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Abstract

Tensegrity structures are prestressed pin-jointedttsires composed of struts and cables. To check
stability of tensegrity structures, it's preferabdecheck super-stability since it is the strongability
criterion. In this paper, we discuss the super#iyalnf prismatic tensegrity structures which have
dihedral symmetry. In previous studies, these &iras were proved to be super-stable if horizontal
cables connect adjacent nodes. However, thesespavefincomplete. Therefore, we complement the
proof for super-stability of symmetric prismatiosegrity structures in this study.
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1. Introduction

A tensegrity is a prestressed pin-jointed structomposed of struts and cables, possessing purely
compression and tension, respectively. To chechiléyaof a general structure, we can examine
whether or not its strain energy has a local mimmuut in the case of stability investigation of
prestressed pin-jointed structures, it's preferdime we check super-stability since it is the rsfyest
stability criterion. Super-stable structures akgagis stable without considering material properig a
level of prestresses. It can be partially confirmmd checking positive semi-definiteness of force
density matrix [1].

In this paper, we discuss the super-stability aérpatic tensegrity structures, in particular, hgvin
dihedral symmetry as shown in Figure 1. Connellg &errell [2] verified that these structures are
super-stable if every horizontal cable connecta@ijt nodes as in Figure 2. Moreover, Zhang and
Ohsaki [3] confirmed this conclusion by using synmypadapted force density matrix, that is,
singularity of a certain block of the block-diagbmad force density matrix. However, the singubarit
of other blocks has not been considered in theipue\studies. In this study, we aimed at conducting
a general qualification for super-stability of pnigtic tensegrity structures by the block-
diagonalization method based on group representtiory.

2. Dihedral Symmetry and Connectivity

Dihedral group is a group to express symmetry afnps composed of two regular polygons of the
same form [4]. The prismatic tensegrity structuressidered in this study have dihedral symmetry.

We denote dihedral group Hy, , whereN means the number of vertices of the regular palyghe
dihedral groupD,, has three types of symmetry operations as showigire 3.

Symmetry operations of the dihedral grayp:
1. identity.
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2. N-fold rotations which rotate an angBe7z/N (i =1,2,...N — Taroundz axis in Euclidean space.

3. N two-fold rotations which rotate an angli& around the axes which pass the origin and
perpendicular to the axis.

(b) Dg?

Figure 2: Super-stable structures
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Figure 3: Symmetry operation of dihedral gr@up

Furthermore, we denote connectivity of a prismatiosegrity structure by}, where h andv

indicate connectivity of horizontal cables and wait cables, respectivelyf nodei(0<i <N) is a
reference node, connectivity of prismatic tensggsitucturesD?" is defined as follows [3].
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® Struts

A strut connects nodg0<i <N ) on the upper plane to noble+ i on the lower plane.

® Horizontal cables

On the upper plane, a horizontal cable connects @i <N) to nodeh+i, or node
h+i—N whenh+i= N . On the lower plane, a horizontal cable conneotlen(N <i <2N) to
node h+ior nodeh+i—N whenh+i>2N. Because of symmetry, nodf<i <N) is also

connected to nod®& — h+i. Thus, we restricl< hs%.

® \Vertical cables

A vertical cable connects nod@<i <N) on the upper plane to nodé¢+v+i, orv+i when
v+i=N, on the lower plane.

For example, ith=v=2, connectivity of horizontal cables and verticables is shown in Figure 4.

Figure 4:Connectivity of the structur®2*?

3. General Super-Stability Conditions

In general, a tensegrity structure is free-standimg) pin-jointed without fixed nodel other words, a
tensegrity structure is in a state of self-strélsat is, a set of member forces which are in sthtic
equilibrium with zero external loadVe consider a tensegrity structure which consists members
andn free nodesThe connectivity of members is describeddmyinectivity matrixCOR™". In each
row of the connectivity matrix, only two nonzerotees, +1 and —1, exist. These two entries refer to
the two nodes connected by the member as wellrastidin of the member.

