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Abstract 
Tensegrity structures are prestressed pin-jointed structures composed of struts and cables. To check 
stability of tensegrity structures, it’s preferable to check super-stability since it is the strongest stability 
criterion. In this paper, we discuss the super-stability of prismatic tensegrity structures which have 
dihedral symmetry. In previous studies, these structures were proved to be super-stable if horizontal 
cables connect adjacent nodes. However, these proofs are incomplete. Therefore, we complement the 
proof for super-stability of symmetric prismatic tensegrity structures in this study. 
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1. Introduction 
A tensegrity is a prestressed pin-jointed structure composed of struts and cables, possessing purely 
compression and tension, respectively. To check stability of a general structure, we can examine 
whether or not its strain energy has a local minimum. But in the case of stability investigation of 
prestressed pin-jointed structures, it's preferable that we check super-stability since it is the strongest 
stability criterion. Super-stable structures are always stable without considering material property and 
level of prestresses. It can be partially confirmed by checking positive semi-definiteness of force 
density matrix [1]. 

In this paper, we discuss the super-stability of prismatic tensegrity structures, in particular, having 
dihedral symmetry as shown in Figure 1. Connelly and Terrell [2] verified that these structures are 
super-stable if every horizontal cable connects adjacent nodes as in Figure 2. Moreover, Zhang and 
Ohsaki [3] confirmed this conclusion by using symmetry-adapted force density matrix, that is, 
singularity of a certain block of the block-diagonalized force density matrix. However, the singularity 
of other blocks has not been considered in the previous studies. In this study, we aimed at conducting 
a general qualification for super-stability of prismatic tensegrity structures by the block-
diagonalization method based on group representation theory. 

2. Dihedral Symmetry and Connectivity 
Dihedral group is a group to express symmetry of prisms composed of two regular polygons of the 
same form [4]. The prismatic tensegrity structures considered in this study have dihedral symmetry. 
We denote dihedral group by ND , where N means the number of vertices of the regular polygon. The 

dihedral group ND  has three types of symmetry operations as shown in Figure 3. 

Symmetry operations of the dihedral groupND : 

1. identity. 
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2. N-fold rotations which rotate an angle 2 / ( 1,2,..., 1)i N i Nπ = − around z axis in Euclidean space. 

3. N two-fold rotations which rotate an angle π  around the axes which pass the origin and 
perpendicular to the z axis. 

                        
(a) perspective                                                      (b) plan 

Figure 1: Prismatic tensegrity structure1,1
3D  

                               

(a) 1,1
5D                                                      (b) 1,3

8D  

Figure 2: Super-stable structures 

 

(1) identity                     (2) 3-fold rotations                 (3) 2-fold rotations 

Figure 3: Symmetry operation of dihedral group3D  

Furthermore, we denote connectivity of a prismatic tensegrity structure by ,h v
ND , where h and v 

indicate connectivity of horizontal cables and vertical cables, respectively. If node (0 )i i N≤ <  is a 

reference node, connectivity of prismatic tensegrity structures ,h v
ND  is defined as follows [3]. 
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� Struts 

A strut connects node (0 )i i N≤ <  on the upper plane to node N + i on the lower plane. 

� Horizontal cables 

On the upper plane, a horizontal cable connects node (0 )i i N≤ <  to node h i+ , or node 
h i N+ −  when h i N+ ≥ . On the lower plane, a horizontal cable connects node ( 2 )i N i N≤ <  to 
node h i+ or node h i N+ −  when 2h i N+ ≥ . Because of symmetry, node (0 )i i N≤ <  is also 

connected to node N h i− + . Thus, we restrict 21 Nh≤ ≤ . 

� Vertical cables 

A vertical cable connects node (0 )i i N≤ <  on the upper plane to node N v i+ + , or v i+  when 
v i N+ ≥ , on the lower plane. 

For example, if 2h v= = , connectivity of horizontal cables and vertical cables is shown in Figure 4. 

 

Figure 4: Connectivity of the structure 2,2
5D  

3. General Super-Stability Conditions 
In general, a tensegrity structure is free-standing and pin-jointed without fixed nodes. In other words, a 
tensegrity structure is in a state of self-stress, that is, a set of member forces which are in statical 
equilibrium with zero external load. We consider a tensegrity structure which consists of m members 
and n free nodes. The connectivity of members is described by connectivity matrix m n×∈C ℝ . In each 
row of the connectivity matrix, only two nonzero entries, 1+  and 1− , exist. These two entries refer to 
the two nodes connected by the member as well as direction of the member. 

