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Abstract Leaf wetness duration (LWD) plays a key role in
disease development and is often used as an input in disease-
warning systems. LWD is often estimated using mathematical
models, since measurement by sensors is rarely available and/
or reliable. A strawberry disease-warning system called
BStrawberry Advisory System^ (SAS) is used by growers in
Florida, USA, in deciding when to spray their strawberry
fields to control anthracnose and Botrytis fruit rot. Currently,
SAS is implemented at six locations, where reliable LWD
sensors are deployed. A robust LWD model would facilitate
SAS expansion from Florida to other regions where reliable
LW sensors are not available. The objective of this study was
to evaluate the use of mathematical models to estimate LWD
and time of spray recommendations in comparison to on site
LWD measurements. Specific objectives were to (i) compare
model estimated and observed LWD and resulting differences

in timing and number of fungicide spray recommendations, (ii)
evaluate the effects of weather station sensors precision on LWD
models performance, and (iii) compare LWD models perfor-
mance across four states in the USA. The LWDmodels evaluat-
ed were the classification and regression tree (CART), dew point
depression (DPD), number of hours with relative humidity equal
or greater than 90 % (NHRH ≥90 %), and Penman-Monteith (P-
M). P-Mmodel was expected to have the lowest errors, since it is
a physically based and thus portable model. Indeed, the P-M
model estimated LWDmost accurately (MAE <2 h) at a weather
station with high precision sensors but was the least accurate
when lower precision sensors of relative humidity and estimated
net radiation (based on solar radiation and temperature) were
used (MAE=3.7 h). The CART model was the most robust for
estimating LWD and for advising growers on fungicide-spray
timing for anthracnose and Botrytis fruit rot control and is there-
fore the model we recommend for expanding the strawberry
disease warning beyond Florida, to other locations where weath-
er stationsmay be deployedwith lower precision sensors, and net
radiation observations are not available.
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Introduction

Disease-warning systems are decision tools used to optimize
fungal and bacterial disease control. They can help improve
disease management by recommending spray applications
when environmental conditions are favorable for disease de-
velopment, allowing producers to spray only when necessary
rather than using conventional calendar-based spray sched-
ules. Rational fungicide spraying, as guided by disease-
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warning systems, can provide benefits by reducing production
costs, mitigating hazards to the health of farm workers and
consumers, and lessening the negative impacts of pesticides
on the environment (Gleason et al. 2008).

Temperature and leaf wetness duration (LWD) are widely
used to predict the risk of crop disease development.
Temperature influences all phases of pathogen development,
whereas LWD, the period of time when free water is present
on a crop canopy, influences the infection process (Huber and
Gillespie 1992). Temperature is usually measured at weather
stations, whereas LWD sensors are not commonly available
and may not be reliable and therefore may act as a constraint
on the use of disease-warning systems (Gleason et al. 2008).
LWD is challenging to measure accurately and conveniently.
A key problem is the lack of a standard protocol for its mea-
surement (Sentelhas et al. 2004a; Sentelhas et al. 2004b).
Commercially available LWD sensors vary widely in coating,
color, and shape, and deployment protocols (for example, an-
gle, orientation, and height) are not standardized (Sentelhas
et al. 2004a; Gleason 2007).

An alternative to measuring LWD is to estimate it using
mathematical models, which require input of meteorological
variables such as relative humidity, temperature, rainfall, net
radiation, and wind speed. LWD models are classified as em-
pirical or physical. Physically based models use an energy
balance approach, whereas empirical models are mostly based
on regression analysis and other statistical techniques (Huber
and Gillespie 1992). An advantage of empirical models is that
they typically require fewer input variables, but theymay need
to be recalibrated when the model is applied in a region dif-
ferent from where it was developed (Gillespie and Sentelhas
2008).

The total value of strawberry production in the US is over
$2 billion (USDA 2013a). Florida is the second-ranked state
in the value of strawberry production, with a planted area of
3560 ha, producing 82,215 tons in 2012 (USDA 2013b).
Anthracnose (caused by Colletotrichum acutatum) and
Botrytis fruit rot (Botrytis cinerea) are the main diseases af-
fecting strawberry production in Central Florida. Fungicide
applications to control these diseases represent about 15 %
of the total operating costs (Legard et al. 2005).

A disease-warning system, known as Strawberry Advisory
System (SAS), was developed recently to help Florida straw-
berry growers make cost-efficient fungicide-spraying decisions
to control anthracnose and Botrytis fruit rot. SAS uses hourly
inputs of LWD and air temperature to determine when fungi-
cides should be applied for control of anthracnose (Wilson et al.
1990; MacKenzie and Peres 2012a) and Botrytis fruit rot
(Bulger et al. 1987; MacKenzie and Peres 2012b). The SAS
warning system is available online (http://agroclimate.org/tools/
strawberry/) and has reduced the number of fungicide
applications by 50 % during seasons with conditions
unfavorable for disease development (Pavan et al. 2011).

A key question in implementing disease-warning systems
concerns their portability beyond the region where they were
initially developed. Differences in climate, crop management
practices, and disease complexes can all impact how a warn-
ing system will perform outside its zone of origin (Duttweiler
et al. 2008). SAS gathers LWD data from sensors installed at
six weather stations in Central Florida, but this configuration
prevents the expansion of the system and its use by growers
not located near existing stations. Using models to estimate
LWD can therefore help to overcome system utilization
constraints.

