY, D. E. AND WOLF., A. L. 1992. Foundations
for the study of software architecture. ACM SIG-
SOFT Softw. Eng. Notes, 17, 40–52.

POHL, K. 1997. Requirements engineering: An
overview. In Encyclopedia of Computer Science
and Technology. A. Kent, and J. Williams, Eds.
Marcel Dekker, New York, NY, vol. 36, suppl. 21.

POTTS, C. 1994. Requirements Completeness, En-
terprise Goals, and Scenarios. Georgia Institute
of Technology, College of Computing, Atlanta,
GA.

POTTS, C. 1995. Using schematic scenarios to un-
derstand user needs. In Proceedings of DIS’95—
ACM Symposium on Designing Interactive
Systems: Processes, Practices and Techniques
(University of Michigan, Ann Arbor, MI).

POTTS, C. AND BRUNS, G. 1988. Recording the rea-
sons for design decision. In Proceedings of the
Seventh International Workshop on Software
Specification and Design (Singapore) 418–427.

POTTS, C., TAKAHASHI, K., AND ANTON, A. 1994.
Inquiry-based requirements analysis. IEEE
Softw. 11, 2, 21–32.

PRUITT, D. G. 1981. Negotiation Behavior. Aca-
demic Press, New York, NY.

QUEILLE, J. AND SIFAKIS, J. 1982. Specification and
verification of concurrent systems in CAESAR.
In The Fifth International Symposium on Pro-
gramming. Lecture Notes in Computer Science,
Vol. 137. Springer-Verlag, Berlin, Germany.

RAIFFA, H. 1968. Decision Analysis. Addison-
Wesley, Reading, MA.

RAIFFA, H. 1982. The Art and Science of Negotia-
tion. Harvard University Press, Cambridge, MA.

RAM, S. AND RAMESH, V. 1995. A Blackboard-based
cooperative system for schema integration.
IEEE Expert/Intell. Syst. Appl. 10, 56–62.

RAMESH, B. AND DHAR, V. 1992. Supporting systems
development by capturing deliberations during
requirements engineering. IEEE Trans. Softw.
Eng. 18, 6, 498–510.

RANGASWAMY, A., ELIASHBERG, J., BURKE, R. R., AND

WIND, J. 1989. Developing marketing expert
systems: An application to international negoti-
ations. J. Market. 53, 24–39.

REUBENSTEIN, H. B. AND WATERS, R. C. 1991. The
requirements apprentice: automated assistance
for requirements acquisition. IEEE Trans.
Softw. Eng. 17, 226–240.

RICHARDSON, D. J., AHA, S. L., AND O’MALLEY, T. O.
1992. Specification-based test oracles for re-
active systems. In Proceedings of the Inter-
national Conference on Software Engineering.
(Melbourne, Australia). ACM Press, New York,
NY. 105–118.

ROBBINS, S. P. 1983. Organizational Behavior:
Concepts, Controversies, and Applications.
Prentice Hall, Englewood Cliffe, NJ.

ROBEY, D., FARROW, D. L., AND FRANZ, C. R. 1989.
Group process and conflict in systems develop-
ment. Manage. Sci. 35, 1172–1191.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

188 Robinson et al.

ROBINSON, W. N. 1989. Integrating multiple spec-
ifications using domain goals. In Proceedings
of the 5th International Workshop on Soft-
ware Specification and Design. IEEE Computer
Society Press, Los Alamitos, CA, 219–226. (Also
available as Tech. Rep. CIS-TR-89-03, Univer-
sity of Oregon, Eugene, OR.).

ROBINSON, W. N. 1990. Negotiation behavior
during requirement specification. In Proceed-
ings of the 12th International Conference on
Software Engineering (Nice, France). IEEE
Computer Society Press, Los Alamitos, CA,
268–276. (Also available as Tech. Rep. CIS-
TR-89-13, University of Oregon, Eugene,
OR.).

ROBINSON, W. N. 1993. Automated negotiated de-
sign integration: Formal representations and al-
gorithms for collaborative design. Tech. Rep.,
University of Oregon, Eugene, OR.

ROBINSON, W. N. 1994. Interactive decision sup-
port for requirements negotiation. Concur.
Eng.: Res. Appl. (Special Issue on Conflict
Management in Concurrent Engineering) 2,
237–252.