If a member numbered as ( 1,2,..., )k k m=  connects node i to node j, the kth row ( , ) ( 1,2,..., )k r r n=C  is 

defined as follows[3] 

 ( , )

sign( ) if

sign( ) if

0 otherwise
k r

j r r i

i r r j

− =


= − =






C  (1) 

where 

 
1 if

sign( )=
1 if

j i
j i

j i

+ >


−
− <


 (2) 



Proceedings of the IASS Annual Symposium 2016 
 Spatial Structures in the 21st Century  

 

 
 

4

A force density kq  is defined as a ratio of the force ks  of member k to its length kl : 

 k
k

k

s
q

l
=  (3) 

Let m∈q ℝ  be the force density vector and m m×∈Q ℝ  be its diagonal version. Then, the force density 

matrix n n×∈E ℝ  is defined as follows: 

 Τ=E C QC  (4) 

Self-equilibrium equations are defined by using the force density matrix and nodal coordinate vectors 
x, y and ( )n∈z ℝ : 

 = = =Ex Ey Ez 0  (5) 

According to equation (5), nodal coordinates lies in the null space of E. So, in the three-dimensional 
space, if a structure is non-degenerate, rank deficiency of the force density matrix is at least 4. Here, if 
the following three conditions are satisfied at the same time, it is guaranteed that a three-dimensional 
tensegrity structure is super-stable [3]. 

(a). The force density matrix has 4 zero eigenvalues. 

(b). The force density matrix is positive semi-definite. 

(c). The geometry matrix is full-rank. 

The condition (a) is the non-degeneracy condition. Furthermore, condition (c) is satisfied if a prismatic 
tensegrity structure is indivisible.  

4. Block Diagonalization by Group Representation Theory 
Force densities of each type of members are equality because prismatic tensegrity structures are of 
dihedral symmetry. Thus, we denote force densities of struts, horizontal cables and vertical cables by 

sq , hq  and vq , respectively. Stability is investigated by checking positive semi-definiteness of the 
force density matrix, but that takes a high cost, especially, in the case of a complicated structure. For 
the purpose of presenting analytical stability condition, the block-diagonalized force density matrix 

2 2N N×∈Eɶ ℝ  of a prismatic tensegrity structure ,h v
ND  given as follows: 

 
( )

( )

1

2

1

2

1

1

A

1 1
A

1 1

B

1 1

B

1 1

E
2 2

2 2
E

2 2

E

2 2

E

2 2

p

p

N N

×

×

×

×

× ×

×

×

×

 

 

 

 

 Ο
 

 

 

 =
 

 

 

 

Ο
 

 

 

 

 

 

E

E

E

E

E E

E

E

E

ɶ

ɶ

ɶ

ɶ

ɶ

ɶ

ɶ

⋱

ɶ

ɶ

 (6) 

where A1, A2, B1, B2 and E ( 1,2,..., )k k p=  are irreducible representations of dihedral group. p means 
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( 1) / 2 is odd

( 2) / 2 is even

N N
p

N N

−


=
 −


 (7) 

B1 and B2 exist if N is even. Eigenvalues of the original matrix are derived by calculating these simple 
matrices. 

The block µEɶ  corresponding to the representation µ  of force density matrix Eɶ  is formulated by 

using representation matrix i
µR  [3]. 

 0 h h h N h s N v N vq q q q qµ µ µ µ µ µ
− += − − − −E R R R R Rɶ  (8) 

where q equals to the sum of force densities of members connected to a node: 

 2 h s vq q q q= + +  (9) 

According to equation (8) the block 1AEɶ  corresponding to the irreducible representation A1 is usually 
zero, because all representation matrix 1A

iR  is one. Hence, 

 1A 0=Eɶ  (10) 

The block 2AEɶ  corresponding to the irreducible representation A2 is 

 2A 2( )s vq q= +Eɶ  (11) 

If N is even, the blocks 1BEɶ  and 2BEɶ  corresponding to the irreducible representations B1 and B2 are 