The main goal of this study was to evaluate the use of
mathematical models to estimate LWD and their recommen-
dations for disease control. Ultimately, we wanted to select a
LWD model that would enable expansion of SAS. Specific
objectives were to assess (i) differences in model estimated
and measured LWD and resulting timing and number of spray
recommendations, (ii) effects of weather station sensors pre-
cision on LWD models performance, and (iii) LWD models
performance across four states in the USA.

Materials and methods

Study sites and data source

A weather station in Balm, Florida, USA (27.76° N, 82.22°
W), designated as the reference station for the study with
weather sensors of high precision, was installed adjacent to a
station that is part of the statewide Florida AutomatedWeather
Network (FAWN) network. In addition to the Balm site,
weather data were collected from the Arcadia (27.22° N,
81.84° W), Dover (28.01° N, 82.23° W), and Lake Alfred
(28.10 N, 81.71 W) stations. Data from FAWN stations is
available at http://fawn.ifas.ufl.edu/data/. Weather data were
also collected from research sites at Gilbert, Iowa (42.11° N,
93.58° W), Piketon, Ohio (39.07° N, 83.01° W), and Cooley
(35.15° N, 81.95° W) and Keisler (33.97° N, 81.38° W),
South Carolina.

Measurements of air temperature and relative humidity,
wind speed, solar radiation, and rainfall were collected at
1.5- to 2.0-m height for at least two strawberry production
seasons for each study site between 2011 and 2014. Table 1
summarizes the period of analysis and weather sensors of the
study sites and Table 2 summarizes the weather conditions.
Leaf wetness duration (LWD) was measured at each station
using two adjacent flat plate sensors (Model 237, Campbell
Scientific) deployed 30 cm above a turfgrass surface and fac-
ing north at an angle of 45° to the horizontal (Sentelhas et al.
2004b). The sensors were painted with two coats of white
latex paint and heat-treated for 24 h at 70 °C after each coat
(Sentelhas et al. 2004a). The threshold for wetness was cali-
brated for each pair of sensors based on visual observations of
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dew onset and dry-off over grass for 3 weeks prior to the
experimental period (Rao et al. 1998) and was set be-
tween 200 and 500 kΩ. A pair of LW sensors was used
to assure wetness and dryness conditions. Records of LW
sensors were not included if there was a mismatch be-
tween the sensors (e.g., one sensor recorded Bwetness^
and the other Bdryness^). Mismatched records were un-
usual, and seldom exceeded 45 min of difference when
occurred. The weather stations with both sensors of
weather variables and LW were located next to strawber-
ry growing areas over turfgrass.

Leaf wetness duration models

Four LWD-estimating models were evaluated: (i) number of
hours with relative humidity equal or greater than 90 %
(NHRH ≥90 %) (Sentelhas et al. 2008); (ii) dew point depres-
sion (DPD) (Gillespie et al. 1993); (iii) classification and re-
gression tree (CART) (Gleason et al. 1994); and (iv) Penman-
Monteith (P-M) (Monteith 1990). The models and analysis
were programmed using R programming language (http://
www.r-project.org). Time intervals of 15 min to 1 h were
classified as wet or dry according to each model. Daily LWD
on day nwas estimated by summing time intervals classified as
wet between 12:01 pm of day (n−1) and 12:00 pm of day n.

NHRH ≥90 %

NHRH is one of the most used and simplest models for LWD
estimation. The only input variable is relative humidity, and a
threshold that defines the transition from dry to wet periods is
required. In this study, the threshold adopted was 90 %
(Sentelhas et al. 2008).

DPD

DPD is calculated by the difference between air temperature
and dew point temperature. The DPD model estimates LWD
as the length of time in which DPD is within two thresholds,
which indicates onset and offset of wetness. These thresholds
were 2.0 and 3.8 °C, respectively, for wetness onset and offset
(Lulu et al. 2008). The LWD starts when DPD is less than the
onset threshold, and it ends when DPD is greater than the
offset threshold (Gillespie et al. 1993).

CART

CART is a nonparametric procedure proposed by Gleason
et al. (1994) based on relative humidity, dew point depression,
and wind speed. The method classifies time intervals into four
categories according to a binary tree. A time interval is clas-
sified as wet if it is within categories 3 or 4 and the results for
Eq. 1 or 2 are above 14.4674 or 37.0, respectively.T
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1:6064Tair
0:5 þ 0:0036Tair

2

þ 0:1531RH�0:4599UDPD�0:0035TairRH

> 14:4674 ð1Þ
0:7921Tair

0:5 þ 0:0046RH2�2:3889U�0:0390TairU

þ 1:0613UDPD

> 37:0000 ð2Þ

where Tair is the air temperature (°C); RH is the relative
humidity (%); U is the wind speed (m s−1); and DPD is
the dew point depression (°C) in the time interval
considered.