ROBINSON, W. N. 1997. Electronic brokering for as-
sisted contracting of software applets. In Pro-
ceedings of the 30th Annual Hawaii Interna-
tional Conference on Systems Sciences. IEEE
Computer Society Press, Los Alamitos, CA, 449–
458.

ROBINSON, W. N. 2002. Monitoring software re-
quirements using instrumented code. In Pro-
ceedings of the 35th Annual Hawaii In-
ternational Conference on Systems Sciences.
IEEE Computer Society Press, Los Alamitos,
CA.

ROBINSON, W. N. AND PAWLOWSKI, S. 1997. Surfacing
root requirements interactions from inquiry cy-
cle requirements. Tech. Rep. Georgia State Uni-
versity, Atlanta, GA.

ROBINSON, W. N. AND PAWLOWSKI, S. 1998. Surfac-
ing root requirements interactions from inquiry
cycle requirements. In Proceedings of the Third
IEEE International Conference on Requirements
Engineering (ICRE’98, Colorado Springs, CO).
IEEE Computer Society Press, Los Alamitos,
CA. 82–89.

ROBINSON, W. N. AND PAWLOWSKI, S. D. 1999. Man-
aging requirements inconsistency with develop-
ment goal monitors. IEEE Trans. Softw. Eng. 25,
816–835.

ROBINSON, W. N. AND VOLKOV, S. 1996. Conflict-
oriented requirements restructuring. Tech. Rep.
Georgia State University, Atlanta, GA.

ROBINSON, W. N. AND VOLKOV, S. 1997. A meta-
model for restructuring stakeholder require-
ments. In Proceedings of ICSE19—19th Inter-
national Conference on Software Engineering
(Boston, MA). IEEE Computer Society Press,
Los Alamitos, CA, 140–149.

ROBINSON, W. N. AND VOLKOV, S. 1998. Supporting
the negotiation life-cycle. Commun. ACM, 41, 5,
95–102.

ROONG-KO, D. AND FRANKL, P. G. 1994. The AS-
TOOT approach to testing object-oriented pro-
grams. ACM Trans. Softw. Eng. Method. 3, 101–
130.

SANDHOLM, T. AND LESSER, V. 1995. Issues in au-
tomated negotiation and electronic commerce:
Extending the contract net framework. In Pro-
ceedings of the First International Conference on
Multiagent Systems (ICMAS’95, San Francisco,
CA). 328–33.

SATHI, A., MORTON, T. E., AND ROTH, S. F. 1986.
Callisto: An intelligent project management sys-
tem, AI Mag. 7, 5, 34–52.

SCHNEIDER, F., EASTERBROOK, S. M., CALLAHAN, J. R.,
AND HOLZMANN, G. J. 1998. Validating require-
ments for fault tolerant systems using model
checking. In Proceedings of the Third IEEE Con-
ference on Requirements Engineering (Colorado
Springs, CO). IEEE Press, Los Alamitos, CA.

SCHULER, D. AND NAMIOKA, A. 1993. Participatory
Design. Lawrence Erlbaum Assoc., Hillsdale,
NJ.

SHAKUN, M. F. 1991. Airline buyout: Evolutionary
systems design and problem restructuring in
group decision and negotiation. Manage. Sci. 37,
1291–1303.

SHAW, M. AND GAINES, B. 1989. Comparing concep-
tual structures: Consensus, conflict, correspon-
dence and contrast. Knowl. Acquis. 1, 341–363.

SHAW, M. L. G. AND GAINES, B. R. 1988. A methodol-
ogy for recognizing consensus, correspondence,
conflict and contrast in a knowledge acquisi-
tion system. In Proceedings of the Workshop
on Knowledge Acquisition for Knowledge-Based
Systems. (Banff, Alta., Canada).

SHETH, A., ED. 1996. In Proceedings of the Work-
shop on Workflow & Process Automation
(Athens, GA.). National Science Foundation,
Washington, DC.

SMITH, R. G. 1980. The contract net protocol:
High-level communication and control in a dis-
tributed problem solver. IEEE Trans. Comput.
C29, 1104–1113.

