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The “escape-and-radiate” hypothesis predicts that antipredator
defenses facilitate adaptive radiations by enabling escape from
constraints of predation, diversified habitat use, and subsequently
speciation. Animals have evolved diverse strategies to reduce the
direct costs of predation, including cryptic coloration and behavior,
chemical defenses, mimicry, and advertisement of unprofitability
(conspicuous warning coloration). Whereas the survival conse-
quences of these alternative defenses for individuals are well-
studied, little attention has been given to the macroevolutionary
consequences of alternative forms of defense. Here we show, us-
ing amphibians as the first, to our knowledge, large-scale empiri-
cal test in animals, that there are important macroevolutionary
consequences of alternative defenses. However, the escape-and-
radiate hypothesis does not adequately describe them, due to its
exclusive focus on speciation. We examined how rates of specia-
tion and extinction vary across defensive traits throughout am-
phibians. Lineages that use chemical defenses show higher rates
of speciation as predicted by escape-and-radiate but also show
higher rates of extinction compared with those without chemical
defense. The effect of chemical defense is a net reduction in di-
versification compared with lineages without chemical defense.
In contrast, acquisition of conspicuous coloration (often used as
warning signals or in mimicry) is associated with heightened spe-
ciation rates but unchanged extinction rates. We conclude that
predictions based on the escape-and-radiate hypothesis must in-
corporate the effect of traits on both speciation and extinction,
which is rarely considered in such studies. Our results also suggest
that knowledge of defensive traits could have a bearing on the
predictability of extinction, perhaps especially important in glob-
ally threatened taxa such as amphibians.
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The idea that defensive traits determine macroevolutionary
patterns was originally suggested in the plant literature (1)

to explain heightened diversity. In this hypothesis, the presence
of repellent chemical defenses was proposed to open up an
“adaptive zone” of diverse ecological opportunities and hence
promote speciation by adaptive radiation. This became known as
the “escape-and-radiate” hypothesis (2). Similarly, it has been sug-
gested that bright coloration can reduce the constraints of hiding,
enabling niche expansion and promoting diversification in animal
prey (3, 4). The escape-and-radiate hypothesis is influential in the
adaptive radiation literature (2, 5, 6) but has been tested surpris-
ingly rarely (6–8). The very few macroevolutionary studies on an-
imal defenses focus only on coloration, are small-scale, and often
only consider net diversification or comparisons of species richness
in relation to the defensive trait of interest (5, 9, 10). For instance,
one recent study on poison dart frogs included defense-based di-
versification analyses as part of an examination of acoustic di-
vergence (10). However, that study was relatively small scale, as it
focused on only one group of frogs with insufficient sample sizes
for some aspects of those analyses (particularly extinction esti-
mates). Diversification consists of two processes—speciation and
extinction—and recent methodological developments (11, 12) en-
able us to investigate each of these in relation to the evolution of a
phenotypic trait. By explicitly modeling the effects of chemical
defense and color variation on speciation and extinction rates
separately, we are able to test the escape-and-radiate prediction

that chemical defense leads to higher diversification rates and to
examine whether escape-and-radiate is able to explain the mac-
roevolutionary effects of defense variation.
Amphibians provide an exceptionally good case study with

which to test the effects of defense variation on macroevolutionary
trends. The phylogenetic history of this species-rich group is now
relatively well resolved (13), they inhabit ecologically diverse
habitats, and include species that use a wide range of antipredator
strategies (14). These defenses include chemical defense, camou-
flage, and conspicuous (aposematic) coloration. Importantly, chem-
ical defense and coloration strategies are not strongly dependent
on each other. On the one hand, some conspicuous species may
not be chemically defended but use mimicry or are conspicuous as
a result of sexual selection. On the other hand, chemical defense
may be effective without advertisement, as many such species are
cryptic (e.g., many toads). This therefore allows us to tease apart
the effect of these two types of defense on diversification. Fur-
thermore, amphibians are currently facing severe threats from
many different sources (15), and therefore information on pre-
dictors of susceptibility to extinction is timely.

Results and Discussion
To carry out to our knowledge the first large-scale, empirical test
of the escape-and-radiate hypothesis in animals, we assembled a
dataset of the presence/absence of chemical defense in amphib-
ians from the literature. Of the 2,871 species investigated, 857 had
available data on the presence/absence of chemical defense. We
then fit a range of trait-dependent models of diversification
and compared them using Akaike’s information criterion (AIC).
Specifically, the set of models we fit were BiSSE (binary state
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speciation and extinction) models that assumed different in-
fluences of the chemical defense on diversification.
In the best-supported model from our analyses, both specia-

tion and extinction rates differ between chemically defended and
nonchemically defended amphibians (Table 1). The speciation
rate for chemically defended lineages is approximately twice as
high as that for nonchemically defended lineages, supporting a
major prediction of the escape-and-radiate hypothesis. Unex-
pectedly, however, extinction rates are three times higher in
lineages with chemical defense than without it (Fig. 1). As a
consequence of this, we found that chemically defended lineages
had a reduction in net diversification rate compared with non-
chemically defended lineages. This result is not anticipated by
the escape-and-radiate hypothesis, suggesting that the hypothesis
may be adequate to predict effects on speciation but inadequate
to predict effects on diversification as a whole. We further note
that chemical defense was gained at a rate an order of magnitude
(∼10- to 20-fold) higher than it was lost (Fig. 1 and Table 1). Our
results are consistent with the observation that many species-rich
amphibian families with a large proportion of threatened species
also have a large number of chemically defended species (e.g.,
Bufonidae and Ambystomatidae) (15).
To enable an investigation of protective coloration strategies

in addition to chemical defenses, we assembled a dataset of
cryptic versus conspicuous coloration in amphibians from the

literature. We also included polymorphism in our dataset for
species that had both cryptic and conspicuous color patterns
within or between populations. Of the 2,871 species investigated,
2,683 had available data on coloration. We fit a similar range of
trait-dependent models of diversification as with chemical de-
fense, and again compared them using AIC. In this case the
models we fit were MuSSE (multistate speciation and extinction)
models, because our dataset had more than the two categories
allowed for BiSSE.
The best-supported model is one in which coloration influ-

