LGN5831 - SPECIAL TOPICS IN GENETICS AND PLANT BREEDING

DEVELOPMENT OF SPECTRAL INDEX FOR DETECTION OF COFFEE LEAF MINER IN COFFEE

Research proposal

Humberto Fanelli Carvalho Júlia Silva Morosini

Piracicaba, 27th november, 2017

Humberto Fanelli Carvalho

Ph.D. candidate at IAC - Brazil

Júlia Silva Morosini

Ph.D. candidate at ESALQ/USP - Brazil

Introduction

- Coffe economic chain
 - 154 million bags exports world wide 0
 - 160 US/lb average future price NY 0
- Coffee gross revenue estimates 2017 R\$19.56 bi 0
- 0

Brazil – coffee leading exporter (estimates 44.83 million bags – 2017)

CONAB, 2017 ICO, 2017

Introduction

Coffee leaf miner

- Leucoptera coffeella Guérin-Méneville lepdopteran 0
 - 50% production reduction

neonicotinoids

anthranilic diamide

organophosphates

Introduction

Chemical control

- Environmental risk
- Risk to the operator \bigcirc
- Inefficiency of application in rough terrains 0
- Imbalance in the cycle pest population \bigcirc

Introduction

• Others: resistance cultivars (*Coffea racemosa*)

• Mean objective in breeding programs: pests and desease

Coffee evaluation cycle

Seed germination

Arabica crosses

- Best genotypes, —
- Ratings after 2 years, _
- 5 years of evaluation,
 - Agronomic traits,

Coffee experimental field

\approx 1 month

Seedlings

- Green house evaluation,
- Early evaluation, —
- Evaluation time, _

 \approx 5 months

Image analysis

- Evaluations note scale (Guerreiro-Filho, 1999): 0
 - Resistance
 - Severity of attack (notes for %) 0

- Note scale 0
 - **Operational facilities** 0
 - Subjectivity \bigcirc
 - Genotype categorization 0
 - **Rate bias** 0

Hyperspectral cameras facilitate the detection of both spectral and spatial information of an object:

Each spatially located pixel of an image contains the full wavelength information

spatial dimension y spectral dimension 2 spatial dimension x

Leaf pigment content

- Leaf structure •
- Internal scattering processes

Composition of leaf chemicals

water ullet

Changes in reflectance: impairments in the leaf structure and chemical composition of the tissue that is highly specific.

 These highly complex and unique disease patterns enable an identification of diseases based on the spectral properties of plants.

- Construction of *spectral signatures*
- Disease-specific symptoms may be detectable •

Analysis of sensor data

- have been developed to specify different plant parameters
- Benefits and disadvantages
- can be useful to simplify disease detection by spectral sensors

Using specific wavelengths of spectral signatures, spectral algorithms

A combination of different wavelengths spectral disease indices (SDI)

201

Motivation

- vegetation monitoring;
- 0 present

Development of spectral index for detection of coffee leaf miner in coffee

The identification of a disease, its discrimination from other diseases and abiotic stressors, using sensing techniques is still a challenge in

Interpretation of spectral reflectance data without knowledge on spectral characteristics of leaves and typical symptoms is impossible at

Experimental setup

from coffee leaves infested with LM

• Use a data set of spectral signatures from healthy coffee leaves and

Experimental setup

Controlled conditions 0

Isolated stressor 0

- Lightening and background pattern 0
- Two experiments 0

Measurement of leaf reflectance

Measurement of leaf reflectance

Construction of SDI

Construction of SDI

- differences
 - 0 samples of both classes which are near to each other.

Healthy – index (HI

Cercospora leaf spot

Sugar beet rust – ir

Powdery mildew –

RELIEF-F algorithm: most relevant single wavelengths and wavelength

estimates the relevance of wavelength according to their goodness to separate

$$f(t) : \frac{R534 - R698}{R534 + R698} - \frac{1}{2} \cdot R704$$

$$t - index (CLS) : \frac{R698 - R570}{R698 + R570} - R734$$

$$ndex (SBRI) : \frac{R570 - R513}{R570 + R513} + \frac{1}{2} \cdot R704$$

$$index (PMI) : \frac{R520 - R584}{R520 + R584} + R724$$

Mahlein et al. 2013

Discriminant analysis of LM symptoms level

0 - 30%

30 - 60%

60 - 100%

Discriminant analysis of LM level

- Supervisioned ML
 - SVM (Singh et al. 2016)
 - PLS-DA (Chemura et al. 2017)
 - K-means (Kaur et al. 2016)

Estimated costs

Featur

Experiment insta

Camera acquisit

Imagery structur

TOTAL

Commercial name	Chemical class	Dosage	Average Price	Price/ha
Actara (250WG)	Neonicotinoids	1kg/ha	R\$ 293/kg	R\$293,00
Altacor	Anthranilic diamide	90g/ha	R\$ 840/pct 450g	R\$168,00
Sabre	Organophosphates	2L/ha	R\$ 176/5L	R\$70,4

res	Price (R\$)
allation	300.00
tion	17,000.00
re	200.00

SC	$)C7^{-1}$	10

17,500.00

Expected results

Current LM monitoring

Occasional field surveys

- teams of specially trained and experienced personnel;
- strenuous especially for large coffee plantations;
- subjective.

Proposed LM monitoring

- Proximal/remote sensing
 - timely and spatially assessment of plant condition;
 - throughout the growing season;
 - non-invasive;
 - provision of accurate information.

Expected Results

- approaches can highlight host-pathogen interactions at an early stage
- kinds of stressors
- Decrease of yield loss by LM
- Sustainable impact
- **Detection of resistant genotypes in due course (plus genomic data)**

Hyperspectral techniques, alone and in combinations with sensor fusion

Management of the complexity of an identification and quantification of different

Potential to be extended to detecting and monitoring under field conditions

Plant Phenotyping

VS.