SOMMERVILLE, I. AND SAWYER, P. 1997. Viewpoints:
Principles, problems and a practical approach to
requirements engineering. Ann. Softw. Eng. 3,
21, 101–130.

SOMMERVILLE, I., SAWYER, P., AND VILLER, S. 1997.
Viewpoints for requirements elicitation: A
practical approach. Tech. Rep. CSEG/16/97.
Lancaster University, Computing Department,
Bailrigg, Larcs. U.K.

SPACAPPIETRA, S. AND PARENT, C. 1994. View integra-
tion: A step forward in solving structural con-
flicts. IEEE Trans. Knowl. Data Eng. 6, 258–274.

SPANOUDAKIS, G. AND CONSTANTOPOULOS, P. 1996.
Analogical reuse of requirements specifications:
A computational model. Appl. Art. Intell.: An
Internat. J. 10, 281–306.

SPANOUDAKIS, G. AND FINKELSTEIN, A. 1995. Inte-
grating specifications: A similarity reasoning ap-
proach. Automat. Softw. Eng. J. 2, 311–342.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

Requirements Interaction Management 189

SPANOUDAKIS, G. AND FINKELSTEIN, A. 1997. Recon-
ciling requirements: A method for managing
interference, inconsistency and conflict. Ann.
Softw. Eng. 3, 21, 433–457.

STOREY, V. C., GOLDSTEIN, R. C., CHIANG, R. H. L.,
DEY, D., AND SUNDARESAN, S. 1997. Database
design with common sense business reasoning
and learning. ACM Trans. Database Syst. 22,
471–512.

SUTCLIFFE, A. G., MAIDEN, N. A. M., MINOCHA, S., AND

MANUEL, D. 1998. Supporting scenario-based
requirements engineering. IEEE Trans. Softw.
Eng. (Special Issue on Scenario Management)
24, 12, 1072–1088.

SYCARA, K. 1988. Resolving goal conflicts via ne-
gotiation. In Proceedings of the AAAI’88. Ameri-
can Association for Artificial Intelligence, Menlo
Park, CA, 245–250.

SYCARA, K. 1991. Problem restructuring in negoti-
ation. Manage. Sci. 37, 1248–1267.

SYCARA, K., DECKER, K., PANNU, A., WILLIAMSON,
M., AND ZENG, D. 1996. Distributed intelligent
agents. IEEE Expert/Intell. Syst. Appl. 11, 36–
46.

THOMPSON, J. M., HEIMDAHL, M. E., AND MILLER, S. P.
1999. Specification-based prototyping for em-
bedded systems. In ESEC/FSE’99 (Toulouse,
France). Lecture Notes in Computer Science,
vol. 1687. Springer-Verlag, Berlin, Germany,
163–179.

VAN LAMSWEERDE, A., DARDENNE, A., DELCOURT, B.,
AND DUBISY, F. 1991. The KAOS project:
Knowledge acquisition in automated specifica-
tion of software. In Proceedings of the AAAI
Spring Symposium Series (Stanford Univer-
sity, Stanford, CA). American Association for
Artificial Intelligence, Menlo Park, CA, 59–
62.

VAN LAMSWEERDE, A., DARIMONT, R., AND LETIER, E.
1998. Managing Conflicts in Goal-Driven Re-
quirements Engineering. IEEE Trans. Softw.
Eng. 24, 908–926.

VAN LAMSWEERDE, A., DARIMONT, R., AND MASSONET,
P. 1993. The meeting scheduler system—
preliminary definition. Internal Rep., University
of Louvain, Louvain, Belgium.

VAN LAMSWEERDE, A., DARIMONT, R., AND MASSONET,
P. 1995. Goal-directed elaboration of require-
ments for a meeting scheduler: Problems and
lessons learnt. In Proceedings of the Second In-
ternational Symposium on Requirements En-
gineering. IEEE Computer Science Press, Los
Alamitos, CA, 194–203.

VAN LAMSWEERDE, A. AND LETIER, E. 2000. Handling
obstacles in goal-oriented requirements engi-
neering. IEEE Trans. Softw. Eng. 26, 978–1005.

VAN LAMSWEERDE, A. AND WILLEMET, L. 1998. In-
ferring declarative requirements specifications
from operational scenarios. IEEE Trans. Softw.
Eng. (Special Issue on Scenario Management)
24, 12, 1089–1114.

