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Abstract
This paper provides a critical review of the methods for estimating static discrete

games and their relevance for quantitative marketing. We discuss the various mod-
eling approaches, alternative assumptions, and relevant trade-o¤s involved in taking
these empirical methods to data. We consider both games of complete and incomplete
information, examine the primary methods for dealing with the coherency problems
introduced by multiplicity of equilibria, and provide concrete examples from the litera-
ture. We illustrate the mechanics of estimation using a real world example and provide
the computer code and dataset with which to replicate our results.
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1 Introduction

Marketing is about understanding, predicting and in�uencing the behavior of consumers

and �rms. Each face many interrelated decisions. Individual consumers decide what brands

to purchase, how much to buy, where to make their purchases and with whom to enjoy

them. Firms choose which products to o¤er and what prices to charge, how to position

and promote their brands, whom to hire and how to compensate them, and how much to

invest in the continued growth of their enterprise. Most of these decisions involve strategic

interactions: neither �rms nor consumers act in a vacuum. Consumers may care about what

their family and peers think of their choices, who else has purchased the product before

them, whether it has received favorable reviews, the reputation of the seller, and whether

complementary products are or will become available. Firms must consider the strategic

reactions of the other players as well. Will a price increase be matched? Will consumers

remain loyal to its products? How will its salespeople respond to incentives? Can a rival

simply copy its business model? These are all strategic decisions.

The interrelated nature of these decisions suggests modeling them as strategic games.

The precise structure of the game will clearly depend on the particular application. The

game might be either static or dynamic, involve decisions (control variables) that are discrete

or continuous (or mixed), and information settings that are either complete or incomplete.

By estimating the structural parameters that govern these games, we can recover valuable

information about the participants�payo¤s (and costs) and make predictions concerning

outcomes that are not observed in the data. Our focus here is on a particular subclass of

strategic interactions: static discrete games. The purpose of this article is to summarize the

current state of the art in analyzing these games, highlight the relevant trade-o¤s between

alternative approaches, and identify areas that are ripe for further exploration. This is a

decidedly applied piece, aimed at explaining how to estimate games as well as why they

should be utilized. To ease the transition from learning to doing, we illustrate the nuts and

bolts of estimation with a real world example: an entry game between Wal-Mart and Kmart.

Using data on their actual choices, we construct estimators illustrating several canonical

methods, and provide documented computer code with which to replicate our results.

We have chosen to focus on a narrow slice of the empirical games literature, namely
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static discrete games. Although the relevant decision variables are often continuous (e.g.

prices, advertising), our focus on discrete actions is driven by three considerations. First,

the empirical structure of discrete games is particularly complex, as it naturally involves

decision rules that take the form of inequalities, as opposed to �rst order conditions. Thus,

discrete games require a unique set of econometric tools. Second, many strategic decisions

are naturally discrete (e.g. entry) and provide the only avenue by which to identify certain

critical constructs (e.g. �xed costs). Third, the available data characterizing outcomes is

often discrete, and it is useful to understand what we can and cannot learn from discrete

choice data alone. Later, we will brie�y consider what can be accomplished with richer data

structures. Finally, our decision to focus on static games simply re�ects the constraints of

space and the desire to target an audience that is new to the study of games and looking

for a reasonable jumping o¤ point.

Our analysis follows the timeline of the literature, beginning with static games of com-

plete information, and the pioneering work of Bresnahan and Reiss (1990, 1991) and Berry

(1992). We �rst discuss the speci�c econometric problems that arise in games (of either

information structure), namely that the interdependent nature of the underlying decision

problems gives rise to multiple equilibria. This leads to a coherency problem in which the

mapping from parameters to outcomes is non-unique, substantially complicating estimation.

We discuss the four leading solutions to the coherency problem in detail, along with speci�c

examples of each that are drawn from the extant literature. We conclude this �rst section

with a working example implementing two canonical estimators on a real-world dataset.

Next, we turn to games of incomplete information, describing �rst how the information

structure impacts the both the equilibrium concept and the method of solution. We then

introduce the various methods of estimation, once again highlighting the role of multiplicity

and its implications for correctly specifying the empirical model. We discuss several empir-

ical examples from the literature and conclude by revisiting our working example under the

alternative assumption of incomplete information. Finally, we conclude with a discussion

of extensions to the basic empirical frameworks and directions for future research.

The paper is organized as follows. Section 2 provides a general introduction to empir-

ical games, highlighting the various information and timing assumptions, and introduces

our working example. Section 3 examines games of complete information. We discuss the
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primary methods of estimation, provide concrete examples from the literature, and illus-

trate implementation using our working dataset. Section 4 considers incomplete information

games. We highlight the various estimation methods, review applications from the litera-

ture, and return to our working example to illustrate the mechanics. Section 5 considers

extensions to the baseline models and directions for future research. Section 6 concludes.

2 A Taxonomy of Discrete Games

Discrete games concern choices made from a �nite set of alternatives, where the payo¤s

from making each choice depend on the decisions of other players. That is, they are discrete

choice models with strategic interactions. The canonical example is entry into a market, but

other applications have included the timing of radio commercials, a supermarket�s choice of

pricing strategy, an ice cream manufacturer�s choice of �avors, and an individual�s decision

to join a group. While researchers sometimes have access to richer data (beyond a discrete

choice of action) such as price, quantity or cost information, most applications to date

have focused on pure discrete choice data and employed a latent payo¤ structure, relying

on revealed preference arguments to motivate the analysis. We will consider richer data

structures later, but for now will assume that all choices are discrete and payo¤s purely

latent.

A critical consideration when formulating a discrete game involves specifying each

player�s information set and relevant time horizon (as well as what the researcher observes

and does not observe). With regard to the players� information sets, there are two main

approaches: complete information and incomplete information. Under the complete in-

formation setting, the researcher assumes that the players observe everything about each

other�s payo¤s (including any covariates that are unobserved by the researcher) and there-

fore face no uncertainty regarding the payo¤s of their rivals. The relevant equilibrium

concept is Nash equilibrium and the standard approach is to focus on pure strategies.1 Un-

der the incomplete information setting, the players are instead uncertain about the payo¤s

and actions of their rivals. They form expectations over their rivals actions and maximize

expected pro�ts. The relevant equilibrium concept is then Bayesian Nash equilibrium and

1Mixed strategies are straightforward to handle in principle, but raise considerable complications in
practice (e.g. they are di¢ cult to solve for).
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standard puri�cation arguments imply that we need only focus on pure strategy equilibria.2

Turning to the player�s relevant time horizon, there are again two main alternatives:

assume they are playing a one-shot, static game or formulate an in�nite horizon dynamic

game.3 For the purposes of this article, we will focus exclusively on the static, simultane-

ous move setting, referring the reader to excellent surveys by Ackerberg, Benkard, Berry,

and Pakes (2005) and Aguirregabiria and Mira (2010) detailing the various approaches for

estimating dynamic games. However, we note here that many of the issues that arise in

the estimation of static games (e.g. multiplicity of equilibria, coherency problems, com-

putational complexity) occur in the dynamic setting as well and several approaches to

estimation (e.g. nested �xed point estimation, two-step methods) can be applied in either

context. Indeed, the main methods for estimating static games of incomplete information

were imported from the dynamic games literature.

