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1. Introduction and Background 

1.1 Requirements Engineering 
 
The main measure of the success of a software system is the degree to which it meets its 
purpose. Therefore, identifying this purpose must be one of the main activities in the 
development of software systems. It has been long recognized that inadequate, incomplete, 
ambiguous, or inconsistent requirements have a significant impact on the quality of software. 
Thus, Requirements Engineering (RE), a branch of software engineering that deals with 
elicitation, refinement, analysis, etc. of software systems requirements gained a lot of 
attention in the academia as well as in the industry. 
 
One of the oldest definitions of Requirements Engineering says that “requirements definition 
is a careful assessment of the need that a system is to fulfill. It must say why a system is 
needed, based on current or foreseen conditions, which may be internal operations or 
external market. It must say what system features will serve and satisfy this context. And it 
must say how the system is to be constructed” [55]. Thus, requirements engineering must 
address the reasons why a software system is needed, the functionalities it must have to 
achieve its purpose and the constraints on how the software must be designed and 
implemented. Today we can find many definitions of requirements engineering. For example, 
requirements engineering is defined in [47] as the process of discovering the purpose of 
software systems by identifying stakeholders (“people or organizations who will be affected 
by the system and who have a direct or indirect influence on the system requirements” [43]) 
and their needs and by documenting these in a form that is amenable to analysis, 
communication, and subsequent implementation. Requirements engineering is defined in [65] 
as “the branch of software engineering concerned with the real-world goals for, functions of, 
and constraints on software systems. It is also concerned with the relationship of these factors 
to precise specifications of software behaviour, and their evolution over time and across 
software families”.  
 
van Lamsweerde [26] describes the following intertwined activities that are covered by 
requirements engineering (a similar set of activities is also featured in [47]): 
 

• Domain analysis: the environment for the system-to-be is studied. The relevant 
stakeholders are identified and interviewed. Problems with the current system are 
discovered and opportunities for improvement are investigated. Objectives for the 
target system are identified. 

• Elicitation: alternative models for the target system are analyzed to meet the identified 
objectives. Requirements and assumptions on components of such models are 
identified. Scenarios could be involved to help in the elicitation process. 

• Negotiation and agreement: alternative requirements and assumptions are evaluated; 
risks are analyzed by the stakeholders; the best alternatives are selected. 

• Specification: requirements and assumptions are formulated precisely. 
• Specification analysis: the specifications are checked for problems such as 

incompleteness, inconsistency, etc. and for feasibility. 
• Documentation: various decisions made during the requirements engineering process 

are documented together with the underlying rationale and assumptions. 
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• Evolution: requirements are modified to accommodate corrections, environmental 
changes, or new objectives. 

 
Modeling appears to be a core process in RE. The existing system/organization as well as the 
possible alternative configurations for the system-to-be are typically modeled. These models 
serve as a basic common interface to the various activities above [26]. Requirements 
modeling is the process of “building abstract descriptions of the requirements that are 
amenable to interpretation” [47]. Modeling facilitates in requirements elicitation by guiding it 
and helping the requirements engineer look at the domain systematically. Domain models 
help communicate requirements to customers, developers, etc. The models also allow for 
requirements reuse within the domain. The presence of inconsistencies in the models is 
indicative of conflicting and/or infeasible requirements. Models also provide a basis for 
requirements documentation and evolution. While informal models are analyzed by humans, 
formal models of system requirements allow for precise analysis by both the software tools 
and humans.  
 
One of the main difficulties of requirements engineering is the imprecise, informal nature of 
requirements and the fact that it “concerns translation from informal observations of the real 
world to mathematical specification languages” [62]. Requirements for a system exist in a 
certain social context and therefore during requirements elicitation a high degree of 
communication, negotiation, and other interaction skills is needed. For example, various 
stakeholders have different, possibly (and usually) conflicting points of view on what the 
system-to-be should deliver. Thus, getting stakeholders to agree on requirements is an 
important step of the process and requires a good social and communication skills. 
Requirements engineers should also be very careful while gathering the requirements: the 
same words and phrases used by different stakeholders may mean different things for them. 
One way to overcome this problem is to construct a common ontology to be used by all the 
stakeholders. Another way is to model the environment formally. One approach for carefully 
describing the environment using ground terms, designations and definitions is presented in 
[24]. A brief overview of the requirements elicitation techniques including traditional, model-
driven, etc. is presented in [47].  
 

1.2 The Nature of Requirements 
 
Despite the fact that the idea of requirements had been around for quite some time (e.g., [55]), 
a number of important properties of software requirements remained unknown until mid-
1990s. In [24], Michael Jackson makes the distinction between the machine, which is one or 
more computers that behave in a way to satisfy the requirements with the help of software, 
and the environment, which is the part of the world with which the machine will interact and 
in which the effects of the machine will be observed. When the machine is put into its 
environment, it can influence that environment and be influenced by that environment only 
because they have some shared phenomena in common. That is, there are events that are 
events of both and there are states that are states of both. Requirements are located in the 
environment. They are conditions over the events and states of the environment (or, possibly, 
the events and states in the shared phenomena) and can be formulated in a language 
accessible to stakeholders. So, the requirements can be stated without referring to the 
machine. In order to satisfy its requirements the machine acts on the shared phenomena. 
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Through the properties of the environment (causal chains) it can also indirectly affect the 
private phenomena of the environment through which the requirements are expressed. 
Therefore, the description of the requirements must describe the desired (optative) conditions 
over the environment phenomena (requirements) and also the given (indicative) properties of 
the environment (domain properties) that allow the machine participating only in the shared 
phenomena to ensure that the requirements are satisfied in the environment phenomena [24] 
(Parnas [48] independently made the same distinction between requirements and domain 
properties). Another distinction made by Jackson and Parnas was between the requirements 
and software specifications, which are formulated in terms of the machine phenomena in the 
language accessible to software developers. Further, important distinction must be made 
about requirements and environment assumptions (sometimes called expectations). Even 
though they are both optative, requirements are to be enforced by the software, while 
assumptions are to be enforced by agents in the environment. The assumptions specify what 
the system expects of its environment. For example, one could have an assumption about the 
behaviour of a human operator of the system. 
 
Requirements engineering is generally viewed as a process containing two phases. The early 
requirements phase concentrates on the analysis and modeling of the environment for the 
system-to-be, the organizational context, the stakeholders, their objectives and their 
relationships. A good analysis of the domain is extremely important for the success of the 
system. Understanding the needs and motivations of stakeholders and analyzing their 
complex social relationships helps in coming up with the correct requirements for the system-
to-be. Domain models are a great way to organize the knowledge acquired during the domain 
analysis. Such models are reference points for the system requirements and can be used to 
support the evolution of requirements that stems from changes in the organizational context of 
the system. The late requirements phase is concerned with modeling the system together with 
its environment. The system is embedded into the organization; the boundaries of the system 
and its environment are identified and adjusted, if needed; the system requirements and 
assumptions about the environment are identified. The boundary between the system and its 
environment is initially not well defined. The analyst will try to determine the best 
configuration of the system and its environment to reliably achieve the goals of the 
stakeholders. Putting too much functionality into the system could make it, for example, too 
complex and hard to maintain and evolve, while making too many assumptions about the 
environment may be unrealistic. 
 
Within the realm of requirements there exists another important division, functional versus 
non-functional requirements. Functional requirements specify the functions or services of the 
system. On the other hand, non-functional (quality) requirements (NFRs) represent software 
system qualities (e.g., security, ease of use, maintainability, etc.) or properties of the system 
as a whole. NFRs are generally more difficult to express in an objective and measurable way. 
Thus, their analysis is also more difficult.  
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2. Overview of Goal-Oriented Requirements Engineering 
 

2.1 From Traditional to Goal-Oriented RE 
 
In the recent years, the popularity of goal-oriented requirements engineering approaches has 
increased dramatically. The main reason for this is the inadequacy of the traditional systems 
analysis approaches (e.g., [54][15][56]) when dealing with more and more complex software 
systems. At the requirements level, these approaches treat requirements as consisting only of 
processes and data and do not capture the rationale for the software systems, thus making it 
difficult to understand requirements with respect to some high-level concerns in the problem 
domain. Most techniques focus on modeling and specification of the software alone. 
Therefore, they lack support for reasoning about the composite system comprised of the 
system-to-be and its environment. However, incorrect assumptions about the environment of 
a software system is known be responsible for many errors in requirements specifications 
[34]. Non-functional requirements are also in general left outside of requirements 
specifications. Additionally, traditional modeling and analysis techniques do not allow 
alternative system configurations where more or less functionality is automated or different 
assignments of responsibility are explored, etc. to be represented and compared. Goal-
Oriented Requirements Engineering (GORE) attempts to solve these and other important 
problems.  
 
It is important to note that goal-oriented requirements elaboration process ends where most 
traditional specification techniques would start [34]. Overall, GORE focuses on the activities 
that precede the formulation of software system requirements. The following main activities 
are normally present in GORE approaches: goal elicitation, goal refinement and various types 
of goal analysis, and the assignment of responsibility for goals to agents. We will talk about 
these and other activities later in the document. 
 

2.2 The Main Concepts 
 
Most of early RE research concentrated on what the software system should do and how it 
should do it. This amounted to producing and refining fairly low-level requirements on data, 
operations, etc. Even though the need to capture the rationale for the system under 
development was evident from the early definitions of requirements (e.g., “requirements 
definition must say why a system is needed” [55]), little attention was given in the RE 
literature to understanding why the system was needed and whether the requirements 
specification really captured the needs of the stakeholders. Not enough emphasis was put on 
understanding the organizational context for the new system. In general, the tendency in the 
RE modeling research has been to abstract the low-level programming constructs to the level 
of requirements rather than pushing requirements abstractions down to the design level [9]. 
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This explains why the stakeholders with their needs and the rest of the social context for the 
system could not be adequately captured by requirements models.  
 
Goals have long been used in artificial intelligence (e.g., [46]). Yet, Yue was likely the first 
one to show that goals modeled explicitly in requirements models provide a criterion for 
requirements completeness [64]. A model of human organizations that views humans and 
organizations as goal-seeking entities can be seen as the basis for goal modeling. This model 
is dominant in the information systems field [10]. However, it remains rather implicit in the 
RE literature.  
 