enced only speciation rate but not extinction rate (Table 2). The
speciation rate for conspicuous species is two to three times
higher than that for species with cryptic coloration (Fig. 2).
Because extinction rates were equal between coloration strate-
gies, we found that net diversification rate was also higher in
conspicuous than cryptic species (Fig. 2). Polymorphic species
had speciation rates equivalent to that of cryptic species (Fig. 2).
Hence, the macroevolutionary consequences of cryptic colora-
tion and polymorphism are approximately equal. These results
strongly support the hypothesis that conspicuous coloration in-
creases speciation and net diversification rates compared with
other forms of protective coloration. Our results for our color-
ation dataset are therefore in line with predictions from the es-
cape-and-radiate hypothesis (3–5, 9).
It is perhaps counterintuitive to find higher rates of speciation and

diversification in conspicuous compared with cryptic lineages, con-
sidering that a relatively small proportion of amphibians are un-
ambiguously conspicuous (Materials and Methods). However, this is
explained by the transient nature of conspicuousness. While it is
present it increases diversification, but it is usually short-lived and
reverts to crypsis frequently. In support of this interpretation, we
found that transition rates away from conspicuous coloration were
higher than transition rates to conspicuous coloration by a factor of
2 when shifts are to or from polymorphism and a factor of 50 when
shifts are to or from cryptic coloration (SI Appendix, Fig. S1 and
Table S2). Furthermore, transition rates from polymorphic to cryptic
coloration are 3.5-fold higher than from polymorphic to conspicuous
coloration, indicating that polymorphic lineages are 3.5 times more
likely to lose the conspicuous morphs than the cryptic ones. Con-
sequently, the rarity of conspicuous species is a result of frequent
shifts back to cryptic coloration. However, while the lineage is
conspicuous it is expected to experience radiations, although these
are usually relatively small scale due to limited time in this state.
This is likely to have been the case in groups that include many of
the conspicuous species in our dataset, such as Dendrobatidae
and Mantella (48 and 10% of unambiguously conspicuous spe-
cies, respectively). Nevertheless, we stress that despite a pre-
dominance in certain groups, conspicuousness has arisen many
times across amphibian phylogeny including in caecilians, sala-
manders, and frogs.
Dendrobatidae are therefore unusual among conspicuous

species only in the extent of their radiation. This in itself could be

Table 1. Model selection for the influence of chemical defense on diversification

Model K AIC logLik ΔAIC w ER λ0 λ1 μ0 μ1 q01 q10

Full 6 8592.83 −4290.42 0 0.989 1 0.1412 0.2836 0.0846 0.2632 0.0227 0.0010
Null 3 8623.05 −4308.53 30.22 <0.001 3.66e+06 0.2229 — 0.1906 — 0.0061 —

Equal diversification 4 8602.95 −4297.48 10.12 0.006 157.65 0.2255 — 0.1934 — 0.0096 0.0037
Equal speciation 5 8604.93 −4297.46 12.10 0.002 423.64 0.2222 — 0.1900 0.1898 0.0095 0.0037
Equal extinction 5 8604.53 −4297.27 11.70 0.003 347.89 0.2181 0.2221 0.1876 — 0.0088 0.0038
Random trait (min; max) 6 8800.23;

8936.67
−4462.34;
−4394.12

207.40;
343.84

<0.001;
<0.001

1.09e+45;
4.62e+74

ER, evidence ratios (evidence for the best model/evidence for each model); K, number of parameters; logLik, log likelihood; w, Akaike weights (model
probabilities); λ, μ, and q, speciation, extinction, and transition rates, respectively, for species where chemical defense is absent (0) or present (1). Transition
rates are denoted such that qij is the transition rate from state i to state j.

Fig. 1. Posterior distributions of parameter estimates for speciation (A) and ex-
tinction (B) rates of chemically defended (red) and nonchemically defended (blue)
amphibians and for transition rates for gain (red) and loss (blue) of chemical de-
fense in amphibians (C). Net diversification rate (colors as in A and B) is shown
(D). Lines immediately beneath each distribution are 95% confidence intervals.

2 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1509811112 Arbuckle and Speed

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1509811112/-/DCSupplemental/pnas.1509811112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1509811112/-/DCSupplemental/pnas.1509811112.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1509811112


explained by mere stochasticity, or alternatively by certain
characteristics of this lineage that may have acted to enhance
diversification further in dendrobatids. For instance, the in-
teraction of natural and sexual selection with a dynamic de-
mographic history including expansion and population isolation
has been suggested to influence diversification patterns in these
frogs (16, 17). In addition, many of these species have specialist
diets that have been considered to have a diversifying effect on
the group (18, 19). Nevertheless, we used sister clade analyses to
rule out the possibility that our coloration results are driven
largely by particular attributes in clades such as Dendrobatidae
that dominate the conspicuous category. These tests are not
susceptible to false positives resulting from single large clades,
and are discussed in the following paragraph.
We also note that BiSSE and MuSSE analyses may falsely find

an effect of a trait if the pattern is driven by only one or a few large
clades and can be susceptible to different diversification patterns
across the tree (20). To ensure our results are robust to these
potential issues, we corroborated our results with a relatively
powerful sister group analysis: the richness Yule test (see SI Ap-
pendix for further details). This method compares sister clades in
which one clade contains only species with the trait of interest and
its sister contains only species that lack the trait. Sister group
analyses consider each clade as a single data point and so are not
vulnerable to results dominated by a few large clades, as they re-
quire a consistent finding across multiple clades to yield a signifi-
cant result. In all cases, we find that our results are supported (P <
0.05) by these analyses, which strengthens our conclusions derived
from BiSSE and MuSSE modeling. Specifically, sister group
analyses found that chemically defended clades had lower di-
versification rates than nonchemically defended clades, and con-
spicuous clades had higher diversification rates than cryptic clades.
Analyzing defensive traits separately as we have done leaves

open the possibility that chemical defense and coloration in-
teract to affect diversification rates. This could occur due to

synergetic benefits of chemical defense combined with conspic-
uous “warning” coloration in an aposematic display. However,
when we explicitly model an interaction between chemical de-
fense and coloration, we find that the best models support lim-
ited or no interactions on diversification (SI Appendix, Table S1).
Specifically, there are two best models. Neither of these has an
interactive effect on extinction rates, and the difference between
them is that one also lacks an interactive effect on speciation
rates (SI Appendix, Table S1). In addition, although we found a
positive correlation between the presence of chemical defense
and conspicuous coloration (SI Appendix), these traits influence
diversification in different ways (cf. Figs. 1 and 2). Combined,
this evidence strongly indicates that our results for chemical
defense are not being driven by conspicuous coloration and vice
versa. Our results are consequently the first, to our knowledge, to
reveal that different antipredator strategies can have indepen-
dent effects on speciation and extinction.
The escape-and-radiate hypothesis predicts that chemical de-