2.1 Wal-Mart and Kmart Entry Game: A Working Example

To illustrate the various assumptions, modeling alternatives, and estimation methods avail-

able for static games, we will focus on a single, �real world� research example: an entry

game between Wal-Mart and Kmart discount stores. To set the stage, suppose that Kmart

and Wal-Mart compete in a collection of well-de�ned local markets (e.g. rural villages and

small towns). Since we are focusing on small, rural markets, we will ignore the existence of

Target, which mainly serves more urban locations. While their stores were actually sited

over a 40 or 50 year period, we will assume that their strategic choice of locations can be

well-approximated by a static discrete game.

We will draw on a dataset collected by Panle Jia for her empirical analysis of the discount

retail industry (the dataset is publicly available on the Econometrica website and described

in detail in Jia (2008)). We consider a (much) simpli�ed version of her model, in which

the two chains make independent entry decisions across a collection of local markets.4 In

2Mixed strategies are typically introduced to alleviate concerns over existence of equilbrium. However, as
noted by Harsanyi (1973), the crucial issue for existence is introducing uncertainty over rival choices. This
uncertainty arises naturally with the presence of incomplete information.

3Note that these two �alternatives�are simply what has been done (at least in the bulk of the literature),
as opposed to what could be done (e.g. alternating moves, repeated games, etc.).

4Assuming that �rms make independent decisions across markets is clearly counterfactual for a chain of
stores, but relaxing this assumption introduces a complex network structure to the choice problem. This
network game is the focus of Jia�s paper and an issue will we return to later.
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addition, we (like her) consider only markets in which each �rm operates at most one store.

Taking a local market to be a county, this leaves 2,065 relatively small and isolated markets,

assumed to be independent replications of this simple 2�2 discrete game (two �rms choosing
either �enter�or �don�t enter�). We will consider each information setting (complete and

incomplete) in turn, focusing on complete information �rst. We will then use this dataset

to illustrate several speci�c estimation routines. The code and associated documentation

are available online.

3 Complete Information Approach

The estimation of discrete games relies on the same revealed preference logic as discrete

choice: the choice the �rm actually made must have yielded higher pro�ts (or expected

pro�ts) than the alternatives that it did not choose, conditional on the equilibrium choices

of its rivals. The inclusion of rival choices as conditioning arguments in the players�payo¤

functions is what distinguishes discrete games from single agent discrete choice problems,

introducing econometric complications that we will tackle shortly. Structural models of

these strategic discrete choices provide insight into the drivers of pro�tably, both observed

and unobserved. We follow the bulk of the literature in treating the payo¤s upon which

�rms base their decisions as latent. The choice of functional form for these latent payo¤s

is clearly important, having direct implications for both tractability and the interpretation

of results.

There are two main alternatives when choosing a functional form for payo¤s: derive it

from particular assumptions on the economic primitives (e.g. demand and cost, as well as

the structure of the post-entry game) or choose a parameterization which is analytically

convenient, yet �exible enough to capture the patterns observed in the data. While the �rst

is clearly theoretically cleaner (all the parameters will have a clear structural interpretation),

it can quickly become unwieldy, rendering estimation intractable. Moreover, absent data

on prices and quantities, the identi�cation of more primitive demand and cost structures

will clearly be driven by functional form. As such, the second approach has become the

de facto standard since Berry (1992). However, this more �reduced form�approach does

place limitations on the causal interpretation of coe¢ cients and the scope for performing
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counterfactuals.5

Following the structure of Berry (1992), but employing the notation of Ciliberto and

Tamer (2009), let the pro�t function of �rm i = fK;Wg in local market m be given by

�im(�; y�im) where yim is the action (enter or do not enter) of �rm i, y�im is the action

of its rivals (just one rival �rm, in our working example), and � is a �nite-dimensional

parameter vector. The function �im will typically contain covariates speci�c to both the

market and the �rms (e.g. population and the distance to the nearest distribution center).

In particular, let Xm be a vector of market characteristics common to both �rms and

Zm = (ZKm; ZWm) represent �rm characteristics which enter only into the focal �rm�s

pro�t function (e.g. cost variables) and do not (directly) impact the pro�ts of its rivals

(other than through their impact on these rivals�entry decisions). In general, we might also

consider �rm characteristics that enter rival �rm�s pro�t functions as well (e.g. quality), but

will focus on a more parsimonious setting here. Let the pro�t function of �rm i in market

m be given by

�im = �
0
iXm + �

0
iZim + �iy�im + "im (1)

where "im is a component of pro�ts that is unobservable to the econometrician. Thus,

expected pro�ts (net of "im) are a function of only the common market characteristics, the

�rm�s own characteristics, and its rival�s chosen action. The assumption that the "�s are

perfectly observed by both players makes this a game of complete information. Assuming

that the �rms make choices simultaneously, the complete information Nash equilibrium can

be characterized by the following system of inequalities

yKm = 1
�
�0KXm + �

0
KZKm + �KyWm + "Km � 0

�
(2)

yWm = 1
�
�0WXm + �

0
WZWm + �W yKm + "Wm � 0

�
which, in this case, represents the non-negative pro�t conditions for Kmart and Wal-Mart

respectively. An equilibrium is simply a con�guration that satis�es both equations. Note

that these outcome equations constitute a binary simultaneous equation system. The pres-

ence of a rival�s choice variables on the right hand side of each �rm�s pro�t function are what

distinguishes discrete games from discrete choice problems. This interdependent structure

raises problems for estimation and identi�cation that we discuss next.
5See Berry and Reiss (2007) for further discussion of the relevant trade-o¤s.
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In particular, if the "�s have full support, it is straightforward to establish the existence

of multiple equilibria. Put simply, this implies that for a given set of parameters there

may be more than one possible vector of equilibrium outcomes (y) : For example, if the ��s

are assumed to be negative (facing competition reduces your pro�ts), multiple equilibria

arise in the region of " space for which �
�
�0iX + �0iZi

�
� "i � �

�
�0iX + �0iZi

�
� �3�i

for i = 1; 2: Intuitively, this represents the settings in which a local market can only ��t�

one �rm and neither �rm�s monopoly pro�ts are large enough to preempt entry by the

other (e.g. each �rm�s monopoly pro�ts are only slightly greater than zero, so neither one

wants to be there if the other one is).6 As mentioned earlier, the same set of parameters

(and covariates) are consistent with more than one outcome. This �incompleteness�raises

a problem for inference known as coherency (Heckman (1978), Tamer (2003)). From a

practical standpoint, in the simple 2 � 2 game considered above, the likelihood for the
individual �rm�s choice probabilities will sum to more than 1, violating the law of total

probability.