If a member numbered d€k =1,2,...,m) connects nodeto nodej, thekth row C, ,,(r =1,2,...n ) is
defined as follows[3]

signf—-r) ifr =i
Cur =18ignf-r) ifr =] D)
0 otherwise

where

if j<i

sign( -i ):{i > @
3
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A force densityq, is defined as a ratio of the forsge of membeik to its lengthl, :
q=* ®)
k

Let qOR™ be the force density vector a@IR™™ be its diagonal version. Then, the force density
matrix EOOR™" is defined as follows:

E=C'QC 4)
Self-equilibrium equations are defined by usingfitree density matrix and nodal coordinate vectors
x,yandz(OR"):
Ex=Ey=Ez=0 (5)

According to equation (5), nodal coordinates lieghie null space dE. So, in the three-dimensional
space, if a structure in-degenerataank deficiency of the force density matrix idesst 4. Here, if
the following three conditions are satisfied at siaene time, it is guaranteed that a three-dimeakion
tensegrity structure is super-stable [3].

(a). The force density matrix has 4 zero eigenvalues.
(b). The force density matrix is positive semi-definite.
(c). The geometry matrix is full-rank.

The condition (a) is the non-degeneracy conditiarrthermore, condition (c) is satisfied if a prigima
tensegrity structure is indivisible.

4. Block Diagonalization by Group Representation Theory

Force densities of each type of members are eguaditause prismatic tensegrity structures are of
dihedral symmetryThus, we denote force densities of struts, horelocdbles and vertical cables by

g, 9, andq,, respectively.Stability is investigated by checking positive seatafiniteness of the

force density matrix, but that takes a high cospeeially, in the case of a complicated structéia.
the purpose of presenting analytical stability dbod, the block-diagonalized force density matrix

EOR?™N of a prismatic tensegrity structul’ given as follows:

) ©

= E
2Nx2N >

X2
where A, Az, By, B andE, (k=1,2,...,p  are irreducible representations of dihedral grgupeans
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:{(N -1)/2 Nisodd @

(N-2)/2 Nisever

B: and B exist if N is even.Eigenvalues of the original matrix are derived bjcalating these simple
matrices.

The block E# corresponding to the representatipnof force density matriX is formulated by
using representation matriR” [3].

E* =0Rg - q,R} — qRA.,— aR/,— aR%, 8)
whereg equals to the sum of force densities of membenaected to a node:
q=2q,+q+q, 9)

According to equation (8) the blodk* corresponding to the irreducible representatigrsAusually
zero, because all representation maRi% is one. Hence,

EM =0 (10)
The blockE*2 corresponding to the irreducible representatigisA
E* =2(q,+q,) (11)
If N is even, the block&®™ and E® corresponding to the irreducible representationarigl B are
E® =[2-2(-1) o, +[1- (-1)']a, (12)
E™ =[2-2(-1)"]a, + 2q, + [1- (-1)"']q, (13)

The 2-dimentional block&® (k =1,2,...,p ) are calculated as follows:

EE = [2(1_ Ci )0y + 1= C)a, - Sk q qj (14)

-S«q, 21- G g+ 2q+ 1+ G,
To satisfy condition (a) for a three-dimensionaistegrity structureE of equation (6) should have 4

zero eigenvaluesE™ is always zero, and therefore, its eigenvaluesi® by equation (10), s&*:
and any one of the two-dimensional bloEk:(k =1,2,...,p) should be singularTherefore, the

determinants oE”: and E® are zero:

|E

-Je

4 =0
=0= 15
{t=qh/q:\/2—2cvk/(2— 2G,) (19
where C,, =cos(2/krr /N), C,, =cos(2hkrr /N). Using equation (15)E" (i =1,2,...p YIR*™N can
be written as

1eo. (Zt(l_ C,)+1-C, -5, )] (16)

d, -S, 2t1-G)- - G
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5. Super-Stability Conditions
Zhang and Ohsaki [3] confirmed that prismatic tgnig structures are super-stable if horizontal
cables connect adjacent nodes; hel whenk =1, by using the block-diagonalized force density

matrix. Because in equation (6), there are two zero eigeesain E* and E*: , and two zero
eigenvalues in total for the positive semi-definées ofE™ . Furthermore,E% (i=2,3,...p ) are

positive definiteness ih=1. So, super-stability is guaranteedhi= k=1. Examples of super-stable
structures are shown in Figure 2.