There are a number of goal definitions in the current RE literature. For example, van 
Lamsweerde [26] defines a goal as an objective that the system should achieve through 
cooperation of agents in the software-to-be and in the environment. Anton [1] states that goals 
are high-level objectives of the business, organization or system; they capture the reasons why 
a system is needed and guide decisions at various levels within the enterprise. 
 
An important aspect of requirements engineering is the analysis of non-functional (quality) 
requirements (NFRs) [45]. NFRs are usually represented in requirements engineering models 
by softgoals. There is no clear-cut satisfaction condition for a softgoal. Softgoals are related 
to the notion of satisficing [57]. Unlike regular goals, softgoals can seldom be said to be 
accomplished or satisfied. For softgoals one needs to find solutions that are “good enough”, 
where softgoals are satisficed to a sufficient degree. High-level non-functional requirements 
are abundant in organizations and quite frequently the success of systems depends on the 
satisficing of their non-functional requirements. 
 
Goal-oriented requirements engineering views the system-to-be and its environment as a 
collection of active components called agents. Active components may restrict their 
behaviour to ensure the constraints that they are assigned. These components are humans 
playing certain roles, devices, and software. As opposed to passive ones, active components 
have a choice of behaviour. In GORE, agents are assigned responsibility for achieving goals. 
A requirement is a goal whose achievement is the responsibility of a single software agent, 
while an assumption is a goal whose achievement is delegated to a single agent in the 
environment. Unlike requirements, expectations cannot be enforced by the software-to-be and 
will hopefully be satisfied thanks to organizational norms and regulations [27]. In fact, 
requirements “implement” goals much the same way as programs implement design 
specifications [34]. Agent-based reasoning is central to requirements engineering since the 
assignment of responsibilities for goals and constraints among agents in the software-to-be 
and in the environment is the main outcome of the RE process [26]. 
 

2.3 Benefits of Goal Modeling 
 
There are a number of important benefits associated with explicit modeling, refinement, and 
analysis of goals (mostly adapted from [27]): 
 

• It is important to note that GORE takes a wider system engineering perspective 
compared to the traditional RE methods: goals are prescriptive assertions that should 
hold in the system made of the software-to-be and its environment; domain properties 



 6

and expectations about the environment are explicitly captured during the 
requirements elaboration process, in addition to the usual software requirements 
specifications. Also, goals provide rationale for requirements that operationalize them. 
Thus, one of the main benefits of goal-oriented requirements engineering is the added 
support for the early requirements analysis. 

 
• Goals provide a precise criterion for sufficient completeness of a requirements 

specification. The specification is complete with respect to a set of goals if all the 
goals can be proven to be achieved from the specification and the properties known 
about the domain [64].  

 
• Goals provide a precise criterion for requirements pertinence. A requirement is 

pertinent with respect to a set of goals in the domain if its specification is used in the 
proof of one goal at least [64]. Even without the use of formal analysis methods, one 
can easily see with the help of goal models whether a particular goal in fact 
contributes to some high-level stakeholder goal. 

 
• A goal refinement tree provides traceability links from high-level strategic objectives 

to low-level technical requirements. 
 

• Goal modeling provides a natural mechanism for structuring complex requirements 
documents [27]. 

 
• One of the concerns of RE is the management of conflicts among multiple viewpoints 

[16]. Goals can be used to provide the basis for the detection and management of 
conflicts among requirements [25][51]. 

 
• A single goal model can capture variability in the problem domain through the use of 

alternative goal refinements and alternative assignment of responsibilities. 
Quantitative and qualitative analysis of these alternatives is possible. 

 
• Goal models provide an excellent way to communicate requirements to customers. 

Goal refinements offer the right level of abstraction to involve decision makers for 
validating choices being made among alternatives and for suggesting other 
alternatives. 

 
• Separating stable from volatile information is also important in requirements 

engineering. A number of researches point out that goals are much more stable than 
lower-level concepts like requirements or operations [1][27]. A requirement represents 
one particular way of achieving some goal. Thus, the requirement is more likely to 
evolve towards a different way of achieving that same goal than the goal itself. In 
general, the higher level the goal is the more stable it is. 
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3. The Main GORE Approaches 
 
In this section, we describe the core of the main GORE approaches while Section 4 provides 
an overview of some of the active areas in the goal-oriented requirements engineering 
research. 

3.1 The NFR Framework 
 
The NFR framework was proposed in [45] and further developed in [12]. The NFR 
framework (as it is evident from its name) concentrates on the modeling and analysis of non-
functional requirements. The goal of the framework is to put non-functional requirements 
foremost in developer’s mind [12]. The framework aims at dealing with the following main 
activities: capturing NFRs for the domain of interest, decomposing NFRs, identifying possible 
NFR operationalizations (design alternatives for meeting NFRs), dealing with ambiguities, 
tradeoffs, priorities, and interdependencies among NFRs, selecting operationalizations, 
supporting decisions with design rationale, and evaluating impact of decisions. The main idea 
of the approach is to systematically model and refine non-functional requirements and to 
expose positive and negative influences of different alternatives on these requirements. 
 
The framework supports three types of softgoals. NFR softgoals represent non-functional 
requirements to be considered; operationalizing softgoals model lower-level techniques for 
satisficing NFR softgoals; claim softgoals allow the analyst to record design rationale for 
softgoal refinements, softgoal prioritizations, softgoal contributions, etc. Softgoals can be 
refined using AND or OR refinements with obvious semantics. Also, softgoal 
interdependencies can be captured with positive (“+”) or negative (“–“) contributions.  
 
The main modeling tool that the framework provides is the softgoal interdependency graph 
(SIG). The graphs can graphically represent softgoals, softgoal refinements (AND/OR), 
softgoal contributions (positive/negative), softgoal operationalizations and claims. As 
softgoals are being refinement, the developer will eventually reach some softgoals (in fact, 
operationalizing softgoals) which are sufficiently detailed and cannot be refined further. The 
developer can accept or reject them as part of the target system. By choosing alternative 
combinations of the leaf-level softgoals and using the provided label propagation algorithm, 
the developer can see if the selected alternative is good enough to satisfice the high-level non-
functional requirements for the system. The algorithm works its way up the graph starting 
from the decisions made by the developer. The labelling procedure works towards the top of 
the graph determining the impact of the decision on higher-level goals. It takes into 
consideration the labels on softgoal refinement links. For example, if a softgoal receives 
contributions from a number of other softgoals, then the results of contributions of each 
offspring are combined to get the overall contribution for the parent softgoal. By analyzing 
these alternative operationalizations, the developer will select the one that best meets high-
level quality requirements for the system. The set of selected leaf level 
softgoals/operationalizations can be implemented in the software. 
 
The NFR framework also supports cataloguing design knowledge into three main types of 
catalogues:  
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• NFR type catalogues include concepts about particular types of NFRs, such as 

performance. 
• Method catalogues encode knowledge that helps in softgoal refinement and 

operationalization. This catalogue could have a generic method that states that an NFR 
softgoal applied to a data idem can be decomposed into NFR softgoals for all 
components of that item. 

• Correlation rule catalogues have the knowledge that helps in detecting implicit 
interdependencies among softgoals. For example, the catalogue could include the fact 
that indexing positively contributes to response time. 

 
Overall, this framework provides a process-oriented approach for dealing with non-functional 
requirements. Here, instead of evaluation the final product with respect to whether it meets its 
non-functional requirements, the “emphasis is on trying to rationalize the development 
process in terms of non-functional requirements” [45]. The provided catalogues are an 
important aid for a requirements engineer. 
 

3.2 i*/Tropos 
 
i* [60] is an agent-oriented modeling framework that can be used for requirements 
engineering, business process reengineering, organizational impact analysis, and software 
process modeling. Since we are most interested in the application of the framework to 
modeling systems’ requirements, our description of i* is geared towards requirements 
engineering. The framework has two main components: the Strategic Dependency (SD) 
model and the Strategic Rationale (SR) model. 
 
Since i* supports the modeling activities that take place before the system requirements are 
formulated, it can be used for both the early and late phases of the requirements engineering 
process. During the early requirements phase, the i* framework is used to model the 
environment of the system-to-be. It facilitates the analysis of the domain by allowing the 
modeler to diagrammatically represent the stakeholders of the system, their objectives, and 
their relationships. The analyst can therefore visualize the current processes in the 
organization and examine the rationale behind these processes. The i* models developed at 
this stage help in understanding why a new system is needed. During the late requirements 
phase, the i* models are used to propose the new system configurations and the new 
processes and evaluate them based on how well they meet the functional and non-functional 
needs of the users. 
 
i* centers on the notion of intentional actor and intentional dependency. The actors are 
described in their organizational setting and have attributes such as goals, abilities, beliefs, 
and commitments. In i* models, an actor depends on other actors for the achievement of its 
goals, the execution of tasks, and the supply of resources, which it cannot achieve, execute, 
and obtain by itself, or not as cheaply, efficiently, etc. Therefore, each actor can use various 
opportunities to achieve more by depending on other actors. At the same time, the actor 
becomes vulnerable if the actors it depends upon do not deliver. Actors are seen as being 
strategic in the sense that they are concerned with the achievement of their objectives and 
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strive to find a balance between their opportunities and vulnerabilities. The actors are used to 
represent the system’s stakeholders as well as the agents of the system-to-be.  
 
Actors can be agents, roles, and positions. Agents are concrete actors, systems or humans, 
with specific capabilities. A role is an “abstract actor embodying expectations and 
responsibilities” [42]. A position is a set of socially recognized roles typically played by one 
agent. This division is especially useful when analyzing the social context for software 
systems. 
 
Dependencies between actors are identified as intentional if they appear as a result of agents 
pursuing their goals. There are four types of dependencies in i*. They are classified based on 
the subject of the dependency: goal, softgoal, task, and resource.  
 
A Strategic Dependency model is a network of dependency relationships among actors. The 
SD model captures the intentionality of the processes in the organization, what is important to 
its participants, while abstracting over all other details. During the late requirements analysis 
phase, SD models are used to analyze the changes in the organization due to the introduction 
of the system-to-be. The model allows for the analysis of the direct or indirect dependencies 
of each actor and exploration of the opportunities and vulnerabilities of actors (analysis of 
chains of dependencies emanating from actor nodes is helpful for vulnerability analysis).  
 