To date, there are four main approaches to �solving�the coherency problems raised by

the multiplicity of equilibria: aggregate to a di¤erent set of predictions which are robust to

multiplicity (e.g. the number of entrants), place restrictions on the model which guarantee

a unique prediction (e.g. sequential moves), specify an equilibrium selection rule (e.g.

the equilibrium maximizes joint pro�ts), or embrace the ambiguity and adopt a bounds

approach.7 We will consider each strategy in detail, and then turn to the mechanics of

estimation.

The strategy of aggregating up to a robust prediction was �rst proposed by Bresnahan

and Reiss (1991), who developed a general framework for estimating discrete games and

social interaction models. The core idea can be illustrated using the 2�2Wal-Mart/Kmart
entry game considered above. Note that in the region of " space in which multiple equilibria

arise, the multiplicity is in the identity rather than the number of entrants. In particular,

6For an elegant graphical illustration of this case see either Bresnahan and Reiss (1991) or Ciliberto and
Tamer (2009). Note that a similar result obtains when the ��s are positive (i.e. entry is bene�cial, as in a
coordination game or peer-e¤ects model), only now, in the region of non-uniqueness, either both players will
enter or both will stay out.

7Note that even if one is able to �solve�the coherency problem and obtain consistent parameter estimates,
multiplicity of equilibria may continue to raise di¢ culties at the counterfactual stage. For example, the
selection rule that characterized the data may no longer be valid under the counterfactual.
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either Wal-Mart or Kmart can pro�tably enter the market, but not both. There will be one

entrant in equilibrium, but the model does not specify who it will be. Therefore, rather than

specifying an econometric model that predicts which �rms will enter, we instead construct

a model of how many �rms will enter. Given certain restrictions on the payo¤ functions

(mainly restricting the degree of heterogeneity in payo¤s) this strategy can be extended

beyond the simple 2 � 2 setting, and likelihood functions written down that characterize
the equilibrium number of entrants rather than the particular choices of individual players

(Bresnahan and Reiss (1991), Berry (1992), Mazzeo (2002b)). However, with su¢ cient

amounts of �rm heterogeneity, it can be di¢ cult to guarantee uniqueness in the number of

entrants (or even the existence of pure strategy equilibria). Therefore, it is necessary to

consider alternative approaches.

The second approach to completing the model involves changing the timing element of

the model so that players move sequentially, rather than simultaneously. This sequential-

move structure guarantees a unique equilibrium. In particular, when the parameters of the

model fall in the region yielding the formerly ambiguous predictions, the ��rst mover�will

preempt the follower, restoring coherency and allowing the likelihood to once again sum to

one. This approach is employed by Berry (1992), where the operative assumption is that

the most pro�table �rms enter �rst. This has the added bene�t of mitigating the ine¢ cient

entry that might occur by simply assuming that Kmart always moves �rst, for example.

Note that this approach can complicate estimation somewhat as the regions of integration

- the partitions of " space that yield each unique prediction - may have irregular shapes

(i.e. be non-rectangular). Berry (1992) addressed this problem via simulation, which we

will illustrate in detail below.

Clearly, sequential entry can be viewed as a form of equilibrium selection, albeit one that

is imposed by the researcher. An alternative approach to completing the empirical model is

to specify a more general selection rule that�s a function of covariates (and perhaps unob-

servables). This approach was originally proposed by Bjorn and Vuong (1985), and further

explored by Tamer (2003) and Bajari, Hong, and Ryan (2010), all in the context of complete

information games. In the simplest version, this could involve assigning probabilities � and

1 � � to the two monopoly outcomes in the region of non-uniqueness and estimating this
additional parameter (�) as part of an overall likelihood function. Note that the overall
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likelihood will now be a mixture. More generally, these probabilities might be allowed to

depend on covariates (and perhaps the unobservables), leading to more complex mixture

models. Alternatively, in Bajari, Hong, and Ryan (2010), the equilibrium selection proba-

bilities depend on the property of the equilibrium itself (that it is joint pro�t maximizing,

for example).

The fourth solution to the multiplicity problem is to embrace the incompleteness and

switch to a bounds approach (Tamer (2003), Ciliberto and Tamer (2009), Pakes, Porter, Ho,

and Ishii (2005)). Under this approach, the selection rule is viewed as an in�nite dimensional

nuisance parameter - an unknown function of unknown covariates. Rather than specifying

a particular selection rule, the researcher seeks instead to identify parameters that are

consistent with at least one such rule. While it may still be possible to achieve point

identi�cation using �identi�cation at in�nity� arguments (Ciliberto and Tamer (2009)),

these models will generally be set identi�ed. Establishing valid (and tractable) methods of

inference for set identi�ed models is an active area of current econometric research.

3.1 Unobserved Heterogeneity

In any empirical model, it is important to control for unobserved heterogeneity: features of

the market or market participants that are unobserved to the researcher. In the context of

entry games, an obvious example is the level of intrinsic demand, which is often poorly prox-

ied by observables like population and income. Some markets are simply better locations, as

they are closer to shopping districts, highway interchanges, or other local amenities. Many

of these features will be di¢ cult to capture with available covariates, forcing the researcher

to deal with them econometrically.

The primary approaches to estimating static games of complete information involve a

�full-solution� approach whereby, for a given guess of the relevant parameter vector, the

game is �rst solved (for either the equilibrium number of entrants or individual choice prob-

abilities, conditional on a particular selection mechanism) and then its predictions matched

to what is observed in the data. This is essentially a full-information approach, allowing

estimation to proceed either via maximum likelihood (MLE) or the generalized method

of moments (GMM), perhaps employing simulation methods to reduce the computational

burden of computing various high-dimensional integrals. Either way, it is relatively straight-
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forward to include a rich structure of unobserved heterogeneity (e.g. market level random

e¤ects, random coe¢ cients, etc.), provided that its inclusion does not violate the conditions

necessary for completing the model (e.g. uniqueness of the equilibrium or the number of

entrants). Furthermore, so long as the full data generating process can be speci�ed para-

metrically, Bayesian inference is feasible as well, providing an attractive avenue for including

heterogeneity at relatively low computational cost. The further exploration of a Bayesian

approach to games estimation is a fertile area for future research.