fense should lead to higher diversification rates. Our results show
that the hypothesis, which is widely cited and used, requires re-
vision because of its failure to account for effects on extinction
rates. We therefore propose that escape-and-radiate should be
seen as one component of a more general hypothesis for the
macroevolutionary effects of antipredator defense that include
both speciation and extinction. In this framework, the escape-
and-radiate hypothesis is a special case when an increased ex-
tinction rate conferred by the trait is of smaller magnitude than
the increase in speciation rates, or when there is either no effect
on extinction rate or it is decreased. However, when a trait leads
to a greater increase in extinction than speciation rates, as we
find for amphibian chemical defense, net diversification rate is
decreased in contrast to predictions from the escape-and-radiate
hypothesis. Therefore, our observations in the present study
suggest that the escape-and-radiate hypothesis can be misleading
if the extinction component of diversification is ignored.

Fig. 2. Posterior distributions of parameter estimates for diversification of amphibians using different protective coloration strategies: Conspicuous species
are in red, cryptic species are in blue, polymorphic species (those with both conspicuous and cryptic forms within or between populations) are in yellow, and
species with uncertain strategies are in gray (these were not used for inference). (A) Speciation rates. (B) Extinction rates. (C) Net diversification rates. Lines
immediately beneath each distribution are 95% confidence intervals.

Table 2. Model selection for the influence of coloration on diversification

Model K AIC logLik ΔAIC w ER λ0 λ1 λ2 μ0 μ1 μ2

Full 20 24969.67 −12464.8 3.62 0.141 6.12 0.0614 0.0535 0.1472 0.0000 0.0027 0.0658
Null 3 25364.48 −12679.2 398.42 <0.001 3.29e+86 0.0675 — — 0.0143 — —

Equal diversification 14 25138.05 −12555.0 172.00 <0.001 2.23e+37 0.0676 — — 0.0145 — —

Equal speciation 17 25065.12 −12515.6 99.07 <0.001 3.26e+21 0.0636 — — 0.0010 0.0515 0.0000
Equal extinction 17 24966.05 −12466.0 0 0.859 1 0.0614 0.0493 0.1093 0.0000 — —

Random trait (min; max) 17 25476.80;
25774.77

−12870.4;
−12721.4

510.75;
808.72

<0.001;
<0.001

1.32e+110;
6.68e+174

λ and μ, speciation and extinction rates for cryptic (0), polymorphic (1), and conspicuous (2) species. Transition rates are not shown here for clarity; see SI
Appendix, Table S2 for further details. Diversification parameters for uncertain states are not shown but were estimated in the models.
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The escape-and-radiate hypothesis predicts that effective
chemical defense opens up adaptive zones in terms of more
niches available for colonization, which ultimately leads to raised
speciation rates. The addition of bright coloration implies that
prey show a reduction in predator-induced “hiding” behavior
and hence greater use of opportunities in a habitat. This in turn
may explain the rise in speciation rates, because ecological op-
portunity can promote speciation (8, 21). In effect, conspicu-
ousness could be an indicator of this mechanism rather than
directly influencing diversification. Alternatively, bright colora-
tion is often associated with mate choice such that sexual se-
lection can act on variation in particular color patterns to drive
heightened speciation via conspicuous sexual signals (22). For
example, in the polymorphic dendrobatid frog Dendrobates pumilio,
males in conspicuously colored populations are more aggressive
in male–male contests and more explorative than those in
cryptically colored populations (23). This could readily facilitate
divergence via intrasexual competition and intersexual mate
preferences. A recent study on birds has also shown that color
polymorphic lineages have higher speciation rates (24), further
highlighting the role that sexually selected color patterns can play
in raising speciation rates.
How can defenses lead to heightened extinction rates? We

suggest four mechanisms that could account for this result. First,
chemical defense may impose particular kinds of costs that render
prey populations vulnerable to other kinds of enemies such as
infectious diseases. This is illustrated in the case of a nymphalid
caterpillar in which investment into chemical antipredator defense
decreases immune function (25). Second, chemically defended
species may radiate by moving into habitats with low carrying
capacities. Such habitats may be resource-poor, and effective de-
fenses could help animals to better exploit such environments by
reducing the need to avoid predators. Although hypothetical, if
this is the case, then moving into areas with low carrying capacities
may make species intrinsically vulnerable to extinction. Third,
recent comparative work shows that chemical defense may cause a
shift toward slower life histories. This could in turn weaken the
resilience of the population to detrimental environmental change
(26, 27) and raise extinction rates. Fourth, ecological correlates of
chemical defense such as diet specialization in Dendrobatidae (28)
may be linked to a greater propensity for extinction. This would
lead to raised extinction rates in chemically defended species as a
corollary, as suggested for specialization in other taxa (29). At
present, the data required to tease these potential explanations
apart are not available in a compiled format that would allow this
to be done. However, the alternatives above provide a plausible
set of hypotheses to explain the strongly supported patterns we
find here.
We also suggest that conspicuousness confers a benefit to

chemically defended lineages on an evolutionary timescale
by offsetting the increased extinction risk. Because effects of
chemical defense and conspicuous coloration on diversification
are independent, when a chemically defended species becomes
conspicuous the increased diversification rate conferred by the
coloration may compensate for the reduced diversification rate
conferred by the chemical defense. This could partly explain the
positive correlation between the presence of the two traits (SI
Appendix, Fig. S2 and Table S4), because chemically defended
lineages without such “diversification compensation” are more
likely to die out than those that also possess conspicuousness.
Therefore, a higher proportion of extant chemically defended
species would be conspicuous than we would expect based on
independent evolution of the traits without this diversification
compensation effect, as such species are less likely to have gone
extinct. Under this scenario, the disproportionate distribution of
conspicuousness among chemically defended species should
manifest itself in the positive correlation that we observe.