Strategic Rationale models are used to explore the rationale behind the processes in systems 
and organizations. In SR models, the rationale behind process configurations can be explicitly 
described, in terms of process elements, such as goals, softgoals, tasks, and resources, and 
relationships among them. The model provides a lower-level abstraction to represent the 
intentional aspects of organizations and systems: while the SD model only looked at the 
external relationships among actors, the SR model provides the capability to analyze in great 
detail the internal processes within each actor. The model allows for deeper understanding of 
what each actor’s needs are and how these needs are met; it also enables the analyst to assess 
possible alternatives in the definition of the processes to better address the concerns of the 
actors.  
 
The SR process elements are related by two types of links: decomposition links, and means-
ends links. These links are used to model AND and OR decompositions of process elements 
respectively. Means-ends links are mostly used with goals and specify alternative ways to 
achieve them. Decomposition links connect a goal/task with its components (subtasks, 
softgoals, etc.) A softgoal, a goal, or a task can also be related to other softgoals with softgoal 
contribution links that are similar to the ones in the NFR framework. The links specify two 
levels of positive (“+” and “++”) and negative (“–“ and “--“) contributions to the softgoals 
from satisficing a softgoal, achieving a goal, or executing a task. Softgoals are used as 
selection criteria for choosing the alternative process configuration that best meets the non-
functional requirements of the system. It is possible to link a process element from one actor 
with an intentional dependency going to another actor to represent its delegation to that actor. 
The SR model is strategic in that its elements are included only if they are considered 
important enough to affect the achievement of some goal. The same rule also helps with 
requirements pertinence. The i* meta-framework describing the semantics and constraints of 
i* is described in the language Telos [44]. This language allows for the various types of 
analysis of i* models (e.g., consistency checking between models) to be performed. 
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The i* modeling framework is the basis for Tropos, a requirements-driven agent-oriented 
development methodology [9]. The Tropos methodology guides the development of agent-
based systems from the early requirements analysis through architectural design and detailed 
design to the implementation. Tropos uses the i* modeling framework to represent and reason 
about requirements and system configuration choices. Tropos has an associated formal 
specification language called Formal Tropos [18] for adding constraints, invariants, pre- and 
post-conditions capturing more of the subject domain’s semantics to the graphical models in 
the i* notation. These models can be validated by model-checking. 
 

3.3 KAOS 
 
The KAOS methodology is a goal-oriented requirements engineering approach with a rich set 
of formal analysis techniques. KAOS stands for Knowledge Acquisition in autOmated 
Specification [14] or Keep All Objects Satisfied [34]. KAOS is described in [34] as a multi-
paradigm framework that allows to combine different levels of expression and reasoning: 
semi-formal for modeling and structuring goals, qualitative for selection among the 
alternatives, and formal, when needed, for more accurate reasoning. Thus, the KAOS 
language combines semantic nets [6] for conceptual modeling of goals, assumptions, agents, 
objects, and operations in the system, and linear-time temporal logic for the specification of 
goals and objects, as well as state-base specifications for operations. In general, each 
construct in the KAOS language has a two-level structure: the outer graphical semantic layer 
where the concept is declared together with its attributes and relationships to other concepts, 
and the inner formal layer for formally defining the concept. 
 
The ontology of KAOS includes objects, which are things of interest in the composite system 
whose instances may evolve from state to state. Objects can be entities, relationships, or 
events.  
 
Operations are input-output relations over objects. Operation applications define state 
transitions. Operations are declared by signatures over objects and have pre-, post-, and 
trigger conditions. KAOS makes a distinction between domain pre-/post-conditions for an 
operation and desired pre-/post-conditions for it. The former are indicative and describe what 
an application of the operation means in the domain (without any prescription as to when the 
operation must or must not be applied) while the latter are optative and capture additional 
strengthening of the conditions to ensure that the goals are met [36]. 
 
An agent is a kind of object that acts as a processor for operations. Agents are active 
components that can be humans, devices, software, etc. Agents perform operations that are 
allocated to them. KAOS lets analysts specify which objects are observable or controllable by 
agents.  
 
A goal in KAOS is defined in [29] as a “prescriptive statement of intent about some system 
whose satisfaction in genera requires the cooperation of some of the agents forming that 
system”. Goals in KAOS may refer to services (functional goals) or to quality of services 
(non-functional goals). In KAOS, goals are organized in the usual AND/OR refinement-
abstraction hierarchies. Goal refinement ends when every subgoal is realizable by some 
individual agent assigned to it. That means the goal must be expressible in terms of conditions 
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that are monitorable and controllable by the agent. The requirement and expectation in KAOS 
are defined in the usual way – the former being a goal under the responsibility of an agent in 
the system-to-be and the latter being a goal under the responsibility of an agent in the 
environment. Goal definition patterns are used for lightweight specification of goals at the 
modeling layer. These are specified in temporal logic and include patterns such as achieve, 
cease, maintain, optimize, and avoid. KAOS also has supports additional types of goals [14]. 
For example, satisfaction goals are functional goals concerned with satisfying agent requests; 
information goals are also functional and are concerned with keeping such agents informed 
about object states; accuracy goals, are non-functional goals that require that the states of 
software objects accurately reflect the state of the observed/controlled objects in the 
environment (also discussed in [45]). However, a much richer taxonomy of non-functional 
goals is presented in [12]. 
 
Overall, a KAOS specification is a collection of the following core models: 
 

• goal model where goals are represented, and assigned to agents, 
• object model, which is a UML model that can be derived from formal specifications of 

goals since they refer to objects or their properties, 
• operation model, which defines various services to be provided by software agents. 

 
KAOS does not provide a method for evaluating the impact of design decisions on non-
functional requirements. However, some variation of the NFR framework and its qualitative 
analysis approach can be easily integrated into KAOS. Overall, KAOS is a well-developed 
methodology for goal-oriented requirements analysis that is supplied with solid formal 
framework. During goal refinement, goal operationalization, obstacle analysis and mitigation, 
KAOS relies heavily on formal refinement patters that are proven once and for all. Therefore, 
at every pattern application the user gets an instantiated proof of correctness of the refinement 
for free.  
 

3.4 GBRAM 
 
The emphasis of Goal-Based Requirements Analysis Method (GBRAM) [2][3] is on the 
initial identification and abstraction of goals from various sources of information. It assumes 
that no goals have been documented or elicited from stakeholders and thus can use existing 
diagrams, textual statements, interview transcripts, etc. GBRAM involves the following 
activities: goal analysis and goal refinement.  
 
Goal analysis is about the exploration of information sources for goal identification followed 
by organization and classification of goals. This activity is further divided into explore 
activities that explore the available information, identify activities that are about extracting 
goals and their responsible agents from that information, and organize activities that classify 
and organize the goals according to goal dependency relations. GBRAM distinguishes 
between achievement and maintenance goals.  
 
Goal refinement concerns the evolution of goals from the moment they are first identified to 
the moment they are translated into operational requirements for the system specification. 
This activity is in turn divided into refine activities that involve the pruning of the goal set 
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(e.g., by eliminating “synonymous goals”), elaborate activities that refer to the process of 
analyzing the goal set by considering possible goal obstacles [50] (behaviours or other goals 
that prevent or block the achievement of a given goal) and constructing scenarios 
(behavioural descriptions of a system and its environment arising from restricted situations) to 
uncover hidden goals and requirements, and operationalize activities that represent the 
translation of goals into operational requirements. A requirement specifies how a goal should 
be accomplished by a proposed system. Constraints in GBRAM provide additional 
information regarding requirements that must be met in order for a given goal to be achieved. 
Constraints are usually identified by searching for temporal connectives, such as “during”, 
“before”, etc. 
 
One activity that GBRAM requires during the goal refinement phase is the identification of 
goal precedence. This basically represents the need to identify which goals must be achieved 
before which other ones. The method suggests asking questions like “What goal(s) must 
follow this goal?” and so on. Also, another useful method for determining precedence 
relations is to search for agent dependencies. For example [2], if a supervisor depends on the 
employee to provide him with a time sheet in order to approve a weekly payment, then there 
is an agent dependency and it is clear what the goal precedence relation is here. Once goal 
precedence has been established, tables are produced with goals ordered according to it. This 
process seems very inefficient given the fact that the i* notation (which was around at the 
time when GBRAM was introduced) has an elegant way of capturing inter-actor 
dependencies, which also allows for an easy detection of the kind of goal precedence relations 
that GBRAM talks about. 
 
Similar to the other GORE approaches, a system and its environment in GBRAM are 
represented as a collection of agents. Here, agents are defined as entities or processes that 
seek to achieve goals within an organization or system based on the assumed responsibility 
for the goals. 
 
The GBRAM approach helps in goal elicitation and refinement by arming practicing 
requirements engineers with standard questions. For example, one possible question to 
determine if a goal is a maintenance goal “Is continuous achievement of this goal required?”  
 
In GBRAM, goals, agents, stakeholders, etc. are specified in the textual form in goal 
schemas. Surprisingly, the method does not provide a graphical notation for representing 
goals, goal refinements, agents, etc. While the method involves, for example, creating 
precedence relationships among goals, such relationships are much easier perceived when 
represented graphically. 
 

4. Active Areas in GORE Research 
 
In this section, we present an overview of recent research in many important areas that are 
either part of (e.g., goal elicitation) or are of interest to (e.g. requirements analysis for security 
and privacy) the Goal-Oriented Requirements Engineering. 
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4.1 Goal Elicitation 
 
Identifying goals is not an easy task. While goals could be explicitly stated by the 
stakeholders or in the various sources of information available to requirements engineers. 
However, most frequently goals are implicit and therefore the elicitation process must take 
place. A preliminary analysis of the current system/organization is an important source of 
goal identification. This analysis can result in a list of problems and deficiencies that can be 
precisely formulated. The suggestion of [30] is to negate these formulations, thus producing a 
first list of goals for the system-to-be to achieve. Goals can also be elicited from available 
documents, interview transcripts, etc. Here, the suggestion is to look for intentional keywords 
in the documents [26]. In [2] it is noted that stakeholders tend to express their requirements in 
terms of operations or actions, rather then goals. So, it makes sense to look for action words 
such as “schedule” or “reserve” when gathering requirements for a meeting scheduler system. 
 
