

ESCOLA POLITÉCNICA DA UNIVERSIDADE DE SÃO PAULO

Departamento de Engenharia de Sistemas Eletrônicos PSI - EPUSP

PSI 3031 – 2017 LABORATÓRIO DE CIRCUITOS ELÉTRICOS

Experiência 04 Sinais Senoidais, Fasores e 2ª Lei de Kirchhoff

Profa. Elisabete Galeazzo Prof. Leopoldo Yoshioka

Assistentes:

Carlos Ramos, Deissy e Henrique Peres

Objetivos da Experiência 04

- Consolidar as relações existentes entre tensão e corrente em capacitores;
- Aplicar o conceito de fasor para representação de um sinal senoidal;
- Consolidar o conceito de impedância; e o de corrente e tensão como fasores;
- Verificar a validade da 2ª lei de Kirchhoff para sinais no domínio do tempo e na forma fasorial.

Identidade de Euler e Números Complexos

Identidade de Euler

$$e^{j\theta} = \cos \theta + j \sin \theta$$

$$\cos \theta = \text{Re } \{e^{j\theta}\}\$$

sen
$$\theta$$
 = Im {e $j\theta$ }

Considerando que:

r = magnitude de **z**

 θ = a fase de **z**

Representações de z:

polar : $z = r \angle \theta$

retangular: z = x + j y

exponencial: $z = r e^{j\theta}$

Fasores e sinais senoidais

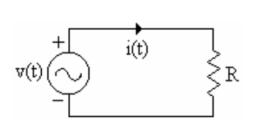
- Fasores: Números Complexos
- Representam: Amplitude e Fase da senoide

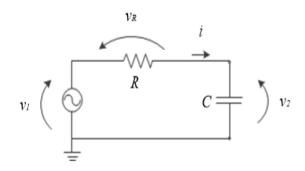
$$\widehat{A} = A e^{j\theta} = A \angle \theta$$

 \rightarrow Conceito de fasores se aplica somente para sinais com ω constante!

Circuitos Lineares Estáveis

$v(t) = v_1(t) = excitação senoidal com frequência angular "<math>\omega$ "





Os sinais nos elementos do circuito resistivo:

- Amplitudes nos elementos R
 são alteradas (segundo a lei de Ohm);
- . Fases são iguais;
- . **Frequências** sobre os elementos serão as **mesmas** do sinal de excitação!

Os sinais nos elementos do circuito capacitivo:

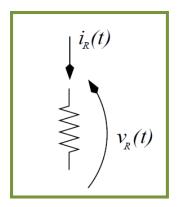
- . **Amplitudes** nos elementos R e C **são** alteradas;
- Fases são distintas,
- . Frequências sobre os elementos serão as mesmas do sinal de excitação!

Sinal de excitação senoidal

$$v_R(t) = vC(t) = A \cos(\omega t + \theta)$$

Resistor:

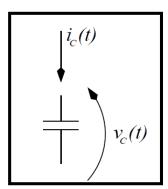
relação entre $v_R(t)$ e $i_R(t)$:



$$v_R(t) = R.i_R(t)$$

$$i_R(t) = \frac{A}{R}\cos(\omega t + \theta)$$

Capacitor: relação entre v_c(t) e i_c(t):



$$i_C(t) = C \frac{dv_c(t)}{dt}$$

$$i_{\mathcal{C}}(t) = \mathcal{C} A \omega \cos(\omega t + \theta + 90^{\circ})$$

*identidade: - sen(ω t) = cos(ω t+90°)

Relações Fasoriais nos Bipolos

Resistor

$$v_R(t) = A\cos(\omega t + \theta)$$

$$v_R(t) = Re\{A e^{j\theta} e^{j\omega t}\}\$$

$$\hat{V}$$
 = A e $j\theta$

$$i_R(t) = \frac{A}{R}\cos(\omega t + \theta)$$

$$\widehat{I}$$
 = (A/R) e $j\theta$ = (A/R) $\angle \theta$

$$\widehat{I}$$
= (1/R) $\widehat{V} \Rightarrow \widehat{V} = R \widehat{I}$

Capacitor

$$v_c(t) = A\cos(\omega t + \theta)$$

$$v_C(t) = Re\{A e^{j\theta} e^{j\omega t}\}$$

$$\widehat{V}$$
= A e $j\theta$

$$i_c(t) = CA\omega\cos(\omega t + \theta + 90^\circ)$$

$$\hat{I} = \omega \, \mathbf{C} \, \mathbf{A} \, \mathbf{e}^{\, \mathbf{j} \, \mathbf{\theta}} \, \mathbf{e}^{\, \mathbf{j} \, \mathbf{90}^{\, o}}$$

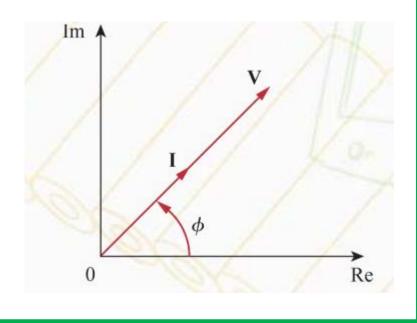
$$\widehat{I} = (j \omega C) \widehat{V} \Rightarrow \widehat{V} = \frac{1}{j\omega C} \widehat{I}$$