Our results also suggest that chemically defended species, all
else being equal, may justifiably be targeted by conservation pro-
grams due to their higher extinction rates. This is perhaps espe-
cially the case for those species lacking conspicuous coloration.
However, practical application of such a strategy relies on the
background extinction rates estimated herein being representative
of contemporary extinction risks. This may or may not be the case,
and likely depends on the underlying explanations for the patterns
observed in macroevolutionary extinction rates. For instance, if
the cause is a slowdown in life history in chemically defended
species, then when those species are faced with a threat such as
habitat loss or disease they may particularly struggle to recover
their populations in the aftermath. Consequently, in that situation,
they may require more conservation effort than an equivalent
nonchemically defended species. Nevertheless, there is consider-
able further research needed to establish whether our results could
be used to inform conservation plans.
Many traits and processes are likely to influence diversification

in any animal group. For instance, previous studies have found
that factors such as latitude (13, 30) and the rise of angiosperm
forests (31) (and consequent diversification of prey) are among
those that have influenced the diversification of amphibians. We
acknowledge that if these traits substantially covary with defensive
traits, then the contributions of each trait to diversification would
be difficult to disentangle, a caveat of all studies of this kind.
However, we note that our aim here was not to investigate the
relative importance of antipredator defense as an influence on
amphibian diversification compared with other traits. Rather, we
set out specifically to examine predictions of a highly influential
macroevolutionary hypothesis for such defenses. We therefore do
not wish to claim that antipredator strategies are the only, or most
important, factor influencing diversification, but rather that it is a
contributing factor that sheds light on our understanding of the
evolutionary consequences of natural enemy interactions.
In summary, we report to our knowledge the first large-scale test

of the diversification predictions of the escape-and-radiate hy-
pothesis in animals. Although there is strong support for its central
prediction of heightened speciation rates, we find that it is a special
case within a more general framework of defense-driven diversifi-
cation that incorporates both speciation and extinction. Specifically,
predictions of the escape-and-radiate hypothesis hold for anti-
predator defenses, providing that the defensive trait does not raise
extinction rates or that it raises extinction rates by a smaller margin
than it raises speciation rates. Finally, we stress that, overall, an-
tipredator defense often consists of multiple components, which
can have independent and contrasting effects on diversification.
Only large-scale investigations such as this study will be able to
elucidate the overall impact on evolutionary diversification.

Materials and Methods
We used a recent, relatively comprehensive, and well-resolved phylogeny of
amphibians (13) for this study that includes over 40% of currently known
amphibian diversity spanning all major clades. We then assembled a large
dataset by searching published literature for information on the presence or
absence of chemical antipredator defenses and for images from which to as-
sess coloration for each of the 2,871 species contained in the phylogeny.
Chemical defense data were available for 857 species and coloration data were
available for 2,683, providing a large and well-sampled dataset for all analyses
contained herein.

Data Collection. We used both searchable literature and hard-copy books to
obtain data on chemical antipredator defense for all amphibian species for
which we had phylogenetic data (i.e., that were included in the tree). For
searchable literature, we used the following search terms on a range of online
literature databases and search engines such as Web of Science and Google
Scholar (where “species”was substituted for the name of each species in turn):
(“species” OR “synonyms”) AND (“chemical defense” OR toxin OR venom OR
poison OR “skin secretion”).
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Because amphibian taxonomy has been revised a great deal, we included
all nomenclatural synonyms in the first part of the search term, replacing
“synonyms” in the search term above. Synonymy lists were obtained from
the Amphibian Species of the World database. Our search term was
designed to generate a broad search so as not to exclude any literature.
Every hit was then inspected manually to extract any information on the
presence or absence of chemical defenses contained in each publication. In
other words, we recorded data from literature where species were found to
possess a chemical defense or where no such defenses were found after
investigation by a set of authors. Of the 857 species for which we found data
on chemical defense, 35% were found not to possess chemical antipredator
defense whereas 65% did. The defenses themselves can be either bio-
synthesized by the amphibians, sequestered from the diet, or both. A full list
of all publications from which we obtained data is available in SI Appendix.

Judgments of coloration can be dependent on the observer’s visual system
and other biological and situational factors, making them unavoidably sub-
jective to some degree. However, visual classification by human observers is a
commonly usedmethod to study animal color patterns in the literature (10, 19,
28). Perhaps most notably, coding of coloration based on the human visual
system cannot account for UV colors (32), although we acknowledge that UV
could also contribute to diversification dynamics. The detailed spectrographic
data required to investigate this fully were neither available nor feasible to
collect on this scale, but it is likely that useful information can be obtained
from visible (to the human eye) colors. Indeed, the fact that we found asso-
ciations between our color categories and diversification in this study strongly
suggests that our human-biased scorings are meaningful. Nevertheless, we
took steps to ensure our coloration scores were as robust as possible. First, we
began with an extensive a priori definition of our basic coloration categories
(cryptic or conspicuous), which was as follows.

A species is deemed to have conspicuous coloration if it possesses bright or
contrasting patterns that create a distinctive appearance that draws the
attention of the observer, at least at close range. This often involves a
combination of black with bright yellow, red, green, blue, or white, although
single bright colors may also be judged conspicuous if they appear to make
the animal stand out against its typical environment. In contrast, species were
rated as cryptic when their color pattern renders them subjectively camou-
flaged, often consisting of brown, green (in arboreal species), or mottled
patterns. Because some bright patterns may function as disruptive coloration
and thus provide camouflage, where this is suspected, coloration is recorded
as “uncertain” to remain conservative. Similarly, polymorphic species with
both cryptic and conspicuous morphs were recorded as such.

We then randomly selected 50 amphibian species using a random number
generator and obtained photos of each of these. This set of 50 photos was
given to three observers to score independently as either cryptic or con-
spicuous, along with the definition above. Note that only these two codings
were allowed, not uncertain, and so this initial assessment of interobserver
variability is less conservative than the actual procedure used during data
collection. Nevertheless, full agreement was found for ∼95% of species, and
so coding of coloration was at least consistent among human observers and
therefore not overly subjective. Consequently, data collection for both
chemical defense and coloration was undertaken by one observer. Photos
were obtained from various literature and online sources as well as directly
from live animals as available for each species. As many photos as possible
were obtained for each species to assess the variability within a species. This
was to ensure that we were able to detect polymorphism, which we recor-
ded as such if some color forms were conspicuous and others were cryptic.
Although we used a diverse search strategy, major online sources of images
included AmphibiaWeb, Arkive, www.iucnredlist.org, and Google Images.
Of the 2,683 species for which we found data on coloration, 88% were
judged cryptic, 4% were conspicuous, 6% were polymorphic, and 2% were
considered uncertain. For some supplementary analyses to ensure results
were robust to uncertainty in evaluation of color categories, we recoded
ambiguous species first as cryptic and then as conspicuous (see below for
details). Coding ambiguous species as cryptic gave 96% cryptic and 4%
conspicuous species in the dataset, whereas coding ambiguous species as
conspicuous gave 88% cryptic and 12% conspicuous species. Results from
these alternative codings, which represent both extremes of bias, are con-
sistent with our main results (see below and SI Appendix, Table S3). This
suggests that our findings are robust to such uncertainty in color pattern
coding. Data used in the analyses in this paper are available as a csv file from
dx.doi.org/10.6084/m9.figshare.1248938.