3.2 Examples from the Literature/Extensions

Complete information models have been employed extensively in both the economics and

marketing literatures, starting with the seminal work of Bresnahan and Reiss (1991) and

Berry (1992). Mazzeo (2002b) extended the Bresnahan and Reiss approach to include a

discrete choice of product quality, in addition to a binary entry decision. His application

was to motels located along interstate highways. Consistent with standard predictions

from oligopoly theory, he found that competition was strongest amongst the closest types.

Cleeren, Verboven, Dekimpe, and Gielens (2010) use this approach to study intra- and

inter-format competition among discounters and supermarkets. Zhu, Singh, and Manuszak

(2009) adapted Mazzeo�s framework to analyze entry and format choice in the discount

retail store industry, using the selection correction techniques developed in Mazzeo (2002a)

to include additional information on store level revenue. Singh and Zhu (2008) examined

the impact of market structure on posted prices in airport rental car markets using a similar

framework.

Hartmann (2010) developed a complete information framework for incorporating social

interactions into marketing mix decisions. Clearly, within-group interaction should in�uence

optimal targeting. His application is an individual golfer�s discrete decision over whether

to play a given round of golf alone or join a foursome. He also incorporates individual

level heterogeneity through a hierarchical Bayesian Markov Chain Monte Carlo (MCMC)

approach. Shriver (2010) extends the Bresnahan and Reiss framework to accommodate an

endogenously determined market size in his model of indirect network e¤ects in alternative

fuel adoption. Ciliberto and Tamer (2009) use a bounds approach to examine airline entry

decisions.
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In the context of store locations, Jia (2008) relaxed the assumption of independence

across markets by tackling the store network choice directly, exploiting a lattice structure

that arises in the two player model. She is able to quantify the relative importance of

network economies as well as the impact of Wal-Mart on small �rms. However, her approach

is only able to accommodate two �rms (Wal-Mart and Kmart) that each operate only

one store per market. Ellickson, Houghton, and Timmins (2010) use a pro�t inequalities

approach similar to Pakes, Porter, Ho, and Ishii (2005) to accommodate multiple �rms, an

arbitrary number of stores per location, and a location-speci�c unobservable. They apply

their framework to competition among Wal-Mart, Kmart, and Target, and highlight the

importance of controlling for unobserved heterogeneity.

3.3 Implementation

To illustrate the complete information approach to static games, we will implement two

of the strategies discussed above: aggregating up to a unique prediction and specifying

a particular selection rule (based on the order of entry). The �rst approach is based on

Bresnahan and Reiss (1991), while the second follows Berry (1992).

Model 1 (Bresnahan and Reiss): The �rst model we estimate is based on Bresnahan

and Reiss (1991). We assume that �rms are exchangeable and pro�ts depend only on market

level factors

�im = �
0Xm � �y�im + "im (3)

In our application, the market level matrix Xm includes three covariates: �Population,�

�Retail sales per capita,�and a dummy for �Urban�markets.8 We will assume throughout

that the "im�s are i.i.d. standard normal deviates.9 Given this structure, the likelihood of

observing nm �rms in a given market m can be computed in closed form. For example, the

probability of seeing a duopoly is simply

Pr (nm = 2) =
Y
i

Pr
�
�0Xm � �y�im + "im � 0

�
: (4)

8For a detailed discussion of the industry, market de�nition, and the relevant covariates, see Jia (2008).
9As noted earlier, the complete information approach can easily accommodate both correlated errors and

unobserved heterogeneity. However, for expositional simplicity and ease of comparison (to the incomplete
information examples), we restrict our attention to the i.i.d. setting.
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The sample log-likelihood is then

lnL =
MX
m=1

2X
l=0

1 (nm = l) lnPr (nm = l) : (5)

Estimation is carried out using full-information maximum likelihood (FIML). Results

for all complete information games are presented in Table 1. We defer a discussion of the

results until after we have introduced the remaining models.

Model 2-4 (Berry): We implement three versions of Berry�s estimation framework,

which also accounts for observed heterogeneity across players. The key distinction between

these three cases is the way they resolve the multiplicity problem. The �rst version (Model

2) follows Berry (1992) in ordering entry by pro�tability. That is, the most pro�table player

moves �rst. The estimation algorithm, proposed by Berry (1992) involves simulating "�s

to construct pro�ts (from (1)) and then using these realizations to construct the pro�t

realizations that order the moves. The second version (Model 3) gives Wal-Mart the option

to enter �rst (independent of pro�ts), while the third version (Model 4) awards Kmart this

right.

Note that, given a particular order of entry, the number of �rms in the market is uniquely

determined. Since we know each �rm�s pro�tability (for a given "), we also have a unique

prediction of who will be in and out of the market. This information can then be used

to construct an estimator. In our implementation, we follow the approach described in

the appendix to Berry (1992). We construct the probabilities that Wal-Mart and Kmart

will each enter the market by integrating over indicator functions describing entry as a

function of computed pro�ts and the equilibrium number of �rms for each simulation.

These probabilities can then used to construct moment conditions which de�ne a GMM

type objective function or to formulate a likelihood. In our implementation we adopt the

latter strategy. We would like to caution the reader that formulating a likelihood for such

games with more than two players or with added heterogeneity is not trivial. In such cases

one would have to typically adopt a GMM approach and face a choice of what moments to

include.
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3.3.1 Discussion of Results

The results for Models 1 through 4 are presented in Table 1. All parameter estimates are

signi�cant at the 5% level, with signs that are consistent both with intuition and previous

results based on the same data (Jia (2008)). Since the purpose of this empirical exercise is to

demonstrate the di¤erent methodologies, we will not dwell upon the substantive aspects of

the results here. Rather, we focus the reader�s attention on the di¤erences in the parameter

estimates across the models. First, a warning - the results cannot be directly compared

across the two sets of models (B&R vs. Berry) because of the usual concerns about scaling,

speci�cation, and assumptions. However, comparison across the three Berry models is fair

and we restrict our attention to these.