Once some goals have been identified by the requirements engineer, the aim is usually to 
refine them into progressively simpler goals until these goals can be easily operationalized 
and implemented. This process is usually done by asking the HOW questions and refining 
goals through AND/OR refinements. Many GORE approaches stress that when determining 
how a high-level goal can be refined, one needs to consider alternative ways of refining it to 
make sure that as many options as possible are explicitly represented in goal models and 
analyzed with respect to high-level criteria (e.g., [7][23]).  
 
A dual technique to the one describe above is the process of eliciting more abstract goals from 
those already identify by asking WHY these goals exist. One of the main reasons to elicit 
more abstract goals is that once a more abstract goal is found, it may be possible to refine it 
and find its important subgoals that were originally left undetected. Similarly, it may be the 
case that an originally identified goal amounts to just one alternative refinement of its parent 
goal. Therefore, the identification and further refinement of higher-level goals leads to more 
complete goal models and thus to more complete requirements specifications. 
 
Another potential source of goals is scenarios. See Section 4.5 for details. 
 
In the context of software maintenance activities it may be useful to analyze legacy systems in 
terms of their objectives in order to see whether and how these objectives can be met better 
with the new technology, how the system can be modified to reflect new needs of its user, 
how the system can be made more flexible, etc. Here, one could start with the analysis of 
requirements specification and design documents. However, frequently no documentation is 
available or the documentation is poorly maintained and does not reflect the state of affairs in 
legacy system. To this end, an approach is proposed in [63] to produce goal models from the 
source code of legacy systems through code refactoring and intermediate state-based models. 
Of course, for that approach to work, the source code must be available.  
 
Yet another approach [40] proposes to take a highly customizable common personal software 
system (e.g. an email system) and systematically create a goal model representing a 
refinement of high-level user goals into the configuration options that exist in the software. 
For each configuration item in the “options” of “preference” menu, questions are asked to 
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determine if that configuration item is an operationalization of some functional user goal or if 
it contributes to some softgoal. Once a goal behind a configuration item is identified, the 
method assumes that each value of the item corresponds to the alternative way of achieving 
the identified goal. Then the softgoals that guide the selection of the alternatives are 
identified. Later, the identified softgoals are related to each other with contribution links and 
new more abstract softgoals are possibly identified. Once the goal model is complete, it is 
possible to talk about the configuration of the system using high-level quality criteria. The 
goal analysis algorithm of [21] can then be used to infer, given the desired level of satisfising 
of softgoals, the correct configuration of the software system. This approach can help non-
technical users configure their complex software systems easily by selecting the desired level 
of satisficing for privacy, accuracy, performance, and other qualities. It would be interesting 
to see if this approach can be useful in helping administrators configure (at least initially) 
complex enterprise systems such as DBMS’s or web servers. 
 

4.2 Goal Refinement and Analysis 
 
Goal refinement is the core activity in GORE and thus the different approaches provide a 
variety of notations, refinement patterns, as well as formal and semi-formal analysis methods 
to support it. The latter range from informal heuristics [2] to qualitative label propagation 
algorithms [45][20][21] to temporal logic-based techniques [25][33][36] to probabilistic 
methods [38]. 
 
In providing formal support for goal refinement, KAOS introduces generic refinement 
patterns that are proven correct and complete and thus are easy to use. Darimont and van 
Lamsweerde define a number of such patters for goal refinement in [13]. The temporal logic 
patters such as milestone-driven or case-driven refinement are defined for propositional 
formulas (a number of first-order refinement patterns are also proposed).  
 
Letier and van Lamsweerde [38] propose a quantitative approach (in the context of the KAOS 
framework) to reason about partial goal satisfaction. As it often happens, goals do not need to 
be satisfied in an absolute sense. A statement “this goal needs to be satisfied in at least 80% of 
the cases” is an example this phenomenon. Still, different system proposals can have positive 
or negative effect on such goals. Most analysis techniques, such as [13][37], handle absolute 
goal satisfaction only. However, the approach in [38] presents a technique for specifying 
partial degrees of goal satisfaction and for quantifying the impact of different system 
alternatives on high-level goals that may be satisfied only partially. The authors claim that 
qualitative techniques (such as the NFR framework) do not provide enough precision for 
accurate decision support. The simplest way to move from a qualitative approach to a 
quantitative one would be, for example, to replace the “+”/”–“, etc. contributions in the NFR 
framework with numbers as well as to weight the contribution links. The degree of 
satisfaction of a goal is then some weighted average of the degrees of satisfaction of its 
subgoals. However, the authors suggest that these numbers have no physical interpretation in 
the application domain. It is not clear where they come from. So, the approach tries to base 
itself on objective criteria (the criteria with some physical interpretation in the domain). Thus, 
the base of the approach is the model of the partial degree of satisfaction of a goal, which is 
modeled as one or more quality variables (domain-specific, goal-related random variables, 
e.g. “response time”) and zero or more objective functions, which are domain-specific, goal 
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related quantities to be maximized or minimized, e.g., “response time within 14 minutes” (to 
be maximized) with the target value for the system-to-be of 95% and the current value of 
80%. The propagation rules (refinement equations) are then used to define how the degree of 
satisfaction of a goal is determined from the degrees of satisfactions of its subgoals. 
Refinement equations defining how quality variables of a parent goal relate to those of its 
subgoals can be complex to write and may need to be defined in terms of probability 
distribution functions on quality variables. To make the approach simpler, [38] defines 
quantitative refinement patterns. Here, a probabilistic layer was simply added to the patterns 
of [13][37]. While an interesting addition to the KAOS toolset, the probabilistic methods of 
this approach need to be evaluated on real data to determine the level of precision that can be 
provided by such models. The calculations involved in this approach are rather complex and 
involve the use of specialized mathematical software, which may limit the applicability of the 
method to, for example, safety critical projects. 
 
In the NFR framework, goals can be refined along two dimensions, their type (e.g., security or 
integrity) and their topic (subject matter), such as “bank account”. The framework provides a 
catalogue of methods for systematic refinement of softgoals. A qualitative label propagation 
algorithm is used for analysis. 
 
The GBRAM method provides strategies and heuristics for goal refinement. It does not 
provide an algorithm for formal or semi-formal analysis of goal models or goal refinements. 
 
In i* and Tropos goals and tasks are refined through means-ends and task decompositions. 
Additionally, goals, tasks, softgoals, and resources needed for the parent goal or task can be 
delegated to other actors. A Formal Tropos approach [18] can be used for verifying i* models. 
This approach uses a KAOS-inspired formal specification language to formalize the models. 
Model checking can then be used to verify properties about these models. While being able to 
produce useful counter examples for properties that do not hold, this approach lacks the 
extended library of patterns and heuristics for guiding the elaboration of goal models that are 
the hallmark of the KAOS approach. 
 
Two approaches are presented in [20] and [21] for reasoning with goal models. Both 
approaches have the same formal setting. The first presents qualitative and numerical 
axiomatizations for goal models and introduces sound and complete label propagation 
algorithms for these axiomatizations. These algorithms work from the bottom to the top of 
goal models, in a fashion similar to the labelling algorithm in the NFR framework. In 
particular, given a goal model and labels for some of the goals, the algorithm propagates these 
labels towards the root goals. Here, the goal models have AND and OR decompositions as 
well as contribution links (a la i* or the NFR framework) labelled with “+”, “++”, etc. There 
is no distinction between functional goal and softgoals, so contribution links may be used 
with any pair of goals. Also, a new set of contribution links is introduced to capture the 
relationships where the contribution only takes place if a goal is satisfied. Goals in this 
framework have 4 possible values – satisfied, denied, partially satisfied, and partially denied. 
For more fine-grained analysis a quantitative variant of the approach is introduced. Here, the 
evidence for satisfiability/deniability of a goal is represented as a numerical value. The 
approach adopts a probabilistic model where the evidence of satisfiability/deniability of a goal 
is represented as the probability that the goal is satisfied/denied. On the other hand, in [21] the 
authors attempt to solve a different problem: given a goal model, determine if there is a label 
assignment for leaf goals that satisfies or denies all root goals. A variation of the approach 
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would find a minimum-cost label assignment that satisfies/denies root goals of the graph 
provided satisfaction/denial of every goal in the model has a certain unit cost. The approach 
works by reducing the problems to SAT and minimum-cost SAT for boolean formulas. The 
above approaches provide a less-powerful, but much simpler alternative analysis method for 
reasoning about satisfaction/partial satisfaction of goals than [38]. 
 

4.3 Obstacle Analysis 
 
First-sketch definitions of goals, requirements, and assumptions tend to be over-ideal [33]. 
They are likely to be violated from time to time due to unanticipated behaviour of agents. The 
lack of anticipation of exceptional behaviours may result in unrealistic, unachievable and/or 
incomplete requirements. In KAOS, such exceptional behaviours are captured by formal 
assertions called obstacles to goal satisfaction, which define undesirable behaviour. 
 
Obstacles were first proposed by Potts in [50]. He identified obstacles for a particular goal 
informally by asking certain questions (GBRAM [3] uses the same approach for handling 
obstacles). For example: “Can this goal be obstructed, and if so, when?” Additionally 
heuristics for helping with discovering obstacles are identified. These include looking for 
potential failures and mistakes, looking for confusions about objects (e.g., can the user invite 
a person who shouldn’t be invited?), contention for resources, etc. In GBRAM, once an 
obstacle is identified, a scenario for it must be constructed. Anton notes [2] that while 
obstacles denote the reason why a goal failed, scenarios denote concrete circumstances under 
which a goal may fail. Scenarios can, thus, be considered instantiations of goal obstacles. 
Therefore, in GBRAM, scenarios are used to analyze obstacles. They may help uncover 
hidden goals or other goal obstacles. Once the obstacles have been identified, however, 
GBRAM does not provide much guidance on how to deal with them. 
 
