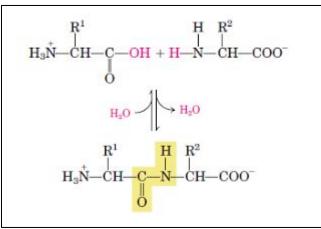

ESTRUTURA PRIMÁRIA DE PROTEÍNAS: SEQUENCIAMENTO DE AMINOÁCIDOS

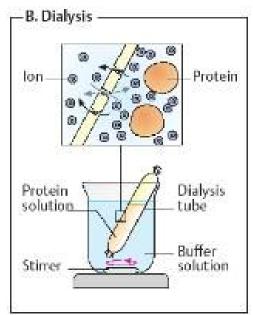
BRUNA DA ROCHA MARTINS 9327776 SAMIRA ALVES ABOU ARABI 9041847

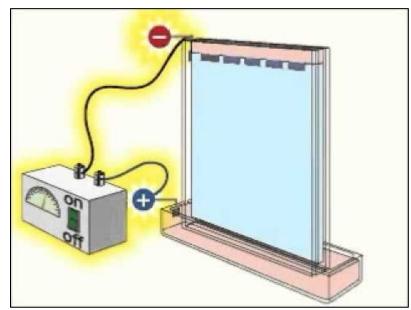


Introdução - Proteína

macromolécula composta por 1 ou + cadeias polipeptídicas

Estruturas da proteína


Ligação peptídica


Ligação peptídica: reação entre grupo alfa-carboxila e alfa-amino, liberando água

Sequenciamento de aminoácido: determinação da estrutura primária

1ª etapa: Purificação do peptídeo

Tamanho, solubilidade em determinado solvente e carga do peptídeo.

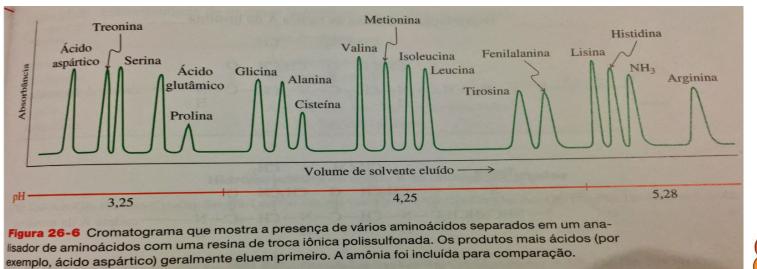
Diálise

Eletroforese

Cromatografia de troca iônica

2ª etapa: Definição dos aminoácidos

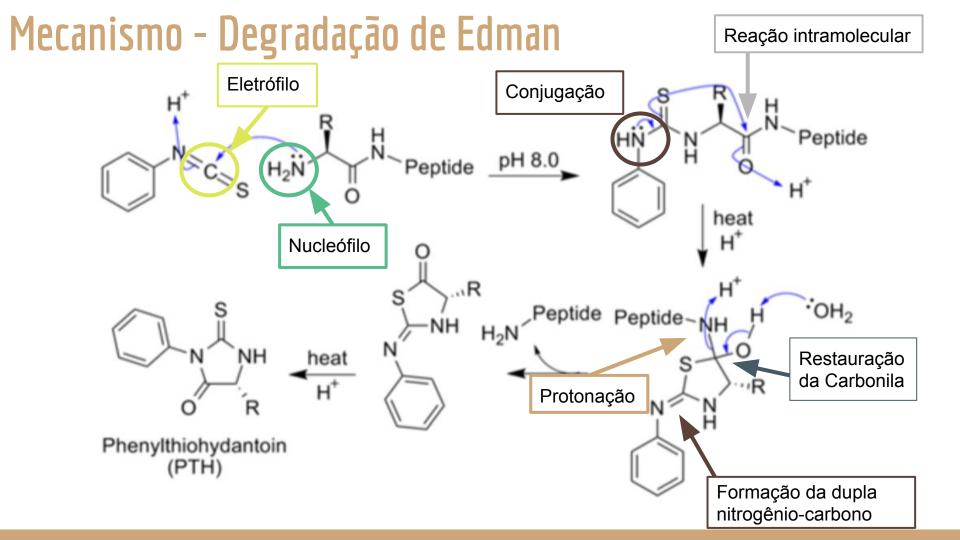
Hidrólise das ligações de amida → degradação da cadeia → aminoácidos livres.