Diversification Models.We used amodel-based inference approach (sensu ref.
33) based on extensions and modifications of binary state speciation and
extinction models (11). The extensions of the BiSSE model used in this study

allow analyses of characters with more than two states (multistate specia-
tion and extinction), testing for interactions of different traits on di-
versification and accounting for incomplete sampling (12). All diversification
models were fit in R package diversitree version 0.9-7 (12).

BiSSE models fit speciation (λ) and extinction (μ) rates for each state of a
binary character, giving four diversification parameters in total: λ0, λ1, μ0,
and μ1. Transition rate parameters are also estimated for the rate of shift
from state 0 to state 1 (q01) and from state 1 to state 0 (q10). Therefore, the
full BiSSE model contains six parameters, which can then be constrained to
test particular hypotheses. MuSSE models are simple extensions to BiSSE
whereby speciation and extinction rates are estimated for more than two
states and transition rates are estimated for shifts between all states.

MuSSE multitrait models, which we use here to test for interactive effects
of chemical defense and coloration on diversification, use a different pa-
rameterization that is more akin to a general linear model framework. A
“background” rate for speciation and extinction equivalent to the intercept
in a linear model is estimated. Coefficients representing changes attribut-
able to trait 1 (i.e., chemical defense) and trait 2 (i.e., coloration) are esti-
mated, as are coefficients representing an interaction between the two
traits. Finally, as with BiSSE and MuSSE models, transition rates between
each combination of states are also estimated.

There has been a call for caution when estimating extinction rates from
molecular phylogenies (34). However, all of the models we implemented
have been shown to give accurate estimates in simulations, provided that
sample sizes are sufficiently large (over ca. 400 species for extinction rates,
which are the most difficult parameters to estimate) (11, 35). Sample sizes
for all analyses in this paper were far in excess of those required to derive
accurate estimates, as we had 2,871 species in the phylogeny in total, 2,683
with data for coloration and 857 with data on chemical defense.

For both chemical defense (BiSSE) and coloration (MuSSE) data, we fit a set
of five models designed to test whether and how these traits influence di-
versification of amphibian lineages: (i) a “full” model including all param-
eters with no constraints; (ii) a “null” model assuming no influence of the
trait and equal transition rates with all speciation, extinction, and transition
rates constrained to be equal; (iii) an “equal diversification”model assuming
no influence on speciation or extinction but allowing unequal transition
rates with all speciation and extinction rates constrained to be equal; (iv) an
“equal speciation” model assuming an influence on extinction but not
speciation with all speciation rates constrained to be equal; and (v) an
“equal extinction” model assuming an influence on speciation but not ex-
tinction with all extinction rates constrained to be equal. In all cases, we
accounted for missing species by including information on the proportion of
amphibian species sampled and for missing data by assuming that the pro-
portion of species in each state for a given trait was equal to the observed
frequencies. This approach is commonly used in such analyses, but assumes
random sampling of species. To assess whether this assumption is reason-
able, we tested for a correlation between total species richness and sampled
species richness across the 74 currently recognized families of amphibians. In
line with this assumption, we found strong correlations of these measures in
both our chemical defense (r = 0.76, t = 9.78, P = 7.6e-15) and coloration (r =
0.94, t = 23.19, P < 2.2e-16) datasets.

Each of the above models was fit with maximum likelihood (ML), and
comparisons were made within each model set using an information theory
approach. The evidence for each model was quantified using ΔAIC scores
(difference in Akaike information criteria between each model and the
“best” one as defined as that with the lowest AIC score), model probabilities
(or “Akaike weights”), and evidence ratios (the ratio of model probabilities
for the best model compared with each other model in turn). Although
there is limited consensus on exact values, a ΔAIC of 3–5 is often considered
reasonable support for one model over another, 5–10 is often considered
strong support, and >10 is often considered very strong support. This ap-
proach provides an explicit and ready means of comparing the strength of
support for the models within our model sets.

Because a large phylogeny will almost always have high heterogeneity in
diversification rates (36), it is possible that any “multirate”model (such as BiSSE
or MuSSE) will be favored over a single-rate model such as the null models
described above, even for an arbitrary trait. To rule out this possibility and
provide additional evidence that our results are indeed a consequence of the
traits in question, we used a randomization approach. Specifically, we ran-
domly distributed a trait with the same properties (i.e., frequency distribution
and number of states) as our observed data over the tips of the phylogeny 100
times. For each of these 100 randomly distributed traits, we fit the best model
and list the minimum and maximum values obtained for our model compar-
ison statistics. Such an approach makes use of an identical trait in all senses
other than its association with diversification rates (as a result of decoupling
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the trait from the tree structure) to separate arbitrary preference of multirate
models from the preferred multirate model for our observed data.

To ensure our coding of coloration was robust given the subjective ele-
ment of judging conspicuousness, we recoded all ambiguous species first as
though they were cryptic and then as though they were conspicuous. We
then followed the same analytical procedure as above using BiSSE models.
This enabled us to investigate both extremes of bias: toward either cryptic or
conspicuous judgments. The results from these analyses were qualitatively
identical to the MuSSE models using our original coding scheme, and are
presented in SI Appendix, Table S3.