On the other hand, KAOS embraced obstacles and provides well-developed methods for 
detecting and mitigating them [33]. An obstacle to a goal is formally defined as an assertion 
that is consistent with the domain theory, but the negation of the goal is the logical 
consequence of the theory consisting of the assertion and the domain theory. Once identified, 
obstacles can be refined in a way similar to goals (e.g., by AND/OR decomposition). Also, it 
is important for obstacle refinement to try and identify all the alternative subobstacles to 
increase the robustness of the system. Obstacles are classified as duals of goals. For example, 
obstacles for satisfaction goals are called non-satisfaction obstacles. The goal of obstacle 
analysis is KAOS is to anticipate exceptional behaviours in order to derive more complete 
and realistic requirements. Obstacle analysis helps producing much more robust systems by 
systematically generating (a) potential ways in which the system might fail to meet its goals 
and (b) alternative ways of resolving such problems early enough during the requirements 
elaboration and negotiation phase [34].  
 
It’s interesting to note that the more specific the goal/assumption is, the more specific the 
obstructing obstacle will be [33]. A high-level goal will produce a high-level obstacle, which 
will need to be refined in order to identify the precise details of the obstruction. Since 
eliciting/refining what is not wanted is harder than what is wanted, van Lamsweerde and 
Letier recommend that obstacles be identified from leaf-level goals.  
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Obstacles can be formally identified as follows. Given a formal specification for a goal G, 
calculate the preconditions for obtaining the negation of G from the domain theory. Each 
obtained precondition is an obstacle. An iterative procedure that at every iteration produces 
potentially finer obstacles is defined in [33]. For refining obstacles KAOS provides formally 
proven refinement patterns. The AND/OR refinement of obstacles may be seen as a goal-
driven version of fault-tree analysis [39]. Once the obstacles have been refined, it is time to 
look at the ways to resolve them. In general, this process is called goal deidealization. There 
are a number of possibilities for this. First, a goal that aims at avoiding an identified obstacle 
can be introduced and refined. Second, it is often the case that obstacles cannot be avoided, so 
goal restoration will be needed from time to time, and so on. It’s important to note that if an 
obstacle is discovered early in the goal elicitation process, it may turn out to be more severe 
later [33] (for example, because it could also obstruct some goals elicited later). So, premature 
decisions with respect to the handling of obstacles may lead to the exclusion of the most 
appropriate alternatives for mitigating obstacles. In general, while it is possible to elicit and 
refine obstacles informally in KAOS, the formal approach provides a much higher level of 
assurance that all the possible exceptional behaviours are captured. 
 

4.4 Assigning Goals to Agents 
 
In KAOS, agents are assigned leaf-level goals based on their capabilities. The process is 
similar in GBRAM. KAOS allows requirements engineers to analyze alternative 
configurations of the boundary between the system-to-be and its environment through the use 
of OR responsibility links. Thus, it is possible to compare several system configurations 
where, for example, more or less functionality is automated. In the end, the responsibility for 
the achievement of a goal lies with one agent. In GBRAM, on the other hand, it is possible for 
several agents to be responsible for the same goal at different times. 
 
It is important to note that even though all of the GORE approaches view the composite 
system comprised of the software-to-be and the environment as a collection of agents, many 
of these methods (e.g., KAOS and GBRAM) deal with goals in an objective way, from the 
point of view of a requirements engineer trying to elicit the goals of the combined system, 
decompose them, and assign terminal goals to agents. While this may be acceptable for a 
large number of systems, sometimes it makes sense to deal with goals subjectively, from the 
point of view of the owning agent. This may be useful in a number of settings. Subjective 
point of view is important, for example, when dealing with complex social systems where 
agents (both human and intelligent software agents) have different and possibly competing 
interests, or when analyzing security requirements and trying to model the motivations and 
actions of hostile agents. Another problem with the above approach is that it assumes that the 
selection of alternatives in the goal model is done before the goals are assigned to agents. This 
means all the alternatives configurations possibly represented a goal model are lost and the 
agents in the composite system are not aware of any variability in the domain. Also, since all 
the choices are made at the requirements analysis time, the implemented system will only 
support the single selected alternative, which is likely to lead to fragile systems. 
 
The Tropos approach, on the other hand, advocates keeping goals and alternatives around 
throughout the development process to produce flexible software systems. Since it is based on 
the i* notation, actors in the composite systems do not have to be assigned leaf-level goals. In 
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i*, actors usually have initial goals that represent their needs in the organization. They can be 
assigned other goal through intentional dependencies. Goals of an actor are refined into 
subgoals, subtasks, etc. This refinement is done from the point of view of the actor. So, we 
can view it as subjective goal analysis. For example, if an actor represents an attacker trying 
to compromise the system, the analysis of goals and goal refinements within that actor is done 
from the point of view of the attacker. The analysis of alternative goal achievement paths can 
also be done from the point of view of the owning agent.  In addition, these alternatives can 
be kept in the design and be present at runtime for more flexibility. Further, this subjective 
analysis better reflects the reality where one agent’s leaf-level goal (or task in i*) is another 
agent’s high-level goal that requires further elaboration. 
 
On the formal analysis side, KAOS, in its usual style, provides a formal approach to refine 
goals so that they can be assigned to agents, to generate alternative responsibility assignments 
of goals to agents, and to generate agent interfaces [37]. Agent interfaces are specified in 
terms of parameters, which are monitored/controlled by agents, and can be established from 
the formal specification of a goal that is assigned to the agent. Goal specification is normally 
of the form Pre-/Trigger Condition => Post-Condition. To fulfil its responsibility for the goal the 
agent must be able to evaluate the goal antecedent and establish the goal consequent. 
Variables in the antecedent are the monitored parameters, while variables in the consequent 
are controlled ones. 
 
A goal can only be assigned to an agent that can realize it. In order to generate only realizable 
assignments, [37] proposes a taxonomy of realizability problems and a catalogue of tactics for 
resolving these problems. For example, some of the realizability problems are the lack of 
monitorability of some variable by the delegated agent, the lack of controllability of a variable 
by the agent, and the unbounded achievement goals, where goals do not constrain the 
behaviour of an agent. The tactics are refinement patterns that help avoid the above-
mentioned problems. For instance, a tactics named Introduce Tracking Object for solving the 
lack of monitorability problem calls for maintaining an internal image of the object that 
cannot be monitored by the delegated agent. While generating alternative assignments of 
goals to agents, the approach by Letier and van Lamsweerde [37] provides no support for 
evaluating alternatives and selecting the most promising ones. The NFR framework is 
suggested by the authors as the possible approach for the analysis of alternative responsibility 
assignments.  
 

4.5 Goals and Scenarios 
 
As mentioned above, stakeholders frequently have problems expressing their needs in terms 
of goals. They are often much more comfortable talking about potential interactions with the 
system-to-be to illustrate their expectations from it. Thus, collecting scenarios is a possible 
way to induce higher-level goals if stakeholders. Moreover, scenarios may lead to a deeper 
understanding of the system, which in turn makes goal identification easier. 
 
A scenario is defined in [35] as a temporal sequence of interactions among different agents in 
the restricted context of achieving some implicit purpose. Scenarios are used in requirements 
engineering (e.g., [58][50][2]) and proved to be useful in requirements elicitation, obstacle 
analysis and mitigation, etc. Scenarios have a number of strengths: they are informal, 
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narrative, and concrete descriptions of hypothetical interactions between the software and its 
environment. They are usually easily comprehensible by stakeholders. However, requirements 
are inherently partial. They give rise to the coverage problem (similar to testing) making it 
impossible to verify the absence of errors. Also, enumerating combinations of individual 
behaviours leads to combinatorial explosion [26]. It is only possible to induce a specification 
from a collection of scenarios. Being procedural, scenarios may result in over-specification. 
Also, scenarios leave required properties of the intended system implicit [35]. Nevertheless, a 
number of goal-based requirements analysis approaches embraced scenarios. Scenarios can be 
used for initial goal elicitation [35], for helping to uncover obstacles to goal satisfaction 
[2][50], and to verify system specifications: as [26] points out, scenarios can be very helpful 
in “deficiency-driven requirements elaboration”. Here, a system is specified by a set of goals 
(usually formalized in some kind of temporal logic) and a set of scenarios. Then, the aim is to 
detect inconsistencies between scenarios and goals and to modify the specifications if 
inconsistencies are found. The inconsistency detection can be done by a planner or a model 
checker. One example of this approach is Formal Tropos [18].  
 
There are a number of approaches the employ scenarios as well as goals. For Potts [50], 
scenarios are derived from the description of the system’s and the user’s goals, and the 
potential obstacles that block those goals. He proposes a scenario schema and a method for 
deriving a set of salient scenarios, scenarios that have a point and help people understand the 
exemplified system. The idea of scenario salience is thus to limit the number of generated 
scenarios. The goal of the approach is to use scenarios to understand user needs. According to 
Potts, this process must precede the writing of a specification for a system. In the proposed 
scenario schema, each episode (a major chunk of activity in a scenario) corresponds directly 
to a domain goal. The goal-scenario process of Potts is interleaving scenario derivation and 
goal refinement. Scenarios can be obtained by analyzing goals, goal allocations, obstacles, 
etc. On the other hand, scenarios may give the analyst an insight about goals and goal 
refinement. Potts suggests that salient scenarios are beneficial in that they can be used to 
compare alternative system proposals, including more or less automation, various alternative 
ways of achieving goals, etc. Also, scenarios can be employed to help in mitigating the effects 
of obstacles. While it is conceivable to assume that scenarios generated for several system 
alternatives could occasionally illustrate the benefit of one alternative over another, this 
approach for evaluation of alternatives does not seem systematic compared to, say, the NFR 
framework. 
 
Another goal-scenario approach is described by Rolland et al. [52]. The CREWS-L’Ecritoire 
creates a bi-directional coupling between goals and scenarios. The proposed process has two 
parts. When a when a goal is discovered, a scenario can be authored for it and once a scenario 
has been authored, it is analysed to yield goals. By exploiting the goal-scenario relationship in 
the reverse direction, i.e. from scenario to goals, the approach pro-actively guides the 
requirements elicitation process. The authors introduce requirement chunks, which are pairs 
of goals and scenarios. Scenarios are composed of actions, an action being an interaction of 
agents. Scenarios can be normal and exceptions. The former lead to the achievement of the 
associated goal, while the latter lead to its failure. 
 