Analisador automático de aminoácidos.

- Coluna com carga negativa → íons carboxilato ou sulfonato
- Mistura acidificada para protonar aminoácidos
- grau de protonação depende da estrutura
- diferentes graus de retenção
- eluição dos ácidos mais rapidamente

2ª etapa: Definição dos aminoácidos

- Resultado é registrado com um cromatograma
- A área sob cada pico é proporcional à quantidade de um aminoácido na mistura.

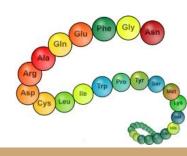

Sequenciamento do peptídeo

DEGRADAÇÃO DE EDMAN → para sequências até 50 aminoácidos

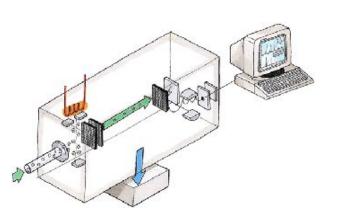
Reagente: Isotiocianato de fenila

Grupo N-terminal liberado adiciona-se ao isotiocianato Derivado da tiouréia

Ácidos fracos transformam o aminoácido livre em uma feniltio-hidantoína, isso deixa o resto do polipeptídeo inalterado. A nova cadeia terá uma nova terminação que vai sofrer nova degradação.


Fracionamento de cadeias longas

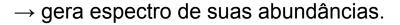
Peptídeos com mais de 50 aminoácidos → *enzimas hidrolíticas* → fragmentos menores de maneira seletiva e previsível


Identifica os aminoácidos mas não a sequência

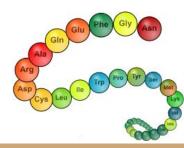
Sequenciamento requer 2ª hidrólise com enzima diferente Superposição de peptídeos

Enzima	Sítio de quebra
Tripsina	Lys, Arg, término carbóxi
Clostripaína	Arg, término carbóxi
Quimotripsina	Phe, Trp, Tyr, término carbóxi
Pepsina	Asp, Glu, Leu, Phe, Trp, Tyr, término carbóx
Termolisina	Leu, Ile, Val, término amino

Espectrometria de Massas



Atualmente é o método de escolha

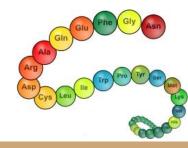

Produz íons (amostra) → separa por massa/carga

As proteínas são fragmentadas predominantemente na ligação peptídica.

Fragmentos de peptídeos gerados diferem sequencialmente da massa de um resíduo de aminoácido e, deste modo, a sua sequência pode ser deduzida.

Sequenciamento e a tecnologia do DNA recombinante

Tecnologia do DNA recombinante



Sequências de bases no DNA diretamente relacionadas à sequência de aminoácidos das proteínas


Automação da análise do DNA — conhecimento obtido pode ser traduzido imediatamente em um estrutura primária de proteína.

Esta técnica permitiu o sequenciamento de milhares de proteínas em poucos anos.

Referências Bibliográficas

- 1. Vollhardt, K.P.C.; Schore, N.E. "Química Orgânica Estrutura e Função" 6ª Edição, 2013.
- Wilson & Walker. Principles and Techniques of Biochemistry and Molecular Biology, 7ed. Página
 328. Disponível em:
 - http://www2.iq.usp.br/docente/miyamoto/DEG 6 Determinacao de estrutura de proteinas.pdf