To incorporate uncertainty in parameter estimates and therefore allow a
more robust inference from our models, we also fit the full models using
Markov chain Monte Carlo (MCMC). Our MCMC analyses essentially followed
the guidelines in the diversitree manual and help files (cran.r-project.org/
web/packages/diversitree) and used an unbounded prior but with in-
formative starting parameters (the ML estimates). We initially ran a Markov
chain for 1,000 steps to optimize the step size and subsequently used this
optimized value in the final MCMC run of 15,000 steps. We conservatively
discarded the first 5,000 posterior samples for further analysis and so used
the posterior distributions of the last 10,000 MCMC samples for inference.
However, we note that qualitatively identical results were achieved using
the entire posterior sample in both the BiSSE and MuSSE models. The pos-
terior distributions were then visualized along with their 95% confidence
intervals to allow intuitive and robust interpretation of the results.

For our MuSSE multitrait models, we adopted a different model set to
reflect our different aim, that is, to assess evidence for an interactive effect
between chemical defense and coloration on diversification rather than to
infer each trait’s influence. We fit a set of four models using ML wherein
constraints were only imposed on the interaction coefficients: (i) a model

including all interactions with no constraints; (ii) a model assuming no in-
teractive effect on diversification with the interaction coefficients for spe-
ciation and extinction rates constrained to equal zero; (iii) a model assuming
no interactive effect on speciation but allowing for one on extinction with
the interaction coefficient for speciation constrained to equal zero; and (iv) a
model assuming no interactive effect on extinction but allowing for one on
speciation with the interaction coefficient for extinction constrained to
equal zero. Models were compared using the same information theoretic
approach as for our BiSSE and MuSSE models described earlier.

We note that a recent paper has highlighted that significant results can be
obtained with the BiSSE class of models when the trait has only one or a few
origins in the phylogeny, even when no significant effect of the trait on
diversification exists (20). However, chemical defense has originated many
times independently across the phylogeny (SI Appendix, Fig. S3), and col-
oration similarly has many origins. Such a distribution, combined with our
sister group analyses, which are not susceptible to this issue, suggests that
our analyses are robust to the problems highlighted here. We also note that
we used information theory rather than P values for inference, and so our
results are less likely to be misinterpreted based on highly significant but not
very informative model outputs, a problem in any large dataset.

ACKNOWLEDGMENTS. We thank R. A. Pyron for providing a copy of the
dated amphibian phylogeny prior to its publication and R. Ward for giving
permission to use his photo of Dendropsophus leucophyllatus, which appears
in SI Appendix, Fig. S2. We also thankM. Begon, M. Berenbrink, M. Brockhurst,
T. A. R. Price, and J. Rees for constructive comments on the manuscript.
M. Pennell suggested improvements to the manuscript, which were gratefully
received and helped strengthen our conclusions further. K.A. was funded by a
doctoral training grant from the Natural Environment Research Council.

1. Ehrlich P, Raven P (1964) Butterflies and plants: A study in coevolution. Evolution
18(4):586–608.

2. Schluter D (2000) The Ecology of Adaptive Radiation (Oxford Univ Press, Oxford).
3. Merilaita S, Tullberg BS (2005) Constrained camouflage facilitates the evolution of

conspicuous warning coloration. Evolution 59(1):38–45.
4. Speed MP, Brockhurst MA, Ruxton GD (2010) The dual benefits of aposematism:

Predator avoidance and enhanced resource collection. Evolution 64(6):1622–1633.
5. Vamosi SM (2005) On the role of enemies in divergence and diversification of prey: A

review and synthesis. Can J Zool 83(7):894–910.
6. Agrawal AA, et al. (2009) Evidence for adaptive radiation from a phylogenetic study

of plant defenses. Proc Natl Acad Sci USA 106(43):18067–18072.
7. Farrell B, Dussourd D, Mitter C (1991) Escalation of plant defense: Do latex and resin

canals spur plant diversification? Am Nat 138(4):881–900.
8. Weber MG, Agrawal AA (2014) Defense mutualisms enhance plant diversification.

Proc Natl Acad Sci USA 111(46):16442–16447.
9. Przeczek K, Mueller C, Vamosi SM (2008) The evolution of aposematism is accom-

panied by increased diversification. Integr Zool 3(3):149–156.
10. Santos JC, et al. (2014) Aposematism increases acoustic diversification and speciation

in poison frogs. Proc Biol Sci 281(1796):20141761.
11. Maddison WP, Midford PE, Otto SP (2007) Estimating a binary character’s effect on

speciation and extinction. Syst Biol 56(5):701–710.
12. FitzJohn RG (2012) diversitree: Comparative phylogenetic analyses of diversification

in R. Methods Ecol Evol 3(6):1084–1092.
13. Pyron RA, Wiens JJ (2013) Large-scale phylogenetic analyses reveal the causes of high

tropical amphibian diversity. Proc Biol Sci 280(1770):20131622.
14. Duellman WE, Trueb L (1994) Biology of Amphibians (McGraw-Hill, New York).
15. Stuart SN, et al. (2004) Status and trends of amphibian declines and extinctions

worldwide. Science 306(5702):1783–1786.
16. Cummings ME, Crothers LR (2013) Interacting selection diversifies warning signals in a

polytypic frog: An examination with the strawberry poison frog. Evol Ecol 27(4):
693–710.

17. Gehara M, Summers K, Brown JL (2013) Population expansion, isolation and selection:
Novel insights on the evolution of color diversity in the strawberry poison frog. Evol
Ecol 27(4):797–824.

18. Saporito RA, Donnelly MA, Garraffo HM, Spande TF, Daly JW (2006) Geographic and
seasonal variation in alkaloid-based chemical defenses of Dendrobates pumilio from
Bocas del Toro, Panama. J Chem Ecol 32(4):795–814.

19. Saporito RA, et al. (2007) Spatial and temporal patterns of alkaloid variation in the
poison frog Oophaga pumilio in Costa Rica and Panama over 30 years. Toxicon 50(6):
757–778.

20. Maddison WP, FitzJohn RG (2015) The unsolved challenge to phylogenetic correlation
tests for categorical characters. Syst Biol 64(1):127–136.

21. Losos JB, Mahler DL (2010) Adaptive radiation: The interaction of ecological oppor-
tunity, adaptation, and speciation. Evolution Since Darwin: The First 150 Years, eds
Bell MA, Futuyma DJ, Eanes WF, Levinton JS (Sinauer, Sunderland, MA), pp 934–943.

22. Higashi M, Takimoto G, Yamamura N (1999) Sympatric speciation by sexual selection.
Nature 402(6761):523–526.

23. Rudh A, Breed MF, Qvarnström A (2013) Does aggression and explorative behaviour
decrease with lost warning coloration? Biol J Linn Soc Lond 108(1):116–126.