Goals in CREWS are encoded textually. Goal descriptions in this approach are quite complex 
and are expressed as a clause with the main verb and a number of parameters including 
quality, object, source, beneficiary, etc. In this process, goal discovery and scenario authoring 
are complementary steps and goals are incrementally discovered by repeating the goal-
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discovery, scenario-authoring cycle. Goal discovery in this method is on the linguistic 
analysis of goal statements.  
 
Requirement chunks can be composed using AND/OR relationship or through refinement, 
which relates chunks of at different levels of abstraction. 
 
The approach can generate a very large number of alternative ways to achieve a goal by 
iterating through all the possible values for all the possible parameters of the goal. This large 
number of alternative goals must be pruned to remove meaningless goals. The way to do it is 
to create a scenario for it and to test whether the goal is realistic. While it may seem strange 
that potential goal refinements are generated purely linguistically, the authors claim that their 
approach works since in the context of RE, the larger the number of alternatives explored the 
better. The CREWS experience paper [53] claims that the automatic generation of potential 
alternatives fared better than ad hoc methods. 
 
In the context of the KAOS approach, van Lamsweerde and Willemet [35] proposed a formal 
approach to infer specifications of system goals and requirements inductively from interaction 
scenarios. To do this, the method takes scenarios represented as UML sequence diagrams as 
examples/counterexamples of intended system behaviour, and inductively infers a set of 
candidate goals/requirements that cover all example scenarios and exclude all counterexample 
scenarios. The idea here is to generate temporal logic formulas whose logical models 
include/exclude the temporal sequences given as positive/negative scenarios. The method is 
based on a learning algorithm. 
 
Since inductive inference is not sound, the requirements engineer, thus, must check the 
candidate assertions for adequacy. Similar to Rolland et al., van Lamsweerde and Willemet 
state that goal elaboration and scenario elaboration are intertwined processes; a concrete 
scenario description may prompt the elicitation of the specifications of the goals underlying it 
and a goal specification may prompt the elaboration of scenario descriptions to illustrate or 
validate it. The objective of goal-scenario integration in KAOS is to obtain from scenarios 
additional goal specifications that could not be obtained from the goal refinement/abstraction 
process that began with the goals initially identified from interviews or existing 
documentation. The additional goals obtained from scenarios may be brand new; they may 
cover specifications already found by the goal elaboration process (in which case the 
elicitation just reduces to some form of validation); they may also be conflicting with 
specifications found by the goal elaboration process [35].  
 

4.6 Handling Goal Conflicts in GORE 
 
Different stakeholders (clients, users, requirements engineers, developers, etc.) in general 
have different objectives, needs, concerns, perceptions, knowledge, and skills. In order to 
produce an adequate and complete requirements specification, all relevant viewpoints [16] on 
the system need to be captured and integrated, with their differences resolved appropriately. 
The importance of viewpoints has been recognized since the early days of requirements 
engineering [55]. While inconsistencies may be sources of new information, eventually, they 
need to be resolved.  
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It was noted by Robinson [51] that the roots of many inconsistencies in requirements 
engineering are conflicting goals and therefore the level of goals is where conflicts can be 
detected and resolved. He proposed to capture views of system stakeholders and due to the 
usual egocentricity of those views, Robinson called them selfish views. The combination of 
such views will most likely involve resolving conflicts among the goals of the stakeholders. 
Attributes such as importance, utility, feasibility, etc. are associated with goals. The use of 
analytic decision technique that uses utility functions is proposed.  
 
 A goal-based approach for requirements negotiation was offered by Boehm et al. [5]. It 
proposes a model where all stakeholders are identified together with their win conditions 
(goals); conflicts between their goals are then captured together with their associated risks and 
uncertainties; after that, goals are reconciled through negotiation to rich a mutually agreeable 
set of goals. The proposed process, as any negotiation process, is iterative. 
 
In [33] and [25], van Lamsweerde and Letier proposed an approach to capture different views 
during requirements analysis and to detect and resolve conflicts among them in the context of 
the KAOS framework. This method is much more formal than the approaches in [5] and [51]. 
They define views as ternary relationships linking an actor, a master concept (e.g., a goal, an 
object, an agent, an operation, etc.), and a facet of it. Views associated with the same actor 
can be grouped together to form perspectives. Views are said to be overlapping if their 
respective facets share an attribute, link, or predicate. The approach categorizes various 
possible inconsistencies among overlapping views. Among them are conflicts and 
divergences. Conflicts are situations where assertions, which formalize goals, assumptions, or 
requirements, are inconsistent in the domain theory. A weaker form of conflict, called 
divergence, occurs if there exists some boundary condition (that can be established through 
some scenario) that makes the otherwise consistent assertions inconsistent if conjoined to 
them. Variations of divergences, obstructions and competitions, are also defined. A formal 
method for detecting conflicts by either regressing negated assertions of by using the 
divergence patterns is offered in [33]. Pattern-based resolution options are also defined. While 
offering a solid formal framework for dealing with conflicts (including the patterns and 
heuristics that are present in every aspect of the KAOS framework), this approach fails to take 
into consideration the social aspect of conflicts. For example, it does not consider goal 
priority or the importance of agents in the organization to resolve conflicts. Non-functional 
requirements are not considered either. 
 

4.7 Capturing Variability in GORE 
 
Coming up with a solid (complete, correct, etc.) requirements specification for a software 
system involves the identification of the many alternative ways to achieve goals, assign goals 
to agents, draw a system-environment boundary, and so on, as well as making the choice 
among the identified alternatives. Various GORE approaches support this activity differently. 
For example, one approach, the Goals-Skills-Preferences framework of [23] aims at designing 
highly-customizable software systems by discovering as much variability in the problem 
domain as possible. Here, given high-level user goals the framework attempts to identify all 
the possible ways these goals can be achieved by the combined system. The variability is 
modeled by the OR decompositions of goals in the usual AND/OR goal graph. A ranking 
algorithm for selecting the best system configuration among this vast space of alternatives is 
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proposed. It takes into consideration user preferences, which are modeled as softgoals and are 
accompanied by the contribution links relating them to the functional goals, and user skills, 
which are hard constraints on the leaf-level goals. Each user is defined through a skills profile 
– an evaluation of the user’s skills such as vision, speech production, etc. Each leaf-level goal, 
such as “dictate a letter”, needs a certain set of skills from the user to be achieved. It is clear, 
that the “dictate a letter” goal needs the skill of speech production at a reasonable level. So, 
the for each particular user, the algorithm can prune the alternatives that are incompatible 
with the user’s skills and then select the best one from the remaining set according to the user 
preferences. The result is a specification that is tailored for a concrete user. 
 
In Tropos and other i*-based approaches, variability is captured using means-ends or OR 
decompositions. The modeling of the alternative responsibility assignments for goals, tasks, 
softgoals, and resources is also supported. For instance, one can model a number of 
alternative ways of achieving a certain goal. One is to let the actor that owns the goal achieve 
it, another is to delegate the goal to another actor through an intentional goal dependency, and 
the third may be to delegate it to a yet another actor. The same approach can be used to 
analyze the system-environment boundary. By delegating more goals to the actors who are 
part of the system-to-be we are modeling the situation where more functionality of the 
combined system is automated. On the other hand, delegating the achievement of more goals 
to the actors in the environment will shift the balance in an opposite direction. These 
alternatives can be analyzed through their contributions to the high-level quality requirements 
modeled as softgoals. The standard softgoal analysis method based on the NFR framework is 
used. 
 
In KAOS, variability can be represented using OR goal decompositions and alternative 
responsibility assignments of goals to agents. Additionally, identified obstacles can be 
resolved differently by alternative decompositions and application of alternative obstacle 
resolution patterns. Similarly, various heuristics can be applied to conflict resolution in 
KAOS. All of these activities can result in alternative system proposals. While KAOS does 
not provide any integrated tools for qualitative analysis of different alternatives with respect 
to quality requirements, the use of the NFR framework is often suggested. A quantitative 
approach that can be to reasoning about system alternatives is proposed in [38]. 
 
The CREWS approach [52] is able to automatically generate a very large number of potential 
goal refinements by modifying the parameters of the textual representation for goals (see 
Section 4.5). These are validated by scenarios. The approach does not suggest a way to 
systematically analyze alternative system configurations. 
 

4.8 From Requirements to Architectures 
 
Architectural design has long been recognized as having a major impact on non-functional 
requirements of systems [49]. However, systematic approaches to build software architectures 
that satisfy systems’ functional and non-functional requirements are rare. In the context of 
GORE, there are a number of proposals to methodically build software architectures based on 
functional and non-functional requirements. 
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One such approach is presented in [11]. It proposes to use the NFR framework to reason 
about the effects of architectural decisions on the qualities of the system under development 
and to use the i* Strategic Dependency models to represent the social/organizational context 
for the system. The NFR framework allows for relating architectural decisions to softgoals 
through appropriately labelled contribution links. Chung et al. suggest making the information 
about the relative criticality of softgoals explicit in the model in order to help with the tradeoff 
analysis among the softgoals. Also, claims should be used in the NFR model to justify 
softgoal modeling decisions. By using the softgoal labelling algorithm, the architect could 
easily see how architectural decisions affect the quality requirements of the system. In 
addition, the approach suggests using SD diagrams to model stakeholders, their quality 
requirements, and their dependencies. In these models, the stakeholders and the architect(s) 
are explicitly modeled with the architect being delegated the softgoals such as extensibility, 
good time performance, etc. This way, SD models represent the source of each non-functional 
requirement for the system. This approach mainly concentrates on the evaluation of 
architectural decisions. There is no support for systematic derivation of software architecture 
based on the desired qualities of the system.  
 
An  i*-based proposal for handling the evolution of system architectures based on changing 
business goals is described in [22]. It proposes to systematically relate business goals 
(captured as softgoals) to architectural design decisions and architectural structures during the 
development and evolution of software systems. 
 