 1B [2 2( 1) ] [1 ( 1) ]h v
h vq q= − − + − −Eɶ  (12) 

 2B 1[2 2( 1) ] 2 [1 ( 1) ]h v
h s vq q q+= − − + + − −Eɶ  (13) 

The 2-dimentional blocks E ( 1,2,..., )k k p=Eɶ  are calculated as follows: 

 E 2(1 ) (1 )

2(1 ) 2 (1 )
k hk h vk v vk v

vk v hk h s vk v

C q C q S q

S q C q q C q

− + − −
 

=
 − − + + +
 

Eɶ  (14) 

To satisfy condition (a) for a three-dimensional tensegrity structure, Eɶ  of equation (6) should have 4 
zero eigenvalues. 1AEɶ  is always zero, and therefore, its eigenvalue is zero by equation (10), so, 2AEɶ  
and any one of the two-dimensional block E ( 1,2,..., )k k p=Eɶ  should be singular. Therefore, the 

determinants of 2AEɶ  and EkEɶ are zero: 

 2 EA 0
/ 2 2 / (2 2 )

k
v s

h v vk hk

q q

t q q C C

= −


= = ⇔
 = = − −




E Eɶ ɶ  (15) 

where cos(2 / )vkC vk Nπ= , cos(2 / )hkC hk Nπ= . Using equation (15), E 2 2( 1,2,..., )i N Ni p ×= ∈Eɶ ℝ  can 
be written as 

 E 2 (1 ) 11
2 (1 ) (1 )

i hi vi vi

vi hi viv

t C C S

S t C Cq

− + − −
 

=
 − − − −
 

Eɶ  (16) 
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5. Super-Stability Conditions 
Zhang and Ohsaki [3] confirmed that prismatic tensegrity structures are super-stable if horizontal 
cables connect adjacent nodes; i.e. 1h =  when 1k = , by using the block-diagonalized force density 
matrix. Because in equation (6), there are two zero eigenvalues in 1AEɶ  and 2AEɶ , and two zero 
eigenvalues in total for the positive semi-definiteness of 1EEɶ . Furthermore, E ( 2,3,..., )i i p=Eɶ  are 
positive definiteness if 1h = . So, super-stability is guaranteed if 1h k= = . Examples of super-stable 
structures are shown in Figure 2. 

However, it has not been considered that the singularity of the block E ( 2,3,..., )i i p=Eɶ  in the previous 

studies. In equation (16), a structure is super-stable in the case of a specific block EkEɶ  is positive 
semi-definiteness and the others are positive definiteness. In this study, we target at EkEɶ  which is 

1k ≠  in such a way as to conduct a general qualification for super-stability of prismatic tensegrity 
structures. 

From equation (16), the two eigenvalues of EiEɶ  are calculated as follows: 

 
E

1 2 (1 ) 2(1 )
i

hi vi
v

t C C
q

λ = − + −  (17) 

 
E
2 2 (1 ) 2(1 )

i

hi vi
v

t C C
q

λ = − − −  (18) 

In equation (17), E
1 0iλ >  always holds because 1 0hiC− ≥ , 1 0viC− ≥ , and 0t >  always hold since 

cables carry tension. So, we are to find the condition that let E
2 0iλ ≥  always hold. 

We consider the case of hk jN α= ± 2( 1,2,...; 1,2,..., )Nj α= =  and 'hi j N β= ± ( ' 1,2,...;j =

21,2,..., )Nβ = . Then, the values of hkC  and hiC  are exchanged as follows: 

 
2 ( ) 2 2

cos cos 2 cosjN a

jN
C j

N N N

π α απ αππ±
±

     = = ± =
     

     

 (19) 

 '

2 ( ' ) 2 2
cos cos 2 ' cosj N

j N
C j

N N Nβ
π β βπ βππ±

±
     = = ± =
     

     

 (20) 

Here, 0α =  implies each member does not carry any force from equation (15). Moreover, in equaton 
(18) , E

2 0iλ <  if 0β =  and 1v = . Therefore, we don’t consider the case of 0α =  or 0β = . 