24. Hugall AF, Stuart-Fox D (2012) Accelerated speciation in colour-polymorphic birds.
Nature 485(7400):631–634.

25. Smilanich AM, Dyer LA, Chambers JQ, Bowers MD (2009) Immunological cost of
chemical defence and the evolution of herbivore diet breadth. Ecol Lett 12(7):
612–621.

26. Davidson AD, Hamilton MJ, Boyer AG, Brown JH, Ceballos G (2009) Multiple eco-
logical pathways to extinction in mammals. Proc Natl Acad Sci USA 106(26):
10702–10705.

27. Hutchings JA, Myers RA, García VB, Lucifora LO, Kuparinen A (2012) Life-history
correlates of extinction risk and recovery potential. Ecol Appl 22(4):1061–1067.

28. Santos JC, Coloma LA, Cannatella DC (2003) Multiple, recurring origins of aposema-
tism and diet specialization in poison frogs. Proc Natl Acad Sci USA 100(22):
12792–12797.

29. McKinney ML (1997) Extinction vulnerability and selectivity: Combining ecological
and paleontological views. Annu Rev Ecol Syst 28:495–516.

30. Wiens JJ (2007) Global patterns of diversification and species richness in amphibians.
Am Nat 170(Suppl 2):S86–S106.

31. Roelants K, et al. (2007) Global patterns of diversification in the history of modern
amphibians. Proc Natl Acad Sci USA 104(3):887–892.

32. Eaton MD (2005) Human vision fails to distinguish widespread sexual dichromatism
among sexually “monochromatic” birds. Proc Natl Acad Sci USA 102(31):10942–10946.

33. Anderson DR (2008)Model Based Inference in the Life Sciences: A Primer on Evidence
(Springer, New York).

34. Rabosky DL (2010) Extinction rates should not be estimated from molecular phylog-
enies. Evolution 64(6):1816–1824.

35. Davis MP, Midford PE, MaddisonW (2013) Exploring power and parameter estimation
of the BiSSE method for analyzing species diversification. BMC Evol Biol 13:38.

36. Rabosky DL (2009) Ecological limits on clade diversification in higher taxa. Am Nat
173(5):662–674.

6 of 6 | www.pnas.org/cgi/doi/10.1073/pnas.1509811112 Arbuckle and Speed

http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1509811112/-/DCSupplemental/pnas.1509811112.sapp.pdf
http://cran.r-project.org/web/packages/diversitree
http://cran.r-project.org/web/packages/diversitree
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1509811112/-/DCSupplemental/pnas.1509811112.sapp.pdf
http://www.pnas.org/lookup/suppl/doi:10.1073/pnas.1509811112/-/DCSupplemental/pnas.1509811112.sapp.pdf
www.pnas.org/cgi/doi/10.1073/pnas.1509811112


1 
 

Supplementary Material for "Antipredator Defences Predict Diversification Rates" 

 

Table S1 - Model selection table for MuSSE multitrait models looking for an interactive 

effect of chemical defence and colouration on diversification. 

Table S2 - Transition rate parameters from the full MuSSE model investigating the 

influence of different colouration strategies on diversification.  

Table S3 - Model selection table for BiSSE models on colouration when ambiguous 

species were coded as either cryptic or conspicuous in order to examine the robustness 

of our results to our coding scheme. 

Figure S1 - Posterior distributions of the transition rate parameters from MCMC 

analysis of the full MuSSE model investigating the influence of different colouration 

strategies on diversification. 

Correlated evolution between chemical defence and colouration - additional 

analyses demonstrating the correlated evolution of these traits, despite their 

independent effects on diversification.  

Sister group comparisons - results from richness Yule tests comparing the diversity of 

sister clades in which one sister has a trait and the other lineage does not. 

Figure S3 - Ancestral state reconstruction of chemical defence. 

Data references - References from which the data were obtained. 
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Table S1 – Model selection table for the interactions between chemical defence and 
colouration (cryptic versus conspicuous) on diversification. K = number of 
parameters;;  AIC  =  Akaike  information  criteria;;  ∆AIC  =  difference  in  AIC  from  the  best  
model; w = Akaike weights (model probabilities); ER = evidence ratios (evidence for 
the best model/evidence for each model). 
 
Model K AIC logLik ∆AIC w ER 
All interactions 15 8807.67 -4388.84 52.36 <0.001 2.35E+11 
No diversification interaction 13 8757.31 -4365.65 2 0.269 2.71 
No speciation interaction 14 8824.80 -4398.40 69.49 <0.001 1.23E+15 
No extinction interaction 14 8755.31 -4363.66 0 0.731 1 
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Table S2 – Maximum likelihood estimates of the transition rate parameters 
estimated in the full MuSSE model for colouration. See Figure S1 for posterior 
distributions of these same parameters as estimated by MCMC. 
 
Transition 
from 

Transition 
to 

ML 
estimate 

Uncertain Cryptic 0.0055 
Polymorphic 0.0048 
Conspicuous 0.0001 

Polymorphic Uncertain 0.0036 
Cryptic 0.0209 
Conspicuous 0.0059 

Cryptic Uncertain 0.0006 
Polymorphic 0.0015 
Conspicuous 0.0003 

Conspicuous Uncertain 0.0079 
Polymorphic 0.0113 
Cryptic 0.0150 
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Table S3 – Model selection table for the influence of colouration on diversification when ambiguous species are coded as cryptic 
(con0  model  set)  or  conspicuous  (con1  model  set).  K  =  number  of  parameters;;  AIC  =  Akaike  information  criteria;;  ∆AIC  =  difference 
in AIC from the best model; w = Akaike weights (model probabilities); ER = evidence ratios (evidence for the best model/evidence 
for  each  model);;  λ,  μ,  q  =  speciation,  extinction,  and  transition  rates  for  species  where  colouration  is  cryptic  (0)  or  conspicuous (1). 
Transition rates are denoted such that qij is the transition rate from state i to state j. 
 