At �rst blush, the results may seem �surprising� in that the parameter estimates are

essentially identical across the three equilibrium selection rules: the particular rule does

not seem to matter here. We note that Jia (2008) �nds a similar robustness to order of

moves in her analysis. To help explain why these results obtain, we remind the reader that

this industry (at least for these data and this time period) has very asymmetric players.

In particular, WalMart is quite dominant player while Kmart is relatively weak. The table

below outlines this asymmetry in stark fashion:

Kmart not in market Kmart in market
Wal-Mart not in market 1004 90
Wal-Mart in market 711 260

Note that in only 4.35% of all markets does Kmart enjoy a local monopoly. Now consider

how the assumed sequence of moves might impact the estimates. If we assume that Wal-

Mart has the right to move �rst, the model must rationalize the fact that Wal-Mart enters

about half the markets while Kmart enters much fewer. It does so by making Wal-Mart

relatively more pro�table, choosing the intercepts and covariates (especially the exclusions)

such that Wal-Mart has a relative advantage. It should then come as no surprise that

changing the rule to allow the most pro�table �rm to move �rst changes very little: the

model continues to infer that Wal-Mart is the more pro�table player. Now consider the case

where Kmart moves �rst. The model can use similar parameters to rationalize the data

since Kmart ends up acquiescing the vast majority of the markets to Wal-Mart. In other

words, Kmart does not enter �monopoly�markets because it expects the more pro�table
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Wal-Mart to do so. Since these markets can only sustain one player, Kmart does not enter.

Again, to generate the patterns in the data it su¢ ces to make Wal-Mart dominant as in

the other cases.

We would like to be clear that this is not a general result but rather contingent on the

particular data at hand. Other applications and industries will have varying number of

players with di¤erent power structures and the equilibrium selection rule may indeed come

to have some �bite.� It is also important to note that the choice of the payo¤ speci�cation

is key. If, for example, we allowed the players to have di¤erent coe¢ cients across the board

(particularly �) the sequence of moves would have a signi�cant impact on estimates. In

general, modelling assumptions in discrete games (especially those pertaining to equilibria)

are not trivial and can have important in�uence on parameter estimates. This is part of

the motivation for the bounds approach.

4 Incomplete Information Approach

Beginning with Rust (1994), a parallel literature has emphasized static games of incomplete

information. Under the incomplete information approach, payo¤s are no longer assumed

to be common knowledge: players form beliefs over rivals�actions. While uncertainty can

be introduced in a number of ways, the easiest way to model incomplete information is

through the "�s, the additively separable components of payo¤s that are unobserved to the

researcher. In particular, suppose we now assume that each player observes its own "i,

but only knows the distribution of "j for its rivals, which we denote F ("j). Suppose that

the researcher also knows this distribution, but does not observe individual draws for any

player. Note that this puts the �rms on equal footing with the researcher regarding the

beliefs over their rivals�actions, a symmetry which will prove very useful when constructing

an estimator. Each �rm now forms expectations about its rivals�behavior, choosing the

action that maximizes expected pro�ts given those beliefs. This yields the following system

of inequalities

yKm = 1
�
�0KXm + �

0
KZKm + �KpW + "Km � 0

�
(6)

yWm = 1
�
�0WXm + �

0
WZWm + �W pK + "Wm � 0

�
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in which the probability pi � Ei (y�i) represents �rm i�s beliefs regarding its rival�s actions.

The conditional choice probabilities implied by these decision rules can then be used to

represent each �rm�s strategy. The Bayesian Nash equilibrium (BNE) of the game can be

characterized by the following set of equalities

pK = 	K(�
0
KXm + �

0
KZKm + �KpW ) (7)

pW = 	W (�
0
WXm + �

0
WZKm + �W pK):

where the exact form of 	 will depend on the distribution F: The functions 	 are best

response probability functions, mapping expected pro�ts (conditional on beliefs p) into

(ex ante) choice probabilities.10 If F is an absolutely continuous distribution, this system

(pair, in this case) of nonlinear equations is guaranteed to have a solution by Brouwer�s

�xed point theorem. Moreover, this �xed point representation provides a direct method of

solving for equilibria: the method of successive approximations (i.e. �xed point iteration).

Thus, one possible estimation strategy (originally proposed by Rust (1994)) is another �full

solution�approach that �rst solves this system of equations (for a given set of parameters)

and then matches the predicted conditional choice probabilities to the choices observed in

the data. This is essentially a static games version of Rust�s nested �xed point (NFXP)

algorithm (Rust (1987)). If the "�s are assumed to be drawn from the Type 1 Extreme Value

distribution, the likelihood function will take the familiar conditional logit form. This is the

method employed by Seim (2006) in her empirical study of entry and store location decisions

in the video rental industry (though she uses a nested logit structure to distinguish entry

from location choice).

A now familiar complication is that the system of equations (7) may admit more than one

solution: the underlying game may have multiple equilibria.11 Thus, games of incomplete

information su¤er from the same coherency problems as complete information games. Once

again, there are several possible methods of completing the empirical model. We will �rst

10 In the incomplete information setting, strategies can be represented as either discrete actions or ex ante
choice probabilities. The modi�er ex ante refers to the fact that these probabilities constitute the �rm�s
expected actions prior to the realization of ".
11 In some examples, incomplete information has been shown to reduce the incidence of multiple equilibria

relative to a complete information counterpart. However, it does not eliminate the problem in general (see
Berry and Reiss (2007) for a numerical example), implying that additional structure will still be needed to
close the model.
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review the four approaches discussed earlier, and then introduce two additional options that

speci�cally exploit the structure of incomplete information games.

As with games of complete information, one strategy is to identify a prediction of the

model that is robust to multiplicity. Since this becomes quite di¢ cult in the presence of

heterogeneity, this approach has not been pursued in the existing literature. The second

option is to change the timing of the game from simultaneous to sequential moves. In his

analysis of movie release dates, Einav (2010) employed a sequential structure, and provided

a clever method for �integrating out� over alternative move sequences. The third option

is to specify an explicit equilibrium selection mechanism in the spirit of Bjorn and Vuong

(1985). This approach is developed further by Sweeting (2009) in his study of the timing

of radio commercials. In his empirical model, Sweeting �rst considers cases in which the

selection probabilities are �xed parameters and then a richer speci�cation in which they

depend on covariates. He also demonstrates that multiplicity of equilibria in the data can

actually aid identi�cation by changing the implied dispersion of choice probabilities. Misra

(2008) proposes a Bayesian approach to estimation that uses MCMC to sample from the

posterior distribution of the structural parameters, eliminating the need to search for all

the �xed points.