The ratio of i and k is 

 
'i hi j N vi

k hk jN vk

β
α

±= = =
±

 (21) 

Therefore, : ( ) : ( ' )vk vi jN j Nγ α γ β= ± ± 2( 1,2,..., )Nγ =  always holds. Thus, vkC  and viC  are 

calculated as follows: 

 
2 2

cos ,vk viC C
N N

αγπ βγπ
   = =
   

   

 (22) 
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♦ Theorem 1.  If 1α = , i.e. 1hk jN= ± , the prismatic tensegrity structure ,h v
ND  is super-stable. 

Proof.  When E
2 0iλ ≥  always holds, equation (18) can be arranged as follows: 

 
1 1

1 1
hi vi

hk vk

C C

C C

− −≥
− −

 (23) 

Besides, if 1hk jN= ± , the following equation is true because equation (24) has been verified in the 
paper of Connelly and Terrell [2]. 

 
( )
( )

( )
( )

2 2

22

1 cos 1 cos

1 cos 1 cos

N N

N N

βπ βγπ

γππ

− −
≥

− −
 (24) 

Using equations (19), (20) and (22), equation (24) can be rearranged as follows: 

 
1 1

1 1
hi vi

hk vk

C C

C C

− −≥
− −

 (25) 

Because hkC  has the largest value when 1hk jN= ± , 1
1 1hi

hk

C

C

−
− ≥  always holds for 1hk jN= ± . 

Therefore, equation (23) is true when 1hk jN= ±  such that E
2 0iλ ≥  is true. 

If N is even, the blocks 1BEɶ  and 2BEɶ  exist. Moreover, h is always odd because hk is odd. Therefore, 
1BEɶ  and 2BEɶ  are positive, since 

                
1B [2 2( 1) ] 1 ( 1) 4 1 ( 1)

0

h v vt t= − − + − − = + − −
>

Eɶ
 (26) 

 

2B

1

1

1 1

2 2
2 1

1

2 2 2 2
2 2 2

1 1

0

vC

C

C

C C

 −
≥ −

 

 −
 

−
≥ − = −

− −
>

Eɶ

 (27) 

In this case, rank deficiency is 4 since 1AEɶ , 2AEɶ  and two copies of EkEɶ  are all singular. Futhermore, 
the eigenvalues in other blocks are positive definite with E

2 0iλ > .  Therefore, the force density matrix 
is positive semi-definiteness and satisfies the non-degeneracy condition. Hence, the prismatic 
tensegrity structure ,h v

ND  is super-stable if 1hk jN= ± .                                                                          ■ 

♦ Theorem 2.  If 1α ≠ , i.e. ( 2,3,..., 2)hk jN Nα α= ± = , the prismatic tensegrity structure ,h v
ND  is 

not super-stable. 

Proof.  We consider the following two cases. 

� Case 1: 2hk jN= ±  as well as N and h are even. 

The block 2BEɶ  that exist when N is even: 
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2B 1

1

[2 2( 1) ] 1 ( 1)

1 ( 1)

0

h v

v

t +

+

= − − − − −
= − − −
≤

Eɶ

 (28) 

Therefore, the sufficient conditions for super-stability are not satisfied, because equation (6) has 
negative eigenvalue or its rank deficiency is more than 4. Hence, the prismatic tensegrity 
structure ,h v

ND  is not super-stable in Case 1. 

� Case 2: other cases for 1α ≠  except Case 1. 

When E
2 0iλ <  holds, equation (18) can be arranged as follows: 

 
1 1

1 1
hi vi

hk vk

C C

C C

− −<
− −

 (29) 

In equation (29), we convert cosine to sine and substitude ' 1hi j N= ± : 

 
( )
( )

( )
( )

2
sinsin

sin sin

NN

N N

γππ

αγπαπ

 

<
 

 

 

 (30) 

sin( ) sin( ) 1N N
π απ <  is true because sin( ) sin( )N N

π απ<  when 22,3,...,Nα = . To ensure that equation 

(30) is always true, we need to guarantee the following condition: 

 
( )
( )

( )
( )

( )
( )

2
sinsin sin

sin sin sin

NN N

N N N

γππ π

αγπαπ απ

 

≤ <
 

 

 

 (31) 

We have the following two cases for αγ . 

▲ 4
Nπαγ ≥  

When 20 πθ≤ ≤ , a range of sine is 2 sinπ θ θ θ≤ ≤ . From the fact that 22,3,...,Nα =  and 

21,2,...,Nγ = : 

 
( )
( ) 2

sin

sin
N N

N N

π π

απ απ
π

<
⋅

  and  
( )
( )

2 sin

1 sin

NN

N

γπγπ
π

αγπ

⋅
<  (32) 

As a result, when 2
2N

γ π
α≥  i.e. 4

Nπαγ ≥ , equation (31) always holds. 