P-M

P-M model is a physical model, also known as aerody-
namic resistance model (Rao et al. 1998). The model’s

Table 2 Median weather conditions in Arcadia, Balm, Dover, and Lake Alfred (Florida), Gilbert (Iowa), Ohio, and South Carolina during strawberry
seasons

Location Strawberry season Number of days of data collection T (°C) RH (%) U2m (m s−1) Rtotal (mm)

Florida

Arcardia 2011/2012 132 19.2
(15.8–23.4)

84.7
(64.4–95.1)

2.1
(1.4–3.3)

83.3
(18 days)

Arcardia 2012/2013 151 17.9
(13.7–22.0)

85.0
(64.1–94.9)

2.0
(1.3–3.0)

124.3
(27 days)

Balm 2011/2012 150 18.7
(15.1–22.7)

83.6
(63.3–94.9)

2.3
(1.5–3.3)

76.0
(27 days)

Balm 2012/2013 151 17.2
(13.5–21.3)

83.1
(63.2–94.1)

2.0
(1.4–3.0)

124.3
(29 days)

Dover 2011/2012 152 18.5
(14.5–22.7)

84.8
(64.9–95.7)

0.9
(0.5–1.5)

103.8
(28 days)

Dover 2012/2013 151 17.4
(13.1–21.7)

84.2
(63.4–92.2)

0.9
(0.4–1.6)

194.3
(29 days)

Lake Alfred 2011/2012 152 18.9
(15.5–22.6)

82.1
(62.2–92.8)

1.2
(0.8–1.9)

107.5
(24 days)

Lake Alfred 2012/2013 151 17.2
(13.2–21.2)

80.6
(60.4–92.4)

1.2
(0.8–1.8)

78.2
(26 days)

Iowa

Gilbert 2011 77 23.2
(19.3–26.8)

87.0
(71.9–95.6)

1.8
(1.1–2.5)

120.6
(23 days)

Gilbert 2012 61 23.7
(19.6–28.2)

77.8
(60.3–92.2)

1.6
(0.7–2.7)

90.9
(15 days)

Ohio

Piketon 2011 147 20.7
(17.3–24.5)

80.1
(64.8–92.1)

1.7
(1.1–2.5)

468.9
(60 days)

Piketon 2012 158 20.2
(15.6–24.6)

74.8
(54.7–90.8)

1.7
(1.0–2.6)

606.3
(58 days)

Piketon 2013 160 19.5
(15.7–22.9)

84.9
(67.6–96.1)

1.7
(1.1–2.4)

581.7
(59 days)

South Carolina

Cooley 2013 117 13.0
(6.4–18.7)

61.0
(42.0–86.5)

2.3
(1.3–3.7)

562.3
(50 days)

Cooley 2014 91 18.8
(13.0–23.6)

61.0
(43.9–82.0)

0.6
(0.0–2.4)

129.0
(23 days)

Keisler 2012 77 16.0
(10.7–19.8)

69.3
(49.3–87.2)

2.4
(1.5–3.4)

213.6
(23 days)

Keisler 2013 47 7.9
(4.5–12.4)

61.6
(45.1–81.8)

2.7
(1.7–3.8)

178.8
(14 days)

Numbers in parenthesis indicate the lower (first quartile) and upper (third quartile) limits containing 50 % of daily means (interquartile range)

T mean daily air temperature (°C), RH mean daily relative humidity (%), U2m mean daily wind speed at 2 m (m s−1 ), Rn mean daily net radiation
(W m−2 ), R total rainfall (mm)
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principle is to estimate latent heat flux (LE) as shown
in Eq. 3 (Monteith 1990).

LE ¼ −
s Rn þ 1200 es−eað Þ

ra þ rb

� �

sþ γ*
ð3Þ

where s is the slope of the saturation vapor pressure
curve (hPa°.C−1), Rn is the net radiation (W.m−2), es is
the saturated vapor pressure at the weather station air tem-
perature (hPa), ea is the actual air vapor pressure (hPa), ra is
the additional aerodynamic resistance (s.m−1), rb is the bound-
ary layer resistance for heat transfer (s.m−1), and γ* is the
modif ied psychrometer constant (assumed to be
0.64 kPa.K−1 with moisture and heat transfer to both sides of
sensor during dew and 1.28 kPa.K−1 for evaporation from one
side of a sensor after rain) (Sentelhas et al. 2006). A time
interval is considered wet when LE is greater than zero or rain
begins. Rn was derived from incoming solar radiation and air
temperature using the model proposed by Iziomon et al.
(2000) with the exception of the reference weather station in
Balm, which has a net radiometer.

SAS

The four LWD models were used to determine the number of
fungicide sprays recommended for anthracnose and Botrytis
fruit rot using the SAS advisory system (Pavan et al. 2011).
LWD and temperature during the wetness period are inputs
required by SAS for predicting the proportion of infected
strawberry fruit, called an infection index (INF). INF varies
from 0 to 1, indicating, respectively, zero and 100 % of pre-
dicted infected strawberry fruits, and is calculated separately
for anthracnose (INFAnt) and Botrytis fruit rot (INFBot). A
spray recommendation occurs when INFAnt ≥0.15 and/or
INFBot ≥0.5. These thresholds were calibrated for Florida
weather conditions (MacKenzie and Peres 2012a;
MacKenzie and Peres 2012b), but, in this study, the same
thresholds were assumed for other locations as a case study.

ln INFAnt=1−INFAntð Þ ¼ −3:70

þ 0:33*LWD − 0:069*LWD*Tair

þ 0:0050*LWD*Tair
2 −0:000093*LWD*Tair

3

ln INFBot=1−INFBotð Þ ¼ −4:268 − 0:0901*LWD

þ 0:0294*LWD*Tair

− 0:0000235*LWD*Tair
2

where INFAnt and INFBot are the infection indexes for anthrac-
nose andBotrytis fruit rot, respectively; LWD in hours; and Tair is
the average air temperature during the wetness period (°C).