However, it has not been considered that the simigylof the blockE® (i =2,3,...,p ) in the previous

studies. In equation (16), a structure is supdskstin the case of a specific blo&* is positive
semi-definiteness and the others are positive itiefiess.In this study, we target @& which is
k#1in such a way as to conduct a general qualificaf@r super-stability of prismatic tensegrity
structures.

From equation (16), the two eigenvaluessit are calculated as follows:

A 2t(1-C,, )++/20-C, ) (17)

q,
% =2t(1-C, )-/2(1-C, ) (18)

In equation (17)A% >0 always holds because-C, =0, 1-C, =0, andt >0 always hold since
cables carry tensiorso, we are to find the condition that I&t >0 always hold.

We consider the case dfk= jN+a (j=12,...0=12,..5 and hi=|'N£g (j'=12,..;

£=12,..5 ). Then, the values of,, andC,; are exchanged as follows:

Cinea = co{wj = co{ 3+ @j = cc{s@j (19)
N N N

Here, a =0 implies each member does not carry any force fegumation (15). Moreover, in equaton
(18), Ay <0 if =0 andv=1. Therefore, we don't consider the casencf 0 or 5=0.

The ratio ofi andk is
P_hi _iNzf _vi 1)

Therefore, vk:vi= y(Nza):y(j'NxB) (y=12,..;5) always holds. ThusC, and C, are
calculated as follows:

C, = co{za—y”j , C, = (Zﬂ—””] (22)
N N
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¢ Theorem 1.If a=1,i.e. hk= jN*1, the prismatic tensegrity structul@?" is super-stable.

Proof. When A >0 always holds, equation (18) can be arranged &sifsi

1-G, > 1-G, (23)
1-C,, 1-C,

Besides, ifhk = jN 1, the following equation is true because equati) has been verified in the
paper of Connelly and Terrell [2].

1- cos(%’) ¥ co(s”Ty”)

2 24
1-cog %) ~ 1-cog%/) 29

Using equations (19), (20) and (22), equation (24) be rearranged as follows:
1-G, > 1-G, (25)

1-C,, 1-C,

BecauseC,, has the largest value whemk= jN£1, %21 always holds forhk= jN+1.

Therefore, equation (23) is true whik = jN =1 such thatA}’ >0 is true.

If N is even, the block&® andE®: exist. Moreoverh is always odd becaus is odd. Therefore,
E® andE® are positive, since

E™ =[2-2(-1"}t+1-(-1)' =4+ 1- 1)

26
. (26)
B> 2_2CV_
E22>22 1
1-C,
2-2C
LoN2" %, 22, @27)
1_Cl 1_Cl
>0

In this case, rank deficiency is 4 singé& , E*> and two copies oE5 are all singular. Futhermore,
the eigenvalues in other blocks are positive definita AS >0. Therefore, the force density matrix
is positive semi-definiteness and satisfies the non-deagnecondition. Hence, the prismatic

tensegrity structur®)” is super-stable ifk= jN 1. [

¢ Theorem 2.If a#1, i.e. hk= [Nta(a=2,3,...,N/ 2), the prismatic tensegrity structu@’ is
not super-stable.
Proof. We consider the following two cases.

® Case 1:hk= jN+2 as well adN andh are even.

The blockE®: that exist whei is even:
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E® =[2-2(-1)'}-1- (- )"
=-1- (-1 (28)
<0

Therefore, the sufficient conditions for super-gtgbare not satisfied, because equation (6) has
negative eigenvalue or its rank deficiency is mdnan 4. Hence, the prismatic tensegrity

structureD}:" is not super-stable in Case 1.
Case 2: other cases farz1 except Case 1.

