University of São Paulo Escola Superior de "Luiz de Queiroz" College of Agriculture

HIGH THROUGHPUT PHENOTYPING ADJUSTED BY FINE ENVIRONMENTAL CHARACTERIZATION

Andreza Jardelino da Silva Giovanni Galli

Pr. Dr. Roberto Fritsche Neto

November 27, 2017

Motivation

Crop yield potential

Motivation

Crop yield potential

$$Y_p = S_t \cdot \varepsilon_i \cdot \varepsilon_c \cdot \eta$$

$$Y_p = S_t \cdot \varepsilon_i \cdot \varepsilon_c \cdot \eta$$

$$Y_p = \varepsilon_i \cdot \varepsilon_c$$

$$GY = \varepsilon_i \cdot \varepsilon_c$$

INDIRECT MEASUREMENT OF GY

Motivation

Crop yield potential

Issues of indirect measurement of GY:

- 1. Difficulty of measuring ε_i and ε_c ;
- 2. Influence of microenvironments;

Solving problem 1: Image-based phenotyping;

Solving problem 2: ?

Motivation Challenge

One of the greatest challenges of field phenomics is **dealing adequatelly with uncontrolable variation**.

Motivation Objectives

Global

Evaluate the effect of the incorporation of environmental factors in HTP studies

Develop a low-budget envirotyping platform

Verify the effect of environmental factors based correction of conventionally and high-throughput evaluated traits

Identify remote and quick yield-related traits

M&M

Genetic material and experimentation

- 780 single-cross corn hybrids;
- **39** incomplete blocks;
- 2 checks.

					•			

Regular treatments

Checks

M&M Fine environmental characterization (Temporal)

Soil humidity and temperature

M&M

Fine environmental characterization (Temporal)

TEMPORAL ENVIRONMENTAL COVARIATES:

- Soil temperature: instant, season mean, maximum (season mean), range (season mean), flowering (mean);
- Air temperature: instant, season mean, maximum (season mean), range (season mean), flowering (mean), degree day (total);
- Soil humidity: instant, maximum (season mean), minimum (season mean), flowering (mean);
- Air humidity: instant, maximum (season mean), minimum (season mean), flowering (mean);
- Ammonia content: season sum (total loss);
- Light intensity: instant, season mean;

M&M Fine environmental characterization (Stable)

STABLE ENVIRONMENTAL COVARIATES:

- Soil texture: Sand, Silt and (Clay);
- **Chemical**: pH; Calcium, Magnesium and Aluminum

M&M Experiment representation

M&M High throughput phenotyping

Equipment:

Aerial imagery:

- Temporal resolution: V6, V12, VT, R3 e R6;
- Spatial resolution: 1 cm pixel⁻¹ (80% overlapping);

3D Modeling and Mapping

Canopy temperature ((CO₂ assimilation)

 $GNDVI = \frac{\rho_{NIR} - \rho_G}{\rho_{NIR} + \rho_G}$

(LAI)

$$GY = \varepsilon_i \cdot \varepsilon_c$$

M&M Statistical analysis (Workflow)

M&M Statistical analysis

Covariates selection:

- Path analysis:
 - Dependent variables: GY, GNDVI and CT (each date);
 - Independent variables: environment covariates.

M&M Statistical analysis (Workflow)

M&M Statistical analysis

Covariates selection:

- Path analysis:
 - Dependent variables: GY, GNDVI and CT (each date);
 - Independent variables: temporal (1st Chain) and stable (2nd Chain) environment covariates.

Phenotypic analysis

• Analysis of GY, GNDVI and CT (each date);

Scenario 1	Scenario 2	Scenario 3
$y = X\beta + Z\theta + \epsilon$	$y = X\beta + Z\theta + T_1\tau_1 + \dots + T_a\tau_a + \epsilon$	$y = X\beta + Z\theta + S_1\alpha_1 + \dots + S_s\alpha_s + \epsilon$

M&M Statistical analysis (Workflow)

Prediction:

 $r_{y,\tilde{y}} = cor(GY, \widetilde{GY})$ Pearson & Spearman

Remarks

At last:

- Local environmental variation contribute to the residual variance.
- Greater efficiency of genetic variation exploration;
- HTP and noise reduction;
- HTP and GY prediction.

References

- ARAUS, José Luis; CAIRNS, Jill E. Field high-throughput phenotyping: the new crop breeding frontier. Trends in plant science, v.19, n. 1, p. 52-61, 2014.
- LONG, Stephen P. et al. Can improvement in photosynthesis increase crop yields? Plant, Cell & amp; Environment, v. 29, n. 3, p. 315-330, 2006.
- WHITE, J. W. et al. Field-based phenomics for plant genetics research. Field Crops Research, v. 133, p. 101–112, 2012.
- WRIGHT, Sewall. The method of path coefficients. The annals of mathematical statistics, v. 5, n. 3, p. 161-215, 1934.
- XU, Yunbi. Envirotyping for deciphering environmental impacts on crop plants. Theoretical and Applied Genetics, v. 129, n. 4, p.653-673, 2016.

Thanks

adajardel@hotmail.com giovannigalli@usp.br