Data analysis

Evaluation of LWD models estimates

Daily measured and simulated LWD obtained from the refer-
ence station in Balm was compared to evaluate performance
of the LWD models. The following indexes were used to
evaluate the models performance: mean error (ME), the model
bias; mean absolute error (MAE), the magnitude of the aver-
age error; efficiency (EF), the model performance in compar-
ison with observed data; and mean square error (MSE), the
mean square of the deviations around the 1:1 line. MSE was
decomposed into three components of source of error accord-
ing to the method of Gauch et al. (2003): squared bias (SB),
the model error from bias; nonunity slope (NU), the capability
of the model to mimic the fluctuation of the measurements;
and lack of correlation (LC), the observed values. The MSE
components are given by:

MSE ¼ SB þ NU þ LC

S B ¼ X − Y
� �2

NU ¼ 1 − bLWD modelsð Þ2 σ2
Y

L C ¼ 1 − r2
� �

σ2
X

bXY ¼ σ2
XY

σ2
Y

where X and Y are the estimated and measured LWD means,
bXY is the slope of the least-squares regression of X on Y, r2 is
the square of this correlation, σXY

2 is the covariance of X and Y,
and σX

2 and σY
2 are the variance of X and Y, respectively.

Bonferroni’s (1936) comparison test was used to determine
significant differences between MSE across LWD models.

Influence of LWD models on disease control
recommendations

The methodology used in this section was adapted from Kim
et al. (2004), originally used to evaluate LWD model perfor-
mance in order to correct estimate wetness intervals.
Fungicide spray recommendations for anthracnose and
Botrytis fruit rot control based on measured and estimated
LWD were compared using data from the reference station
in Balm. A four-cell contingency table was used to evaluate
LWD models performance to recommend disease control,
which shows the distribution of recommendations of correct
sprays (H), correct no sprays (N), incorrect sprays (F), and
incorrect no sprays (M) (Table 3). The fraction of correct es-
timates (θ1) for a LWD model is given by:

θ1 ¼ H þ N

H þ N þ F þ Mð Þ

Int J Biometeorol (2016) 60:1761–1774 1765



To weight the occurrence of H and N events, assuring
the LWD models recommend both spray and no-spray
events correctly, a k agreement index (Dietterich 2000)
was calculated for each of the LWD models evaluated
for both diseases:

k ¼ θ1 − θ2
1 − θ2

θ2 ¼ H þ Mð Þ � H þ Fð Þ
H þ M þ F þ Nð Þ2 þ

F þ Nð Þ � M þ Nð Þ
H þ M þ F þ Nð Þ2

where θ2 is an estimate of the probability that disease
control recommendation based on measured and the es-
timated LWD agree by chance, given the observed
counts in the contingency table.

Effects of weather sensor precision on the performance
of LWD models

To quantify the influence of weather sensor precision in
LWD estimation and SAS performance, data from the ref-
erence and FAWN stations in Balm (Florida) were com-
pared. Mean error (ME), mean absolute error (MAE), and
the k agreement index for both diseases were used to
evaluate the differences in LWD and recommendations
for disease control. In addition, the ratio between the
number of recommended sprays by each model for both
diseases was calculated using data from the FAWN station
in comparison with the reference station. For instance, a
ratio of 0.8 between the number of sprays recommended
by the DPD model using FAWN data in comparison with
the reference data means that using the input data from
FAWN to estimate LWD reduced the number of sprays by
20 % in comparison with LWD measurements at the ref-
erence station.

LWD model performance across four states in the USA

To assess model performance in LWD estimation and
SAS performance across different locations, data from

Arcadia, Dover, and Lake Alfred (Florida), Gilbert
(Iowa), Piketon (Ohio), and Cooley and Keisler (South
Carolina) were used as inputs. The statistical indexes
ME and MAE and k agreement index for both diseases
and the k coefficient of variation (CVk) were used to eval-
uate differences between measured and the estimated
LWD and disease control recommendations.

CVk ¼ σ
μ

100ð Þ

where σ is the standard deviation and μ is the average of the k
agreement indexes of LWD models across all study sites.

Results

LWD model performance

The P-M model was the most efficient at estimating LWD,
followed by CART, DPD, and NHRH ≥90 %; average EF
during the strawberry seasons was 80, 65, 50, and 30 %, re-
spectively (Table 4). All LWD models errors were within an
acceptable range ofMAE of 2 h for operational use in warning
systems (Gleason et al. 1994; Sentelhas et al. 2008) with the
exception of the NHRH ≥90 % model. CART, NHRH ≥90 %,
and P-M had a negative bias when estimating LWD, with ME
varying between −0.3 h and −2.5 h. The DPD model had no
bias (ME≈0 h) due to the model’s compensatory overestima-
tion of lower values of LWD (<10 h) and underestimation of
higher values (>10 h) (Fig. 1c, d).