Diagrama fasorial

Resistor

$$\widehat{V} = R \widehat{I}$$

 $\Rightarrow \hat{V} \in \hat{I}$ estão em fase

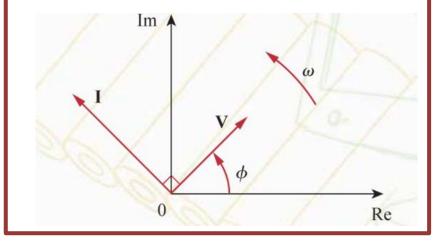


Capacitor

$$\widehat{V} = \frac{1}{j\omega C} \widehat{I}$$
 ou $\widehat{V} = -j\frac{1}{\omega C} \widehat{I}$

e como – j =
$$e^{-j90^{\circ}}$$
:

 \Rightarrow Fasor \widehat{V} está atrasado de 90º de \widehat{I}



Representação Fasorial para o Indutor

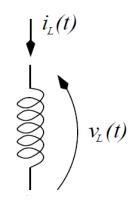
Indutor

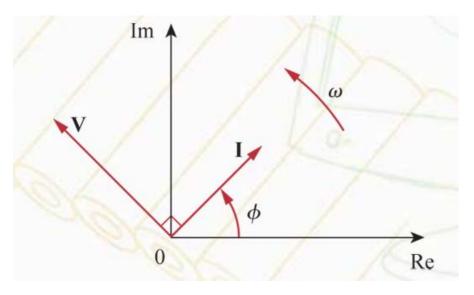
$$v_L(t) = L \frac{di(t)}{dt}$$

$$\hat{V} = j \omega L \hat{I}$$

e como
$$j = e^{j 90^0}$$
:

⇒ Fasor \hat{V} está adiantado de 90° de \hat{I}





Generalização da Lei de Ohm para sinais senoidais

Definimos:
$$\frac{\widehat{V}}{\widehat{I}} = \mathbf{Z}(\mathbf{j}\omega) = Impedância$$

Resisto

$$\frac{\hat{V}_R}{\hat{I}_R} = R$$

Capacitor

$$\frac{\hat{V}_C}{\hat{I}_C} = \frac{1}{j\omega C}$$

Indutor

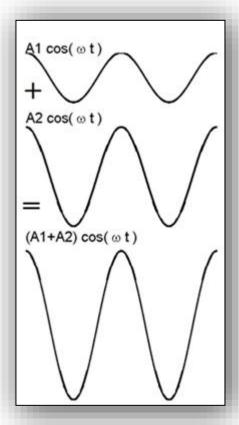
$$\frac{\hat{V}_L}{\hat{I}_L} = j\omega L$$

A impedância é uma grandeza complexa, mas não é um fasor!

2ª Lei de Kirchhoff para sinais senoidais

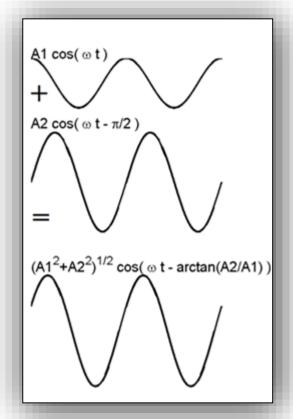
Sinais com mesma fase

• $v(t) = vR_1(t) + vR_2(t)$



Sinais defasados

$$v(t) = v_1(t) + v_2(t)$$



2ª Lei de Kirchhoff fasorial

$$V_1 e^{j\theta_1} + V_2 e^{j\theta_2} + \dots + V_N e^{j\theta_N} = 0$$

Para sinais em fase:

Como:

$$\theta_1 = \theta_2 = \theta_3 = \theta_4 \dots \theta_N$$

temos:

$$V_1 + V_2 + V_3 +V_N = 0$$

ou.....

$$V_{RMS1} + V_{RMS2} + ... V_{RMSN} = 0$$

Para sinais defasados:

Como:

$$\theta_1 \neq \theta_2 \neq \theta_3 \neq \theta_4 \dots \theta_N$$

$$\hat{V}_1 + \hat{V}_2 + \dots \hat{V}_N = 0$$

(soma de números complexos!)

Exemplo de soma fasorial na forma retangular:

$$\hat{\mathbf{V}}_1 = X_1 + jY_1 \quad \underline{\mathbf{e}}$$

$$\hat{\mathbf{V}}_2 = X_2 + jY_2$$

$$\begin{split} \hat{\mathbf{V}}_S &= \hat{\mathbf{V}}_1 + \hat{\mathbf{V}}_2 \,. \\ \hat{\mathbf{V}}_S &= \left(X_1 + X_2 \right) + j \left(Y_1 + Y_2 \right) \end{split}$$