▲ 4
Nπαγ <  

By using the formula ( )2

2 2

1

sin 1
x

x

θ
π

θ θ
∞

=

= −∏ : 

 
( )
( )

( )

( ) ( )

2 2

2 2

2 2 2 2

1

1

1 1
|

1
sin 1

sin
1 1

N N x
N x

N
N N x N x

x x
x

π
π

απ
απ α α

α

α

∞

=
∞ ∞

= =
/

−
= =

− −

∏

∏ ∏
 (33) 
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( )
( )

( )
( ) ( )

2

2 2

2 2 2 2

2 2 2 2

1

1 1
|

1sin 1

sin 1 1

N N x
N x

N
N N x N x

x x
x

γπ γ
γπ

αγπ
αγπ α γ α γ

α

α

∞

=
∞ ∞

= =
/

−
= =

− −

∏

∏ ∏
 (34) 

where x is an arbitary positive integer. | xα /  means x is not divisible by α . 

Therefore, the following equation is true if Nαγ < : 

 ( ) ( )2 2 2

2 22 2

1 1
0

11 N xN x

α γ α
≥ ≥

−−
 (35) 

From equation (35), equation (31) is always holds when 4
N Nπαγ < < . 

Thus, E
2 0iλ <  holds if ' 1hi j N= ± . Hence, equation (6) is not positive semi-definiteness. 

Consequently, the prismatic tensegrity structure ,h v
ND  is not super-stable if hk jN α= ± 2( 2,3,..., )Nα = . 

Because a certain eigenvalue holds E
2( 0)iλ <  or 2BEɶ  is non-positive.                                                    ■ 

Note that if the value h with 1k =  is equal to α with hk jN α= ± , these structures have the same 

eigenvalues by equation (17) and (18). In other words, the position of a block EkEɶ in equation (6) is 
exchanged with another block. Therefore, their nodal coordinates and their connectivity are the same 
because nodal coordinates lie in the null-space of Eɶ by equation (5). For example about connectivity 
of horizontal cables, the example (a): a structure 2,3

7D  with 1k =  and the example (b): a structure 2,3
7D  

with 3k = , i.e. 1α =  are illustrated in Figure 5. For the example (a), because 2h = , horizontal cables 
connect a node to the second node such as node 1 is connected to node 3. For the example (b), the 
value of hk is 2 3 6 7 1hk = × = = − , that is, 1α = . Then, because nodal coordinates are exchanged, 
horizontal cables apparently connect adjacent nodes without connectivity that connect node 1 to node 
3 don’t changed. 

Thus, if 1hk jN= ± , the horizontal cables of the prismatic structure connect adjacent nodes. 

            

(a) 2,3
7D , k = 1                                            (b) 2,3

7D , k = 3 

Figure 5: Connectivity of k =1 or k =3 of 2,3
7D  
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In summary of the above conclusions: 

� If 1hk jN= ± , the prismatic tensegrity structure ,h v
ND  is super-stable. Then, they have exactly the 

same shapes as 1h k= = . For instance, the structures in Figure 6 have the same shape as in the 
case of 1h k= = . 

� If 1hk jN≠ ± , then, the prismatic tensegrity structure ,h v
ND  is not super-stable. Because a certain 

eigenvalue holds E
2( 0)iλ <  except for if 2hk jN= ±  as well as N and h are even. However, the 

eigenvalue of 2BEɶ  is non-positive. 

 

                 

                                                        (a) 2,3
7D , k = 3                                      (b) 5,3

12D , k = 5 

Figure 6: (a) and (b) are super-stable structures: (a) and (b) is same shape of  1,2
7D , k = 1 and 1,3

12D , k = 1  

6. Conclusion 
We verified that super-stable symmetric prismatic tensegrity structures exist if and only if 1hk jN= ± , 
and in that case, they have exactly the same shapes as those proved by Connelly and Terrell; i.e., their 
horizontal cables connect adjacent nodes. Therefore, we complement the proof for super-stability of 
symmetric prismatic tensegrity structures. 
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