Table 3 Four-cell contingency table used to classify LWD model’s
spray recommendations into the number of correct spray (H) and no spray
(N) recommendations and incorrect spray (F) and no spray (M) recom-
mendations in comparison with recommendations based on measured
LWD

Model: spray Model: no spray

Observed: spray Hits (H) Misses (M)

Observed: no spray False alarms (F) Correct negatives (N)

Table 4 Statistical indexes and errors comparing measured and
estimated LWD using the CART, DPD, NHRH ≥90 %, and P-M models
during the 2011/2012 and 2012/2013 strawberry seasons in Balm,
Florida, USA

Models/season ME (h) MAE (h) EF (%) kant kbot

CART

2011/2012 −1.13 1.54 70.4 0.807 0.831

2012/2013 −1.46 2.05 59.7 0.701 0.740

DPD

2011/2012 0.11 1.76 50.0 0.749 0.748

2012/2013 −0.25 2.12 48.5 0.732 0.651

NHRH ≥90 %

2011/2012 −2.13 2.38 42.8 0.795 0.831

2012/2013 −2.54 3.02 23.3 0.682 0.570

P-M

2011/2012 −0.25 0.98 83.3 0.834 0.882

2012/2013 −0.71 1.34 79.0 0.673 0.597

k agreement index of anthracnose and Botrytis recommendations based
measured and estimated LWD

MEmean error in hours,MAEmean absolute error in hour, EF efficiency
in percentage
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Analysis of MSE showed that the main source of error for
all LWD models was from lack of correlation (LC) related to
unexplained variability in LWD estimates by the models
(Fig. 2). CART and NHRH ≥90 % models had higher bias
(SB), since they systematically underestimated LWD. The
nonunity slope (NU) partition of source of error for the P-M
model was negligible in comparison with the other models,

meaning that the P-M model better mimicked onset and dry-
off processes of leaf wetness in comparison with CART, DPD,
and NHRH ≥90 % and achieved the highest accurate LWD
estimates. However, even if the CART, DPD, and NHRH
≥90 % models were calibrated, and NU and SB were mini-
mized, their LC error would still be greater than the total MSE
of the P-Mmodel. According to Bonferroni’s comparison test,

Fig. 1 LWD model residuals
(LWDModel–LWDObserved) for
CART (a, b), DPD (c, d), NHRH
≥90 % (e, f), and P-M (g, h)
models versus measured LWD.
Symbols represent hits
(sensor = spray, model = spray—
filled circle), misses
(sensor = spray, model = no
spray—triangle), false alerts
(sensor = no spray,
model = spray), and correct
negatives (sensor = no spray,
model = no spray—nonfilled
circle) events for anthracnose
monitoring during 2011/2012 (left
column) and 2012/2013 (right
column) strawberry seasons in
Balm (reference station), Florida,
USA. Dashed line represents
acceptable errors of LWD
estimation: ±2 h of model error in
comparison with observed LWD
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P-M and NHRH ≥90 % were the only models that differed
significantly with regard to their MSE (P<0.05), whereas
CART and DPD were not significantly different from either
P-M or NHRH ≥90 %.

Regarding the influence of estimated LWD on the estima-
tion of anthracnose and Botrytis fruit rot risk, the number of

spray recommendations based on the different LWD models
varied by one to two per ten recommendations for each dis-
ease (k values between 0.6 and 0.8). The k agreement index of
correct recommendations (kant and kbot) based on measured
and estimated LWD were alike among LWD models but di-
verged with regard to the type of events that caused erroneous

Fig. 2 LWD model residuals
(LWDModel–LWDObserved) for
CART (a, b), DPD (c, d), NHRH
≥90 % (e, f), and P-M (g, h)
models versus observed LWD.
Symbols represent hits
(sensor = spray, model = spray—
filled circle), misses
(sensor = spray, model = no
spray—triangle), false alerts
(sensor = no spray,
model = spray), and correct
negatives (sensor = no spray,
model = no spray—nonfilled
circle) events for Botrytis
monitoring during 2011/2012 (left
column) and 2012/2013 (right
column) strawberry seasons in
Balm (reference station), Florida,
USA. Dashed line represents
acceptable errors of LWD
estimation: ±2 h of model error in
comparison with observed LWD
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recommendations (Fig. 1). The divergence is related to biases
of the LWD models. Both diseases, anthracnose and Botrytis
fruit rot, need at least 10 to 12 h of LWD with adequate tem-
perature to trigger a spray recommendation. The DPD model
overestimated by 5 h or more observed LWD values lower
than 10 h, causing false alerts. There were also a few misses
of spray recommendations, but within an acceptable range of
error for operational use in warning systems (Gleason et al.
1994; Sentelhas et al. 2008) less than 2 h. On the other hand,
CART and NHRH ≥90 % tended to underestimate LWD ob-
servations, causing erroneous recommendations for no spray,
especially during the 2012/2013 strawberry season. CART
and NHRH ≥90 % underestimated LWD values lower than
15 h, which did not result in erroneous recommendations due
to lack of disease risk within this range. P-M performed sim-
ilarly to the other models when estimating risk of anthracnose
and Botrytis. However, most of the erroneous recommenda-
tions, missed and false alerts events, were within the accept-
able 2-h range of LWD error. During the 2011/2012 strawber-
ry season, P-M had only one erroneous recommendation
when monitoring Botrytis fruit rot, when it missed one spray
(Fig. 1g). P-M’s worst performance was during 2012/2013
strawberry season, underestimating LWD values greater than
15 h—a critical range for disease risk.