Another approach [41] proposes to use the i*-based Goal-oriented Requirements Language 
(GRL) together with Use Case Maps [8], which provide a way to visualize scenarios using 
scenario paths and superimpose them on models representing the structure of abstract 
components. In this approach, GRL is used to support goal and agent-oriented modeling and 
reasoning and to guide the architectural design process.  UCM notation is used to express the 
architectural design at each stage of the development. GRL provides support for reasoning 
about scenarios by establishing correspondences between intentional elements in GRL and 
functional components and responsibilities (tasks) in UCM. The iterative process uses GRL to 
reason about how architectural decisions affect high-level non-functional requirements (using 
the usual label propagation algorithm), while UCM is used to generate and analyze how 
responsibilities can be bound to architectural components and the effects of these bindings. 
As new architectural alternatives are proposed during the UCM analysis, they are analyzed in 
GRL with respect to their contributions to the quality requirements. It is interesting to note 
that in the this approach, GRL models have intentional elements that do not model goals/tasks 
of the actors that are part of the combined system, but represent possible architectural 
decisions (e.g., put component A into device B) and their impact on non-functional 
requirements. 
 
In the context of the KAOS approach, van Lamsweerde [28] proposes an approach for 
software architecture design from KAOS goal models. The starting point for the method is the 
software specification that can be systematically produced from software requirements in 
KAOS [36]. Then, components are created for agents that are assigned to achieving goals of 
the system-to-be. Component interfaces are derived based on the sets of variables the agents 
control and monitor. A dataflow connector is created for each combination of two 
components where one controls a variable, which the other agent monitors. This produces an 
initial architectural view for the system. This model is then restructured according to the 
desired architectural style. Another pattern-based restructuring follows. This time the aim is to 
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improve the quality of service goals. The interesting aspect of this approach is that it 
generates the initial architectural model directly from the goal model, using the precedence 
relationships among goals to create data connectors. This means that the initial software 
architecture can be automatically generated from a goal model. Thus, it will be quite 
interesting to investigate whether instead of refining the architecture to meet quality 
requirements one could apply refinement patterns to goal models themselves. 
 

4.9 Analyzing Security Requirements 
 
As more and more business processes in the world are being automated and more and more 
sensitive data needs to be accessible by these processes the need for solid approaches for 
elicitation and analysis of security and privacy requirements. A number of extensions to the 
GORE approaches for handling security requirements have emerged recently. 
 
An addition to the KAOS framework for handling security requirements is proposed in [29]. 
It proposes the use of patterns to identify security goals of the system-to-be. By negating 
these goals, one gets anti-goals – the goals of potential attacker. For each anti-goal, potential 
owners (attackers) are identified and their higher-level anti-goals are elicited. The anti-models 
are then further refined and operationalized. A set of tactics to develop countermeasures is 
proposed (e.g., avoid vulnerability, goal restoration) to be applied to the system model. The 
formal language is extended with epistemic constructs for reasoning about attackers’ 
knowledge. Thus, the approach allows for explicit identification of attacker agents and 
explicit modeling of their goals.  
 
An i*-based approach for handling security and privacy requirements is introduced by Liu, 
Yu, and Mylopoulos in [42]. It aims at providing extensive support for modeling of the social 
context of software systems. The method starts with a plain i* model for the combined 
system. Then each actor in the model is considered in turn as a potential attacker. For every 
attacker the analyst then identifies malicious intents. Since the attacker is an insider, it has 
access to all resources, relationships, etc. of its legitimate counterpart. Then, the dependency 
links are used to determine whether/how other actors in the system can become vulnerable by 
depending on an actor who now is considered being an attacker. To help prevent the 
vulnerabilities the authors suggest applying pattern-based solutions (e.g., from [12]) to 
address the identified problems. The selection among alternatives is done as usual with 
respect to the identified softgoals using the well-known label propagation algorithm. The 
approach only supports reasoning about insider attackers only, which can be seen as a 
drawback. In [61], an opposite approach was adopted, where an existence of a trusted 
perimeter was assumed for each actor and only threats from the outside of it were analyzed. 
 
A policy-based extension to GBRAM for handling security and privacy requirements is 
proposed in [4]. This approach suggests heuristics that aim at helping practitioners with the 
identification and formulation of policies that can be operationalized into requirements. 
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4.10 Requirements Monitoring 
 
A KAOS-based approach for monitoring and resolving requirements violations at runtime is 
suggested in [17]. It proposes to identify breakable assertions in the specification and to select 
the ones that require a monitor assigned to them for runtime monitoring. Monitoring 
parameters are then identified for each breakable assertion and appropriate thresholds need to 
be defined for these parameters. A reconciliation tactics need to be identified for each 
breakable assertion. The first option is to introduce a restoration procedure for an assertion 
violation. The other option is to choose an alternative course of actions to achieve the same 
parent goal. Of course, to be able to change the behaviour dynamically, multiple alternative 
system configurations must be available at runtime. A useful modification of this approach 
would be to make it more aware of the system’s non-functional requirements. For example, 
when shifting to an alternative design to reconcile the runtime behaviour and the 
requirements, if a number of alternatives are available, they should be selected based on their 
contribution to the system’s quality requirements.  
 

5. Open Problems 
 
In this section we would like to briefly discuss a number of problems in the area of Goal-
Oriented Requirements Engineering that require are still open and are of interest to us. 
 

1. An important area of research for us is the representation and analysis of alternative 
system proposals/configurations using goal-based techniques. Whether the goal is to 
create a highly customizable system [23], an adaptive system, or to analyze the 
alternatives thoroughly at requirements time and select a single configuration for 
implementation, we need means to capture and analyze variability in the problem 
domain. In [23], goal models were shown to be useful for capturing such variability 
and a Goals-Skills-Preferences (GSP) framework was sketched for the analysis of 
alternatives in the domain of personal software. However, it is clear that fine-grain 
representation of user skills is all but irrelevant in the domain of enterprise software: 
while a large variety of people with vastly varying skill sets are using personal 
software at home and would like to improve their user experience by customizing the 
software based on their skills and preferences, in an enterprise the goals are different. 
End users matter less than the efficient business processes. Therefore, analyzing 
alternative configurations for an enterprise system, we need a different analysis 
framework. The framework will still rely on goals. It will probably rely on 
preferences, which now represent not the personal preferences of the user, but high-
level business goals. On the other hand, the Skills (the hard constraints on alternatives 
in the GSP framework) will need to be replaced by domain-specific metrics. The same 
will happen in other domains. Therefore, the development of some kind a meta-
framework for the analysis of alternatives based on goals, softgoals, hard constraints, 
and possibly other criteria, which can be instantiated to GSP-like analysis frameworks 
in any domain would quite beneficial. The problem of the selection of the best 
alternative remains largely open.  
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2. Another interesting problem is the manipulation of systems through their goal models. 
For example, merging of several goal models could correspond to the Enterprise 
Application Integration; addition, removal or replacement or goals may represent 
requirements evolution, etc. Some of the existing techniques (e.g., approaches for 
handling goal conflicts) may help in this.  

 
3. While GORE and agent-oriented software engineering are a nice match given the fact 

that both have goals as a central concept, there is still much to do in the area of 
developing RE approaches for truly open and dynamic multiagent systems populated 
by smart deliberating agents capable of constructing forming teams and constructing 
plans dynamically. How can we estimate whether the behaviour of such system will 
meet its requirements? How can we analyze alternatives for goal achievement if 
agents are able to do planning at runtime? It seems that in this situation in order to 
guarantee that the requirements are met, we need to use the same tools for 
requirements enforcement as the government uses in dealing with the population: 
laws, policies, law enforcement, etc. This will hopefully provide the freedom for 
agents while guaranteeing some high-level properties of the system. 

 

6. Bibliography 
 
[1] A. Anton, W. McCracken, C. Potts. Goal Decomposition and Scenario Analysis in 

Business Process Reengineering. Proc. 6th Conference On Advanced Information 
Systems Engineering (CAiSE’94), Utrecht, Holland, June 1994. 

[2] A. Anton. Goal-Based Requirements Analysis. Proc. Second IEEE International 
Conference on Requirements Engineering (ICRE’96), Colorado Springs, USA, April 
1996. 

[3] A. Anton. Goal Identification and Refinement in the Specification of Software-Based 
Information Systems. Ph.D. Thesis, Georgia Institute of Technology, Atlanta, GA, 
USA, June 1997. 

[4] A. Anton, J. Earp, A. Reese. Analyzing Website Privacy Requirements Using a Privacy 
Goal Taxonomy. Proc. Joint International Requirements Engineering Conference 
(RE'02). Essen, Germany, September 2002. 

[5] B.W. Boehm, P. Bose, E. Horowitz, M. Lee. Software Requirements Negotiation and 
Renegotiation Aids: A Theory-W Based Spiral Approach. Proc. 17th International 
Conference on Software Engineering (ICSE’95), Seattle, USA, April 1995. 

[6] R. Brachman, H. Levesque (Eds.). Readings in Knowledge Representation. Morgan 
Kaufmann, 1985. 

[7] P. Bresciani, P. Giorgini, F. Giunchiglia, J. Mylopoulos, A. Perini. TROPOS: An 
Agent-Oriented Software Development Methodology. Journal of Autonomous Agents 
and Multi-Agent Systems, 8(3), May 2004. 

[8] R. Buhr, R. Casselman. Use Case Maps for Object-Oriented Systems. Prentice Hall, 
1996. 

[9] J. Castro, M. Kolp, J. Mylopoulos. Towards Requirements-Driven Information Systems 
Engineering: The Tropos Project. Information Systems, 27(6), September 2002. 



 27

[10] P. Checkland, S. Holwell. Information, Systems and Information Systems – Making 
Sense of the Field. Wiley. 1998. 

[11] L. Chung, D. Gross, E. Yu. Architectural Design to Meet Stakeholder Requirements. In 
P. Donohue (Ed.), Software Architecture. Kluwer, 1999. 

[12] L. Chung, B. Nixon, E. Yu, J. Mylopoulos. Non-Functional Requirements in Software 
Engineering. Kluwer. 2000. 

[13] R. Darimont, A. van Lamsweerde. Formal Refinement Patterns for Goal-Driven 
Requirements Elaboration. Proc. 4th Symposium on the Foundations of Software 
Engineering (FSE-4), San Francisco, USA, October 1996. 

[14] A. Dardenne, A. van Lamsweerde and S. Fickas. Goal-Directed Requirements 
Acquisition. Science of Computer Programming, 20(1-2), April 1993. 