When A5 <0 holds, equation (18) can be arranged as follows:

1-Cy < 1-G; (29)
1-C, 1-C,
In equation (29), we convert cosine to sine andtulole hi = j'N +1:
2 .
in(z sin( X
[seia)) ) @)
sin(z) ) ~fsin(7)
sin(Z)/sin@r )< 1is true becaussin()<sin€f )whena =2,3,...% . To ensure that equation
(30) is always true, we need to guarantee theviatig condition:

sin(£) ' _| sin(z)| _[sin(¥)]
(Si”(‘ﬁ’)] ~|sin(s7)|[sin(%7) (31)

We have the following two cases fawy .

A agyx
When0<68<Z, a range of sine i§f<sind<@. From the fact than'=2,3,...,% and
y=12,..5%:
|S.in(ﬁ)|< N and %gg<|sm(%)| (32)
‘sm(%ﬂ 2[3n 1 ‘sm(%)‘
As aresult, wherX > Z i.e. ay =22, equation (31) always holds.
A ay<iZ
By using the formulasing = Hlil (1— Xf;):
oy B
sin(x) _ i) S (33)

(0]
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(%) () of >
sin| %) « oy oy
o) el
alx
where x is an arbitary positive integes | x meansx is not divisible bya .
Therefore, the following equation is truedf/ < N :
L ! 5o (35)

2 2
(1-5%) (G-
From equation (35), equation (31) is always holtdemay <M <N .
Thus, A5 <0 holds if hi = j'N +1. Hence, equation (6) is not positive semi-defimgs.

Consequently, the prismatic tensegrity structDfg is not super-stable tik= N+ a (@ =2,3,...8 ).
Because a certain eigenvalue ho{d$§ <0) or E® is non-positive. [

Note that if the valudn with k=1 is equal toa with hk= jNta, these structures have the same
eigenvalues by equation (17) and (18). In otherdspthe position of a block™ in equation (6) is
exchanged with another block. Therefore, their hadardinates and their connectivity are the same
because nodal coordinates lie in the null-spack by equation (5). For example about connectivity
of horizontal cables, the example (a): a strucfé with k =1 and the example (b): a structupé*

with k=3, i.e. @ =1 are illustrated in Figure 5. For the example &causeh =2, horizontal cables
connect a node to the second node such as nodechngcted to node 3. For the example (b), the
value ofhk is hk=2x3= 6= 7- 1, that is,a =1. Then, because nodal coordinates are exchanged,
horizontal cables apparently connect adjacent nad®ut connectivity that connect node 1 to node
3 don't changed.

Thus, if hk= jN£1, the horizontal cables of the prismatic structornect adjacent nodes.

24 ’ [4}\‘ — o’
¥ 7
3¢ [l [3] ®6
T ter]
4® e 5
(2) D2, k=1 (b) D2°, k=3

Figure 5:Connectivity of k =1 or k =3 0D?°
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In summary of the above conclusions:

® |f hk= jNx1, the prismatic tensegrity structul;" is super-stable. Then, they have exactly the
same shapes ds= k=1. For instance, the structures in Figure 6 havesdme shape as in the
case ofh=k=1.

® If hk# jNt1, then, the prismatic tensegrity structi&” is not super-stable. Because a certain
eigenvalue hold$A; <0) except for ifhk= jN+2 as well asN andh are even. However, the
eigenvalue ofE®: is non-positive.

(8)D2° k=3 (BS, k=5

Figure 6:(a) and (b) are super-stable structures: (a) gnd game shape ob}?, k=1 andD;;, k=1

6. Conclusion
We verified that super-stable symmetric prismaditsegrity structures exist if and onlynk= jN+1,

and in that case, they have exactly the same slpi®se proved by Connelly and Terrell; i.e.irthe
horizontal cables connect adjacent noddserefore, we complement the proof for super-sitabdlf
symmetric prismatic tensegrity structures.
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