Influence of weather sensor precision on LWD model
performance

Comparison of measurements of temperature, relative hu-
midity, and wind speed from the reference and FAWN
stations in Balm are shown in Fig. 3. Net radiation was
measured at the reference station, whereas it was derived
from temperature and solar radiation at the FAWN station
(Fig. 3). Relative humidity and net radiation had the
greatest differences between weather stations. Relative

humidity from the FAWN station was systematically
3.8 % higher than values from the reference station
(Fig. 3). Net radiation derived from FAWN data was
systematically 42.7 W m−2 lower than measured values
at the reference station—the higher the net radiation val-
ue, the greater the difference between stations (Fig. 3).
Temperature and wind speed were in good agreement
between stations, with MAE equal to 0.2 °C and
0.3 m s−1, respectively.

When data from the reference and FAWN stations were
used as inputs in LWDmodels, the difference between weath-
er variables from the stations resulted in a systematic positive
bias of LWD with ME >0 and similar magnitude of MAE,
especially for LWDvalues lower than 10 h (Fig. 4). Themodel
most affected by the differences in input was P-M (ME=3.7,
MAE= 3.5 h), followed by NHRH ≥90 % (ME= 1.7 h,
MAE = 2 h), DPD (ME = 1.5, MAE = 1.9), and CART
(ME=0.9 h, MAE=1.2 h) (Table 5).

The number of sprays recommended for anthracnose
and Botrytis fruit rot increased in comparison with the
reference station as a result of the positive bias in esti-
mated LWD. Spray recommendations based on LWD es-
timated by P-M increased substantially (155 % for an-
thracnose and 382 % for Botrytis), followed by NHRH
≥90 % (41 % for anthracnose and 56 % for Botrytis),
DPD (33 % for anthracnose and 59 % for Botrytis), and
CART (20 % for anthracnose and 37 % for Botrytis)
(Table 5). The k agreement indexes between recommen-
dations based on measured and the estimated LWD by
CART and NHRH ≥90 % were similar when using
FAWN station data. For anthracnose control recommen-
dations, CART and NHRH ≥90 % models resulted in kant
about 0.8 and 0.7, respectively, independent of the data
source, whereas for Botrytis, kbot was 0.78 and 0.74 for
CART and 0.69 and 0.63 for NHRH ≥90 % when using

Fig. 3 Components of mean
square error (MSE) in lack of
correlation (LC), nonunity slope
(NU), and squared bias (SB) for
CART, DPD, NHRH ≥90 %, and
P-M LWD models during the
2011/2012 and 2012/2013
strawberry seasons Balm
(reference station), Florida, USA
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data from the reference and FAWN stations, respectively.
The k agreement indexes for recommendations based on
P-M for both diseases decreased when using FAWN data
as input. For anthracnose, kant decreased from 0.76 to
0.55, whereas for Botrytis, kbot decreased from 0.72 to
0.39. The k agreement indexes based on DPD model also
decreased when using FAWN data as input, kant from
0.74 to 0.61 and kbot from 0.69 to 0.63.

LWD model performance across four states in the USA

Comparisons between measured and estimated LWD
across locations are shown in Table 6. The CART model
estimated LWD most accurately across locations, with

average MAE of 2.0 h, ranging between 1.4 and 3.1 h,
followed by DPD (MAE between 2.0 and 2.7 h), NHRH
≥90 % (MAE between 1.9 and 3.1 h), and P-M (MAE
between 2.6 and 4.9 h). NHRH ≥90 % underestimated
LWD at all sites (ME varied between −0.6 and −2.7 h),
whereas P-M systematically overestimated LWD at all sites
(ME varied between 2.0 and 4.7 h) with ME quite similar
to MAE. CART mostly underestimated LWD, with ME
between −2.6 and 0.5 h, while DPD had almost no bias
or a positive bias with a ME between −0.6 and 1.6 h.

Figure 5 shows k agreement indexes for anthracnose and
Botrytis recommendations based on measured and estimated
LWD. For anthracnose recommendations (Fig. 5a), CART
had the highest median kant of 0.76 and 11 % of variation

Fig. 4 Relationship between
LWD estimated by CART (a),
DPD (b), NHRH ≥90 % (c), and
P-M (d) models using data from
the reference and FAWN weather
stations in Balm, Florida

Table 5 Statistical indexes and errors comparing measured and estimated LWD using the CART, DPD, NHRH ≥90 %, and P-M models during the
2011/2012 and 2012/2013 strawberry seasons in Balm, Florida, USA

Models ME (h)
(ModelFAWN–
ModelRef.)

MAE (h)
(ModelFAWN–
ModelRef.)

FAWN Antsprays
Re f : Antsprays

kant
FAWN

kant
Ref.

FAWN Botsprays
Re f : Botsprays

kbot
FAWN

kbot
Ref.