Finally, if the researcher is unwilling to impose an explicit selection rule, a bounds

approach may be feasible here as well. Since the moment inequalities approach developed

by Pakes, Porter, Ho, and Ishii (2005) is robust to alternative assumptions on the players�

information sets, it can be applied to either games of complete or incomplete information.

Grieco (2010) develops an alternative framework which is also able to nest both information

assumptions, along with an econometric test that can distinguish between the two.

The �rst four approaches to completing the empirical model are familiar from our dis-

cussion of complete information. However, the speci�c structure of incomplete information

o¤ers some additional options for completing the empirical model. The �rst, which draws

on methods originally introduced by Hotz and Miller (1993) in the dynamic discrete choice

literature, involves substituting �rst-stage estimates (p̂i) of the (reduced form) choice prob-

abilities into the right hand side of equation (7). Note that this eliminates the need to solve

the �xed point problem when evaluating the corresponding (pseudo) likelihood function
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that is implied by these structural choice probabilities.12 Closely related �two-step�meth-

ods have proven very e¤ective in estimating dynamic discrete games where, in addition to

the problems raised by multiplicity, there is also a massive computational burden induced

by the curse of dimensionality inherent to many dynamic decision problems.13 In the case

of static games, the primary bene�t of the two-step approach lies in its relative robustness

to multiplicity. Provided that only one equilibrium is played in the data, this solves the

coherency problem since the estimator is e¤ectively able to �condition on the equilibrium

that was played in the data�. This clearly relies on the condition that only one equilibrium

was in fact played in the data. This is more likely to hold in settings in which the same

set of �rms compete over time in the same market versus settings where they compete in

di¤erent markets (i.e. panel versus cross section).14 With panel data, it may be possible to

estimate the model market by market, allowing for the possibility that di¤erent equilibria

are played in di¤erent markets (Ellickson and Misra (2008b)), thereby weakening the �one

equilibrium�assumption.

Two-step methods do have some drawbacks relative to the full solution approaches dis-

cussed above. First, since they are inherently limited information techniques, they are less

e¢ cient than full-information maximum likelihood (FIML) approaches like Rust�s NFXP

estimator. Second, the consistency of the second stage estimates relies on obtaining con-

sistent �rst-stage estimates of the conditional choice probabilities (CCPs). Since these are

reduced form objects, they should ideally be estimated non-parametrically. This is due to

the fact that, even if the functional form of both the pro�t functions (1) and best response

probability functions (7) are known, the reduced form CCPs (i.e. the solution to equation

(7)) will typically not be (hence the need for �xed point iteration). Since non-parametric

estimation su¤ers from a well-known curse of dimensionality, it is likely that any �rst stage

estimates of the CCPs will be quite noisy, yielding small sample biases in the second stage

12Note that GMM or least squares based estimation can be used here as well. See Bajari, Hong, Krainer,
and Nekipelov (2010) for further details, as well as formal results on identi�cation.
13As noted earlier, we have chosen to focus only on static discrete games. See Aguirregabiria and Mira

(2007), Bajari, Benkard, and Levin (2007), Pakes, Ostrovsky, and Berry (2007), and Pesendorfer and
Schmidt-Dengler (2008) for the seminal papers applying two-step estimation techniques to games. Arcidia-
cono and Ellickson (2011) provide a broad overview of two-step approaches to dynamic decision problems.
14Of course, in settings in which the same �rms are observed over many periods, one might start to worry

about linkages across time and the need to control for dynamics.
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(structural) parameter estimates.15 The bias will persist asymptotically if the researcher

resorts to a parametric �rst stage, due to misspeci�cation. Aguirregabiria and Mira (2002,

2007) have proposed a recursive extension of the two-step pseudo likelihood estimator that

mitigates the small sample bias (and eliminates the requirement of a consistent �rst stage)

by iterating on the best response probability mapping (7). This e¤ectively swaps the order

of the nests in Rust�s NFXP approach. By forcing the conditions for a BNE to be satis�ed,

this nested pseudo likelihood (NPL) estimator is fully e¢ cient (i.e. equivalent to FIML), so

long as it converges. However, NPL relies on best response iteration, and therefore cannot

�nd equilibria that are not best reply stable (Pesendorfer and Schmidt-Dengler (2010), Su

and Judd (2007)). As such, it is not guaranteed to converge. Nonetheless, it has been found

to work well in several applications (Aguirregabiria and Mira (2007), Ellickson and Misra

(2008b)).

The �nal estimation method is the constrained optimization approach proposed by Su

and Judd (2007). Su and Judd (2007) recast the unconstrained optimization problem

described above as a constrained optimization problem subject to the equilibrium constraint

(7), referring to their approach as a Mathematical Program with Equilibrium Constraints

(MPEC). Since it does not rely on repeatedly solving for equilibria (or that the equilibrium

constraints be satis�ed at each point in the search process), MPEC is both computationally

light and robust to best reply unstable equilibria. However, like NPL, it does impose a

particular selection rule: the equilibrium that is played is the one that maximizes the

likelihood.

4.1 Unobserved Heterogeneity

Another relevant trade-o¤ in the choice between the various full-solution approaches (NFXP,

NPL, MPEC) and the computationally lighter two-step procedure is the ability to accommo-

date unobserved heterogeneity. Since they are all essentially full-information approaches, it

is relatively straightforward to account for heterogeneity using any of the full-solution meth-

ods. Of course, including random e¤ects and/or random coe¢ cients will clearly increase

the computational burden and make the search for equilibria signi�cantly more complex,

though various simulation methods and Bayesian MCMC techniques could certainly be em-

15See Aguirregabiria and Mira (2007) and Su and Judd (2007) for relevant monte carlo evidence.
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ployed here. Two-step approaches are much less accommodating, due to their more �limited

information�structure and reliance on a non-parametric �rst stage. In particular, any un-

observables that are conditioned on by the players must also be accounted for in the �rst

stage estimation procedure. Since this is typically treated as a reduced form, this is not at

all straightforward. For example, even if rival �rms�unobserved state variables do not enter

a given �rm�s payo¤ function (as is usually assumed to be the case), they generally will

enter the reduced form CCPs and typically in a highly non-linear manner. This can make

it very di¢ cult to obtain consistent �rst stage estimates. Fortunately, there are several

possible remedies.

First, as argued by Ellickson and Misra (2008b), if the researcher is willing to assume

that the unobserved heterogeneity is private information, the non-parametric �rst stage

CCPs will still be consistent, allowing the heterogeneous parameters to be integrated out

of the second stage using standard simulation methods. Furthermore, if the unobserved

heterogeneity occurs at the market level, the �rst stage could be estimated market by market

(or even player by player, if there is enough data). This is the approach used in Ellickson

and Misra (2008a) for their analysis of supermarket pricing strategies. Second, if one is

willing to assume that the unobservables are a smooth function of observable covariates, a

control function approach is also feasible (Bajari, Hong, Krainer, and Nekipelov (2010)).