VELTHUIJSEN, H. 1993. Distributed artificial intel-

ligence for runtime feature-interaction resolu-
tion. Comput. 26, 48–55.

VESSEY, I. AND SRAVANAPUDI, A. P. 1995. CASE tools
as collaborative support technologies. Commun.
ACM, 38, 83–95.

VON MARTIAL, F. 1992. Coordinating Plans of
Autonomous Agents. Springer-Verlag, Berlin,
Germany.

WALDINGER, W. 1977. Achieving several goals se-
multaneously. In Machine Intelligence, E. Elcock
and D. Michie, Eds. Ellis Horwood, Chichester,
U.K., vol. 8, pp. 94–136.

WEINBERG, B. M. AND SCHULMAN, E. L. 1974. Goals
and performance in computer programming.
Hum. Fact. 16, 70–77.

WERKMAN, K. J. 1990a. Knowledge-based model of
negotiationusing shareable perspectives. In Pro-
ceedings of the 10th International Workshop on
Distributed Artificial Intelligence (Bandera, TX).
American Association for Artificial Intelligence,
Menlo Park, CA.

WERKMAN, K. J. 1990b. Knowledge-based model of
using shareable perspectives. In Proceedings
of the Tenth International Conference on Dis-
tributed Artificial Intelligence (Bandera, TX).
American Association for Artificial Intelligence,
Menlo Park, CA. 1–23.

WEYUKER, E., GORADIA, T., AND SINGH, A. 1994. Au-
tomatically generating test data from a Boolean
specification. IEEE Trans. Softw. Eng. 20, 353–
363.

WILBUR-HAM, M. C. 1985. Numerical Petri Nets—
A Guide. Telecom Australia, Victoria, Australia.

WING, J. 1990. A specifier’s introduction to formal
methods. IEEE Softw. 23, 8–26.

WINOGRAD, T. AND FLORES, F. 1987. Understand-
ing Computers and Cognition. Addison-Wesley,
Reading, MA.

YAKEMOVIC, K. AND CONKLIN, J. 1990. Experience
with the gIBIS model in a corporate setting. In
Proceedings of CSCW ’90 (Los Angeles, CA).

YANG, W., HORWITZ, S., AND REPS 1992. A pro-
gram integration algorithm that accommo-
dates semantics-preserving transformations.
ACM Trans. Softw. Eng. Method. 1, 310–
354.

YEN, J., LEE, H. G., AND BUI, T. 1996. Intel-
ligent clearinghouse: Electronic marketplace
with computer-mediated negotiation supports.
In Proceedings of the 29th Annual Hawaii Inter-
national Conference on Systems Sciences. IEEE
Computer Society Press, Los Alamitos, CA, 219–
227.

YEN, J. AND TIAO, W. 1997. A systematic tradeoff
analysis for conflicting imprecise requirements.
In Proceedings of the Third IEEE Interna-
tional Symposium on Requirements Engineer-
ing (RE’97). IEEE Computer Science Press, Los
Alamitos, CA.

YU, E. S. K. AND MYLOPOULOS, J. 1993. An actor de-
pendency model of organizational work—with
application to business process reengineering.

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

190 Robinson et al.

In Proceedings of Conference on Organiza-
tional Computing Systems (COOCS’93, Milpitas,
CA).

ZAREMSKI, A. M. AND WING, J. 1997. Specification
matching of software components. ACM Trans.
Softw. Eng. Method. 6, 333–369.

ZAVE, P. AND JACKSON, M. 1993. Conjunction as
composition. ACM Trans. Softw. Eng. Method. 2,
4, 379–411.

ZAVE, P. AND JACKSON, M. 1996. Where do opera-
tions come from? A multiparadigm specification
technique. IEEE Trans. Softw. Eng. XXII, 508–
528.

ZAVE, P. AND JACKSON, M. 1997. Four dark corners
of requirements engineering. ACM Trans. Softw.
Eng. Method. 6, 1–30.

ZELENY, M. 1982. Multiple Criteria Decision Mak-
ing. McGraw-Hill, New York, NY.

Received August 1999; revised July 2000; September 2001; December 2002; accepted April 2003

ACM Computing Surveys, Vol. 35, No. 2, June 2003.