CART 0.88 1.22 1.20 0.78 0.76 1.37 0.74 0.78

DPD 1.51 1.94 1.33 0.61 0.74 1.59 0.53 0.70

NHRH
≥90 %

1.72 1.95 1.41 0.73 0.74 1.56 0.63 0.69

P-M 3.48 3.66 2.55 0.55 0.76 4.82 0.39 0.72

k agreement index of anthracnose and Botrytis recommendations based measured and estimated LWD

ME mean error in hours, MAE mean absolute error in hour, EF efficiency in percentage
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across locations (CVkant, Table 7), followed by DPD (median
kant of 0.71 and CVkant = 9 %), NHRH ≥90 % (median kant of
0.70 and CVkant = 19.1 %), and P-M (median kant of 0.48 and
CVkant = 15.1 %). For Botrytis recommendations (Fig. 5b),
NHRH ≥90 % had the highest median value of kbot of 0.69
across locations and CVkbot = 10 % variation across locations,
followed by CART (median kbot of 0.64 and CVkbot =14 %),
DPD (median kbot of 0.55 and CVkbot = 21 %), and P-M (me-
dian kbot of 0.33 and CVkbot = 27 %). Divergences between
recommendations based on measured and estimated LWD
were associated mainly with LWD model bias (Table 6). For

instance, P-M had the highest LWD overestimates, which re-
sulted in the highest number of sprays recommended in com-
parison with those recommended when measured LWD was
used. The opposite occurred for NHRH ≥90 %.

Discussion

Several interesting findings were obtained, helping us to better
understand how LWDmodels can be used in disease-warning
systems. In the first phase of our study, we used data from a

Table 6 Statistical indexes and k agreement indexes of recommendations for anthracnose (kant) and Botrytis (kbot) comparing measured and estimated
LWD using the CART, DPD, NHRH ≥90 %, and P-M models across locations in Florida, Iowa, Ohio, and South Carolina

Models/
locations

ME (h) (LWDModel–
LWDSensor)

MAE (h) (LWDModel–
LWDSensor)

Model Antsprays
Sensor Antsprays

kant Model Botsprays
Sensor Botsprays

kbot

CART

Arcadia, FL −0.41 1.56 1.11 0.82 0.97 0.64

Dover, FL −0.09 1.45 1.17 0.76 1.09 0.80

Lake Alfred, FL 0.48 1.53 1.31 0.77 1.71 0.64

Gilbert, IA 0.40 1.39 1.03 0.76 2.13 0.52

Piketon, OH −1.08 2.06 0.96 0.78 1.24 0.65

Cooley, SC −0.58 2.82 0.82 0.66 0.69 0.62

Keisler, SC −2.55 3.10 0.45 0.60 1.00 0.74

DPD

Arcadia, FL 1.22 2.25 1.49 0.66 2.20 0.54

Dover, FL −0.22 2.00 1.15 0.76 1.09 0.71

Lake Alfred, FL 0.77 2.07 1.40 0.71 2.00 0.50

Gilbert, IA 1.57 2.32 1.22 0.78 3.62 0.37

Piketon, OH 0.33 2.43 1.17 0.73 1.98 0.57

Cooley, SC 0.20 2.66 0.75 0.61 0.92 0.70

Keisler, SC −0.61 2.67 1.09 0.66 2.50 0.55

NHRH ≥90 %

Arcadia, FL −0.91 1.87 1.00 0.78 1.07 0.64

Dover, FL −2.65 3.06 0.70 0.74 0.73 0.71

Lake Alfred, FL −1.55 2.27 0.75 0.75 0.92 0.76

Gilbert, IA −0.60 1.88 0.90 0.63 1.25 0.76

Piketon, OH −2.17 2.80 0.78 0.70 1.05 0.69

Cooley, SC −1.37 2.91 0.43 0.46 0.76 0.68

Keisler, SC −2.31 2.82 0.36 0.51 0.75 0.56

P-M

Arcadia, FL 2.81 2.87 1.71 0.63 3.03 0.40

Dover, FL 3.95 3.95 2.00 0.48 2.93 0.33

Lake Alfred, FL 4.69 4.69 2.55 0.41 5.33 0.21

Gilbert, IA 3.27 3.33 1.66 0.47 4.13 0.33

Piketon, OH 2.39 2.57 1.78 0.58 2.69 0.47

Cooley, SC 4.40 4.94 2.29 0.49 3.62 0.33

Keisler, SC 1.97 2.98 2.09 0.46 2.75 0.51

k agreement index of anthracnose and Botrytis recommendations based measured and estimated LWD

ME mean error in hours, MAE mean absolute error in hour, EF efficiency in percentage
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reference station with high-precision weather sensors as input
in LWDmodels to minimize the influence of sensors precision
on the LWD models performance. The rank of the models
efficiency to estimate LWD, from the highest to the least effi-
cient, was as follows: P-M, CART, DPD, and NHRH ≥90 %
(Table 4); but significantly, difference at 5 % level was only
observed for the LWD estimated by P-M and NHRH ≥90 %
(Fig. 2). Errors smaller than 2.0 h are considered acceptable
for operational use (Gleason et al. 1994; Sentelhas et al. 2008);
by this criterion, only NHRH ≥90 % performed unacceptably,
an indicative of need of threshold adjustment (Rowlandson
et al. 2015). P-M model better mimicked onset and dry-off
processes of leaf wetness, and its source of error in estimating
LWD comes from uncontrollable errors whereas the other
three models could be improved after local calibration to min-
imize bias (Fig. 2).