Finally, by enforcing the full structure of the model, the NPL approach can also be employed

(eliminating the need for a consistent �rst stage and allowing for a rich structure on the

unobservables). Of course, this is then equivalent to returning to a full-solution approach.

Ellickson and Misra (2008b) use NPL to control for correlated, market level unobservables.

4.2 Examples from the Literature/Extensions

Several authors have used incomplete information games to shed light on issues of direct

concern to marketers. Zhu and Singh (2009) employ Seim�s nested �xed point approach

to model entry and location decisions by Wal-Mart, Kmart and Target, documenting the

importance of both heterogeneous competition e¤ects and �rm-speci�c preferences. Orhun

(2006) extends Seim�s approach to include location speci�c unobservables, applying her

framework to the entry and location decisions of supermarkets. Ellickson and Misra (2008b)

use both the two-step and NPL approaches to examine the strategic choice of pricing strate-
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gies in the supermarket industry. They �nd strong evidence of assortative matching - �rms

tend to coordinate on the same pricing strategy (e.g. EDLP or Hi-Lo) as their local ri-

vals - and empirical results that support several speci�c predictions from marketing theory.

Sudhir, Datta, and Talukdar (2007) employ a nested �xed point approach to examine the

trade-o¤s between di¤erentiation and agglomeration in the grocery industry.

Vitorino (2007) examines the joint entry decisions of stores in regional shopping centers,

explicitly controlling for multiple equilibria using an MPEC approach. Draganska, Mazzeo,

and Seim (2009) model the assortment decisions of ice cream manufacturers, incorporating

information from a discrete choice demand system, while Musalem and Shin (2010) provide

an alternative model of pricing and product line decisions.

4.3 Implementation

To illustrate the incomplete information approach to static games, we now implement several

of the approaches described above using the same dataset as before. We note that, unlike

the complete information approaches discussed earlier, each of which altered the underlying

structure of the game, the methods considered here are all being applied to the exact same

game (i.e. they are simply alternative estimators, not di¤erent structures). We begin with

the full solution (nested �xed point) approach, and then illustrate the two-step and Nested

Pseudo Likelihood (NPL) techniques.

Method 1 (NFXP): The �rst incomplete information framework we implement is

the nested �xed point approach. We use the same pro�t speci�cation as the complete

information case

�im = �
0Xm + �

0
iZim � �y�im + "im; (8)

and include the same covariates as before. The "�s are again assumed to be i.i.d. standard

normal (but treated as private information now). The estimation routine requires solving

the following �xed point problem

p�im = �(�
0Xm + �

0
iZim � �p��im) (9)

which we accomplish via simple Picard iteration (successive approximation). We note here

that, in keeping with the extant literature, we are not employing an exhaustive search for

all possible �xed points.
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Once the �xed point probabilities are obtained, they feed into a simple log likelihood

lnL =
MX
m=1

X
i2fW;Kg

yim ln(p
�
im) + (1� yim) ln (1� p�im) (10)

which is then maximized to obtain parameter estimates.

Method 2 (2STEP): As noted earlier, the two-step estimator eliminates the need to

solve for a �xed point by recognizing that, at the �true� solution, the probabilities are

simply (unknown) functions of the covariates. In the �rst stage, we construct consistent

estimators of these equilibrium conditional choice probabilities (CCPs). In principle, this

�rst stage should be nonparametric. If, for some reason (such as inadequate data), non-

parametric methods are infeasible, we suggest using a semi-parametric approach like the

method of sieves or Generalized Additive Models (GAMs).16 In our implementation, we

use a GAM with tensor product interactions between the variables. This �rst stage yields

�tted probabilities (p̂f1gim ) which we then �plug-in�to construct a likelihood

lnL =
MX
m=1

X
i2fW;Kg

yim ln
�
p
f2g
im

�
+ (1� yim) ln

�
1� pf2gim

�
(11)

in which

p
f2g
im = �(�0Xm + �

0
iZim � �p̂

f1g
�im) (12)

where � (�) is the standard normal CDF.
Method 3 (NPL): The Nested Pseudo Likelihood approach of Aguirregabiria and Mira

(2007) iterates on the best response probability mapping (12) to reduce small sample bias

(and eliminate the need for a consistent �rst stage). Note that we can always construct a

new estimate of the CCPs from the best response mapping

p̂
fkg
im = �(�̂fkg0Xm + �̂

fkg0
i Zim � �̂

fkg
p̂
fk�1g)
�im ) (13)

where
n
�̂fkg; �̂

fkg
i ; �̂

fkgo
are obtained by maximizing

lnL =
MX
m=1

X
i2fW;Kg

yim ln
�
p
fk�1g
im

�
+ (1� yim) ln

�
1� pfk�1gim

�
(14)

16For a comprehensive discussion of semi- and non-parametric methods (including sieves and GAMs), see
Pagan and Ullah (1999).
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The algorithm continues until



p̂fkgim � p̂fk�1gim




 � � . In our implementation, we initialize
the NPL estimator with the two-step probabilities (i.e. p̂f1gim ) and iterate until convergence

(� = 1E-8) :

4.3.1 Discussion of Results

Results from each method are presented in Table 2. As we noted above, the three models

represent di¤erent estimation approaches for the same underlying game. It is therefore com-

forting that the coe¢ cients do not vary much across the columns. It is perhaps noteworthy

that the 2STEP results are so close to the full information estimates in this case, suggest-

ing that small sample bias is not an issue here. While it is tempting, we will refrain from

speaking to the di¤erences between the complete information and incomplete information

results since they are obtained using very di¤erent assumptions and estimation algorithms.

However, there has been some recent work on integrating and testing information structures

in discrete games (see e.g. Aradillas-Lopez (2010), Grieco (2010), Navarro and Takahashi

(2010)). In general, all estimates (across both tables) have the same sign and similar rela-

tive magnitudes (e.g. Wal-Mart has a higher intercept). Ultimately, the choice of modelling

framework and estimation algorithm is left to the researcher.

5 Discussion and Future Directions

5.1 Complete versus Incomplete Information: Which Framework Makes
More Sense?

The empirical relevance of complete versus incomplete information will clearly depend on

the speci�cs of the particular application being considered. Is it more reasonable to assume

that payo¤ functions are common knowledge or are there obvious sources of uncertainty?