[15] T. DeMarco. Structured Analysis and System Specification. Yourdon Press. 1978. 

[16] S. M. Easterbrook. Domain Modelling with Hierarchies of Alternative Viewpoints. 
Proc. 1st IEEE International Symposium on Requirements Engineering (RE'93), San 
Diego, January 1993. 

[17] M. Feather, S. Fickas, A. van Lamsweerde, C. Ponsard. Reconciling System 
Requirements and Runtime Behaviour. Proc. 9th International Workshop on Software 
Specification and Design (IWSSD’98), Ise-Shima, Japan, April 1998. 

[18] A. Fuxman, M. Pistore, J. Mylopoulos, P. Traverso. Model Checking Early 
Requirements Specifications in Tropos. Proc. 5th International Symposium on 
Requirements Engineering (RE’01), Toronto, Canada, August 2001. 

[19] A. Fuxman, L. Liu, J. Mylopoulos, M. Pistore, M. Roveri, P. Traverso. Specifying and 
analyzing early requirements in Tropos. Requirements Engineering 9(2), May 2004. 

[20] P. Giorgini, J. Mylopoulos, E. Nicchiarelli, and R. Sebastiani. Reasoning with goal 
models. In LNCS 2503, 2002.  

[21] P. Giorgini, J. Mylopoulos, R. Sebastiani. Simple and Minimum-Cost Satisfiability for 
Goal Models. Proc. 16th Conference On Advanced Information Systems Engineering 
(CAiSE’04), Riga, Latvia, June 2004. 

[22] D. Gross, E. Yu. Evolving System Architecture to Meet Changing Business Goals: an 
Agent and Goal-Oriented Approach. Proc. Workshop From Software Requirements to 
Architectures (STRAW’2001), Toronto, Canada, May 2001. 

[23] B. Hui, S. Liaskos, J. Mylopoulos. Requirements Analysis for Customizable Software: 
A Goals-Skills-Preferences Framework. Proc. International Conference on 
Requirements Engineering (RE’03), Monterey, USA, September 2003. 

[24]  M. Jackson. The Meaning of Requirements. Annals of Software Engineering vol.3, 
1997. 

[25] A. van Lamsweerde. Divergent Views in Goal-Driven Requirements Engineering. Proc. 
Workshop on Viewpoints in Software Development, San Francisco, USA, October 
1996. 

[26] A. van Lamsweerde. Requirements Engineering in the Year 00: A Research 
Perspective. 22nd International Conference on Software Engineering (ICSE’2000), 
Limerick, Ireland, June 2000. 



 28

[27] A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Guided Tour. Proc. 
5th IEEE International Symposium on Requirements Engineering (RE'01), Toronto, 
Canada, August 2001. 

[28] A. van Lamsweerde. From System Goals to Software Architecture. In M. Bernardo & P. 
Inverardi (Eds), Formal Methods for Software Architectures, LNCS 2804, Springer-
Verlag, 2003. 

[29] A. van Lamsweerde. Elaborating Security Requirements by Construction of Intentional 
Anti-Models. Proc. 26th International Conference on Software Engineering (ICSE’04), 
Edinburgh, UK, May 2004. 

[30] A. van Lamsweerde. Goal-Oriented Requirements Engineering: A Roundtrip from 
Research to Practice. Proc. International Conference on Requirements Engineering 
(RE’04), Kyoto, Japan, September 2004. 

[31] A. van Lamsweerde, R. Darimont, P. Massonet. Goal-Directed Elaboration of 
Requirements for a Meeting Scheduler: Problems and Lessons Learnt. Proc. Second 
International Conference on Requirements Engineering (RE’95), York, UK, March 
1995. 

[32] A. van Lamsweerde, R. Darimont, E. Letier. Managing Conflicts in Goal-Oriented 
Requirements Engineering. IEEE Transactions on Software Engineering, 24(11), 
November 1998. 

[33] A. van Lamsweerde, E. Letier. Handling Obstacles in Goal-Oriented Software 
Engineering. IEEE Transactions on Software Engineering, 26(10), October 2000. 

[34] A. van Lamsweerde, E. Letier. From Object Orientation to Goal Orientation: A 
Paradigm Shift for Requirements Engineering. Proc. Radical Innovations of Software 
and Systems Engineering, LNCS, 2003. 

[35] A. van Lamsweerde, L. Willemet. Inferring Declarative Requirements Specifications 
from Operational Scenarios. IEEE Transactions on Software Engineering, 24(12), 
December 1998. 

[36] E. Letier, A. van Lamsweerde. Deriving Operational Software Specifications from 
System Goals. Proc. 10th Symposium on the Foundations of Software Engineering 
(FSE-10), Charleston, USA, November 2002. 

[37] E. Letier, A. van Lamsweerde. Agent-Based Tactics for Goal-Oriented Requirements 
Elaboration. Proc. 24th International Conference on Software Engineering (ICSE’02), 
Orlando, USA, May 2002. 

[38] E. Letier, A. van Lamsweerde. Reasoning about Partial Goal Satisfaction for 
Requirements and Design Engineering. Proc. 12th ACM International Symposium on 
the Foundations of Software Engineering (FSE’04), Newport Beach, USA, November 
2004. 

[39] N. Leveson. Safeware – System Safety and Computers. Addison-Wesley. 1995. 

[40] S. Liaskos, A. Lapouchnian, Y. Wang, Y. Yu, S.Easterbrook. Configuring Common 
Personal Software: a Requirements-Driven Approach. Proc. 13th International 
Requirements Engineering Conference (RE’05), Paris, France, August 2005. 



 29

[41] L. Liu, E. Yu. From Requirements to Architectural Design – Using Goals and 
Scenarios. Proc. Workshop From Software Requirements to Architectures 
(STRAW’2001), Toronto, Canada, May 2001. 

[42] L. Liu, E. Yu, J. Mylopoulos. Security and Privacy Requirements Analysis within a 
Social Setting. Proc. International Conference on Requirements Engineering (RE’03), 
Monterey, USA, September 2003. 

[43] G. Kotonya, I. Sommerville. Requirements Engineering: Processes and Techniques. 
Wiley, 1998. 

[44] J. Mylopoulos, A. Borgida, M. Jarke, M. Koubarakis. Telos: Representing Knowledge 
About Information Systems. ACM Transactions on Information Systems, 8(4), October 
1990. 

[45] J. Mylopoulos, L. Chung, B. Nixon. Representing and Using Non-Functional 
Requirements: A Process-Oriented Approach. IEEE Transactions on Software 
Engineering, 18(6), June 1992. 

[46] N. Nilsson. Problem Solving Methods in Artificial Intelligence. McGraw Hill, 1971. 

[47] B. Nuseibeh, S. Easterbrook. Requirements Engineering: A Roadmap. Proc. Conference 
on the Future of Software Engineering, Limerick, Ireland, June 2000. 

[48] D. Parnas, J. Madey. Functional Documents for Computer Systems. Science of 
Computer Programming, Vol. 25, 1995. 

[49] D. Perry, A. Wolf. Foundations for the Study of Software Architecture. ACM Software 
Engineering Notes, 17(4), October 1992. 

[50] C. Potts. Using Schematic Scenarios to Understand User Needs. Proc. Designing 
Interactive Systems (DIS’95), Ann Arbor, USA, August 1995. 

[51] W. Robinson. Integrating Multiple Specifications Using Domain Goals. Proc. 5th 
International Workshop on Software Specification and Design (IWSSD-5), Pittsburgh, 
USA, May 1989. 

[52] C. Rolland, C. Souveyet, C. Ben Acour. Guiding Goal Modeling Using Scenarios. IEEE 
Transactions on Software Engineering, 24(12), December 1998. 

[53] C. Rolland, G. Grosz, R. Kla. Experience with Goal-Scenario Coupling in 
Requirements Engineering. Proc. 4th International Symposium on Requirements 
Engineering (RE’99), Limerick, Ireland, June 1999. 

[54] D. Ross. Structured Analysis: A Language for Communicating Ideas. IEEE 
Transactions on Software Engineering, 3(1), January 1977. 

[55] D. Ross, K. Schoman. Structured Analysis for Requirements Definition. IEEE 
Transactions on Software Engineering, 3(1), January 1977. 

[56] J. Rumbaugh, M. Blaha, W. Premerlani, F. Eddy, W. Lorensen. Object-Oriented 
Modeling and Design. Prentice Hall. 1991. 

[57] H. Simon. The Sciences of the Artificial, 2nd Ed. MIT Press, 1981. 

[58] A. Sutcliffe, N. Maiden. Supporting Scenario-Based Requirements Engineering. IEEE 
Transactions on Software Engineering, 28(12), December 1998. 



 30

[59] E. Yu. Why Agent-Oriented Requirements Engineering. Proc. 3rd International 
Workshop on Requirements Engineering: Foundations for Software Quality, Barcelona, 
Spain, June 1997. 

[60] E. Yu. Towards Modeling and Reasoning Support for Early-Phase Requirements 
Engineering. Proc. 3rd International Symposium on Requirements Engineering (RE’97), 
Washington, USA, January 1997. 

[61] E. Yu, L. Liu. Modeling Trust for System Design Using the i* Strategic Actors 
Framework. In R. Falcone, M. Singh, Y.H. Tan (Eds.), Trust in Cyber-Societies – 
Integrating the Human and Artificial Perspectives. LNAI-2246, 2001. 

[62] E. Yu, J. Mylopoulos. Why Goal-Oriented Requirements Engineering. Proc. 4th 
International Workshop on Requirements Engineering: Foundations of Software 
Quality, Pisa, Italy, June 1998. 

[63] Y. Yu, Y.Wang, J. Mylopoulos, S. Liaskos, A. Lapouchnian, J.C. Leite. Refactoring 
Source Code Into Goal Models. Proc. 13th International Requirements Engineering 
Conference (RE’05), Paris, France, August 2005. 

[64] K. Yue. What Does It Mean to Say that a Specification is Complete? Proc. Fourth 
International Workshop on Software Specification and Design (IWSSD-4), Monterey, 
USA, 1987.  

[65] P. Zave. Classification of Research Efforts in Requirements Engineering. ACM 
Computing Surveys, 29(4), 1997. 