For anthracnose and Botrytis fruit rot monitoring, all four
LWD models performed similarly in recommending timing
for control of each disease, differing by the type of incorrect
recommendations that degraded their performance (Fig. 1).
For example, incorrect DPD recommendations were related
to false-positive alerts, whereas NHRH ≥90 % resulted in
false-negative outcomes (missed spray recommendations).

When using data from a weather station with different
weather sensors, located nomore than 10m from the reference

station, results were different (Table 1). P-M was the most
affected by differences in the input data, greatly
overestimating the number of spray recommended in compar-
ison with the reference data (Table 5). P-M model sensitivity
to data imprecision, resulting in a systematic bias in LWD
estimation, with ME of 3.5 h and MAE of 3.7 h, possibly
due to the discrepancies between relative humidity and net
radiation between the stations and thus error propagation in
estimating LWD. Relative humidity values from FAWN sta-
tion averaged 3.8 % higher than the reference station. FAWN
relative humidity sensor accuracy at 25 °C was ±4 %, whereas
the reference relative humidity sensor accuracy at 25 °C was
±1.7 %. According to the manufacturers, relative humidity
sensors may drift out of calibration by 1 % per year. Trained
staff periodically maintain the weather stations used in this
study, more often than once a year, which allow us to conclude
that the difference found between sensor performance was
acceptable. Net radiation estimated with temperature and
solar radiation data from FAWN, using the Iziomon et al.
(2000) approach, systematically underestimated measured
values at the reference station by −42.7 W m−2. Gillespie
and Sentelhas (2008) compared estimated and measured net
radiation using the samemethod in Elora, Canada, and obtain-
ed a bias of −38.8Wm−2 under overcast conditions, which are
frequent during the Florida strawberry season, compared to
0.5 W m−2 bias under clear sky conditions. These authors
found almost no systematic error when estimated net radiation
was used as input in the P-M model (ME of −0.6 h) but found
MAE of 1.5 h and maximum errors up to 4 h. The CART
model was the least influenced by variation in weather vari-
ables, possibly because it is a classification tree method with
no direct propagation error, since the last time interval estimat-
ed does not influence the next LWD estimate.

In the third phase of our study, LWD models performance
in Florida, Iowa, Ohio, and South Carolina study sites varied
in comparison with results obtained from the reference station.
The rank of LWDmodels performance to estimate LWD was,
on average from the smallest to the largest MAE: CART,

Fig. 5 Average correct
recommendation index when the
sprays were advised based on
LWD models in comparison with
those based on LWD sensors for
anthracnose (kant) and Botrytis
(kbot) in Florida, Iowa, Ohio, and
South Carolina

Table 7 Coefficient of variation (CV) of k agreement indexes for an-
thracnose (kant) and Botrytis fruit rot (kbot) between measured and esti-
mated LWD using the CART, DPD, NHRH ≥90 %, and P-M models
across locations in Florida, Iowa, Ohio, and South Carolina

Models CVkant (%) CVkbot (%)

CART 10.5 13.6

DPD 8.7 20.8

NHRH ≥90 % 19.1 10.2

P-M 15.1 27.3
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DPD, NHRH ≥90 %, and P-M, which agrees with the results
obtained in Balm with data from the FAWN station. This
result indicates that estimated net radiation and differences
on precision of relative humidity sensors have a substantial
impact on P-M performance. In Piketon, Ohio, where the rel-
ative humidity sensor is the samemodel as the one deployed at
the reference station in Balm, Florida, P-M had the smallest
MAE.

CARTwas the most robust model to estimate LWD and the
risk of anthracnose and Botrytis control, whereas P-Mwas the
worst, which is partially associated to the errors in net radia-
tion when estimated by an empirical model. According to
Gillespie and Sentelhas (2008), the Iziomon et al.’s (2000)
approach to estimate net radiation might need local adjust-
ments for latitudes lower than 40°.

Weather data reliability is crucial for LWD estimation
and for disease-warning systems operation (Gleason et al.
2008). Our study shows that if the weather station data is
imprecise, a more robust LWD model such as CART
should be used, since P-M was highly sensitive to data
uncertainty, leading to error propagation. DPD also had
robust performance to estimate LWD across locations
but, in general, had large number of false-positive alerts,
which decreased its potential for application with disease-
warning systems rationale. A final consideration is that
LWD measurements were used as the gold standard in
our evaluations, because LW sensors were treated, cali-
brated in field conditions, and correctly deployed. These
conditions are unusual, and thus, LWD models can be a
preferred alternative to substitute for LWD measurements,
as shown in this study.

Conclusions

The P-M model is the best option to estimate LWD when
a weather station is assembled with high precision sen-
sors, mimicking the processes of wetness onset and dry-
off and allowing precise recommendation of anthracnose
and Botrytis fruit rot control. However, P-M is highly
sensitive to weather data quality, making its use restrict-
ed, mainly where net radiation data is not available and
relative humidity sensors are not highly precise, with
precision greater than ±2 %. In this case, the CART
model showed to be the best option to estimate LWD
and also to recommend anthracnose and Botrytis control
across different sites in the USA.
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