 
Model (con0) K AIC logLik ∆AIC w ER λ0 λ1 μ0 μ1 q01 q10 
Full 6 23670.98 -11829.49 112.07 <0.001 2.17E+24 0.0594 0.1714 0.0000 0.1648 0.0013 0.0023 
Null 3 23799.82 -11896.91 240.92 <0.001 2.07E+52 0.0656 - 0.0126 - 0.0007 - 
Equal diversification 4 23719.27 -11855.63 160.36 <0.001 6.64E+34 0.0653 - 0.0121 - 0.0007 0.0242 
Equal speciation 5 23695.63 -11842.82 136.73 <0.001 4.89E+29 0.0606 - 0.0010 0.0470 0.0010 0.0058 
Equal extinction 5 23558.90 -11774.45 0 1 1 0.0592 0.1818 0.0239 - 0.0015 0.1473 

 
Model (con1) K AIC logLik ∆AIC w ER λ0 λ1 μ0 μ1 q01 q10 
Full 6 24547.92 -12267.96 0 0.998 1 0.0612 0.0985 0.0000 0.0812 0.0040 0.0044 
Null 3 24705.56 -12349.78 157.64 <0.001 1.70E+34 0.0658 - 0.0128 - 0.0027 - 
Equal diversification 4 24602.86 -12297.43 54.94 <0.001 8.51E+11 0.0658 - 0.0128 - 0.0021 0.0169 
Equal speciation 5 24560.83 -12275.41 12.90 0.002 633.80 0.0616 - 0.0000 0.0384 0.0034 0.0067 
Equal extinction 5 24610.30 -12300.15 62.38 <0.001 3.51E+13 0.0518 0.1419 0.0185 - 0.0051 0.1102 
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Figure S1 – Posterior distributions of transition rates from MCMC analysis of the full 
MuSSE model for colouration. Lines immediately beneath each distribution are 95% 
confidence intervals and, as well as being colour matched, are in the same vertical 
order as the legend. Note in particular the relatively high rate of loss of 
conspicuousness by reverting straight to a cryptic state. Furthermore, the 95% 
confidence intervals of some transitions overlap zero (including cryptic-conspicuous 
and polymorphic-cryptic, although the latter has a wider range). Taken together, 
these transition rates imply that cryptic lineages first shift to a polymorphic state, 
from which they commonly change to conspicuous only. Once conspicuous, 
reversions to polymorphism can occur but a direct reversion to cryptic colouration is 
far more common. 
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Correlated Evolution Between Chemical Defence and Colouration 
 
We tested for correlated evolution between our two traits of interest (chemical 
defence and colouration) since they are often reported to coevolve (including in 
poison dart frogs; Summers and Clough, 2001) and understanding the relationship 
between the traits may inform discussion and interpretation of analyses which use 
both traits. We used two alternative methods and find evidence for correlated 
evolution with both. Firstly, we fit Pagel's (1994) models of correlated and 
independent evolution in the corHMM package in R (Beaulieu et al., 2014), and 
assessed the fit of these models using AICc scores (the best model considered to be 
that with the lowest AICc). Since these models require binary traits, we first 
converted our colouration data to binary format. Because 'ambiguous' (e.g. 
polymorphic) lineages tend to show evolutionary patterns indistinguishable from 
cryptic lineages, we considered those as cryptic, and only those which we coded as 
such to be conspicuous in the following analyses. However, we also ran models with 
the alternative extreme coding ('ambiguous' colouration considered to be 
conspicuous) and obtained qualitatively identical results. The best model 
represented correlated evolution (AICc = 1057.694, cf. AICc = 1088.119 for an 
independent evolution model) and is visually displayed in Figure S2 using flow 
diagrams - a standard way to present such models (Pagel and Meade, 2006). 
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Figure S2 - Flow diagram showing the correlated evolution of chemical defence and 
conspicuousness in amphibians. Arrow thickness is related to transition rate (thicker 
arrows, higher transition rate) and grey arrows represent very small (but non-zero) 
transition rates. 
 
 
Secondly, we fit generalised estimating equation (GEE) models to account for 
phylogeny, with colouration as the response variable and chemical defence as the 
explanatory variable. A null model (intercept only) was also fit to assess whether the 
first model explained the data well. The models were compared using QIC - an 
equivalent criteria to AIC for GEE models which similarly gives a lower score for 
better models). GEEs were fit in the ape package in R (Paradis et al., 2004). 
Consistent with the Pagel's models, we found that chemical defence was a 
significant predictor of conspicuous colouration (Table S4), and that this model was 
far better than the null model (QIC = 440.00, cf. QIC = 492.47 for the null model). 
 
 
 
Table S4 – Results from a phylogenetic GEE model with conspicuousness as the 
response variable and chemical defence as the explanatory variable. Model was run 
on all species for which we had data on both colouration and chemical defence (N = 
857). 
Model term Coefficient (Std Err) t P 
Intercept -6.381 (1.003) -6.363 4.57e-9 
Chemical defence 4.234 (1.011) 4.189 5.65e-5 

 
 
 
Both of these analyses strongly support a model of correlated evolution between 
colouration and chemical defence wherein chemically defended species are more 
likely to be conspicuous and vice versa. However, there are also many exceptions 
and hence we were still able to recover independent effects of these two traits on 
diversification in amphibians (see main text). 
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Sister Group Comparisons 
 
In order to check whether our results obtained from BiSSE and MuSSE models could 
be corroborated by other methods, we used sister groups analysis to compare the 
diversity in sister lineages which differ by trait. Paradis (2011) developed a new 
sister group method (the 'richness Yule test') and compared it to existing 
alternatives. He found the richness Yule test to be more powerful than other 
approaches and so we used this method to ask whether we find the same effects of 
chemical defence and colouration on net diversification as we did using BiSSE and 
MuSSE models. 
 Lineages with chemical defence had fewer species than sister groups that did 
not (χ2 = 7.7269, df = 1, P = 0.0054). The method requires binary traits, so 
colouration was coded as for the correlation analyses in the previous section. 
Nevertheless, conspicuous lineages had more species than cryptic lineages whether 
ambiguous species were treated as cryptic (χ2 = 4.0311, df = 1, P = 0.0447) or 
conspicuous (χ2 = 11.9799, df = 1, P = 0.0005). Therefore, in all cases, results were 
the same between the richness Yule tests and the BiSSE/MuSSE models.  
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test. Evolution 66:288 - 295
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Figure S3 – Ancestral state reconstruction for chemical defence based on the 
parameters from the best BiSSE model. Colours refer to the probability that chemical 
defence was present in the branch. Note that chemical defence has evolves many 
times across the phylogeny.  
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