Advocates of the complete information approach note that static games are typically mo-

tivated as an approximation to long run equilibrium, at which point any uncertainty or

randomness has long since been resolved. Thus, the assumption that players face no un-

certainty and can perfectly predict what their opponents will do (ignoring the possibility

of mixed strategies) may seem quite reasonable. Complete information games have also

received more attention in the theory literature and their properties are better understood.
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By contrast, under incomplete information, players cannot perfectly predict what their

rivals will do - they behave as if they are playing against a distribution of player �types�.

Consequently, they may prefer to change their minds once they observe the actual decisions

of their rivals. This is ruled out by the one-shot, simultaneous-move structure of the game.

This vulnerability to ex post regret was �rst noted by Einav (2010), and was part of his

motivation for changing the timing of the model to sequential moves (where such regret

is mitigated). Of course, randomness and uncertainty seem a natural component of most

strategic interactions. It is not hard to think of real world examples of �rms who guessed

wrong about the appeal of a new product (new Coke!) or the reaction of their rivals

(HD DVD). Unfortunately, the one-shot structure of static games does not give players

the ability to adjust to these realizations. This is a primary motivation for introducing

dynamics, whereby �rms are able to adjust to an ever-evolving �ow of new information.

While two-step methods have dramatically reduced the computational burden of estimating

such models, the empirical analysis of dynamic discrete games is still at an early stage of

development.

5.2 Beyond Latent Payo¤s

We have thus far followed the bulk of the existing literature in considering purely latent

payo¤ structures. This is frequently the most empirically relevant case, as discrete choices

are often all that�s observed in the data (furthermore, some choices, like entry, are naturally

discrete). While a complete discussion of mixed continuous and discrete games is beyond

the scope of this article, we will brie�y discuss some recent methods for incorporating

additional, post-entry information on quantities, prices, revenue or costs. Such data is

increasingly available via direct partnerships between researchers and �rms, as well as the

proliferation of high quality academic datasets like the IRI Marketing Data Set. These data

can be used to estimate more sophisticated speci�cations for the game. For example, if one

had access to prices and market shares it might be possible to construct structural pro�t

measures (ala BLP) and use those instead of their reduced form analogs.

Ignoring the information contained in post-entry outcomes is ine¢ cient. It may also

reduce the set of parameters that can be identi�ed and limit the scope of any subsequent

counterfactuals. Unfortunately, incorporating payo¤ data into discrete empirical games is
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not straightforward, as the researcher must now characterize the full joint distribution of

both the choice data and whatever additional data he has chosen to incorporate. At the

very least, this will dramatically increase the burden of solving for equilibria. Moreover, it

also introduces a problem of non-random selection. For example, the same unobservables

that lead a �rm to charge a higher price (e.g. unobserved quality) will almost surely impact

their entry decisions as well. A small but growing literature seeks to address these concerns.

The selection problem associated with incorporating outcome data was �rst noted by

Reiss and Spiller (1989) in their model of airline competition, under the assumption of

complete information. They propose a full solution approach to modeling the joint distrib-

ution of entry decisions and revenue outcomes, but place strong restrictions on the scope for

strategic interaction. Drawing on the empirical labor economics literature, Mazzeo (2002a)

used a �rst stage complete information game to construct a Heckman (1978) style control

function in his study of the e¤ect of market structure on equilibrium prices in the motel

industry.17 One drawback of this approach is its reliance on a purely statistical selection

correction: the errors in the outcome equation are simply correlated with the errors in the

choice equation. Ellickson and Misra (2008a) have recently proposed a propensity score

based approach that allows the auxiliary data (revenue in their application) to depend

directly on the same unobservables as the choice data.

5.3 Beyond Independent Markets

Up to now, we have assumed (alongside the bulk of the extant literature) that �rms (players)

make independent decisions across markets (choice situations). While this may be quite

realistic in some settings (e.g. barber shops in rural villages), most actual applications have

involved industries in which most of the players are national chains (e.g. discount stores,

supermarkets, airlines, video and car rental outlets, gas stations). The associated �network

choice problem�introduces several complexities, substantially increasing the computational

burden and data requirements and exacerbating multiplicity problems. Nonetheless, there is

a small and growing literature aimed at relaxing the independence assumption and directly

tackling the formation of retail networks.

17Singh and Zhu (2008) and Zhu, Singh, and Manuszak (2009) apply Mazzeo�s approach in alternative
settings.
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Jia (2008) developed a complete information framework for modeling spatial competi-

tion between two retail chains. By exploiting the supermodular structure of the two �rm

problem, she is able to substantially reduce the burden of solving for Nash equilibria, closing

the model with an ex ante equilibrium selection rule. However, her elegant, lattice based

solution method requires that the spillovers between own stores be positive and can only ac-

commodate up to two players and a single outlet per location. Nishida (2008) extends Jia�s

approach to accommodate multiple outlets (but only two players). Ellickson, Houghton,

and Timmins (2010) propose an alternative framework, based the pro�t inequalities ap-

proach of Pakes, Porter, Ho, and Ishii (2005), which can handle any number of players and

spillovers of either sign. They do not require an equilibrium selection mechanism, but can

only set identify many of the structural parameters. The structural analysis of network

choice problems and complex spatial equilibria remains a fertile area for future research.

6 Conclusions

Discrete games o¤ers an exciting avenue for marketing researchers. While we have focused

our attention on static games, there are also new developments and challenges in dynamic

games that should be of interest to marketers as well. This paper provides a critical overview

of the estimation of static discrete games, aimed at providing a concise introduction for those

who are interested in the �eld. We have also included computer code for implementing a few

of the most basic examples, intended as a jumping o¤ point for more complex and realistic

implementations. We hope that our e¤orts will spur interest in the area and encourage

researchers to add these concepts and methods to their toolkit.
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Table 1: Estimation Results from Complete Information Games

Variable B&R Berry Berry Berry
(Homogeneous) (Pro�t) (Wal-Mart) (Kmart)

Common E¤ects
Population 1.32� 1.69 1.67 1.69

Retail Sales per capita 1.13 1.54 1.52 1.54
Urban 1.03 1.20 1.19 1.20

� 0.65 0.39 0.40 0.38
Wal-Mart Speci�c E¤ects

Intercept (Wal-Mart) -14.03�� -11.87 -11.76 -11.90
Distance to Bentonville, AK -1.07 -1.06 -1.07

South 0.72 0.72 0.71
Kmart speci�c E¤ects

Intercept (Kmart) -14.03�� -19.76 -19.56 -19.57
MidWest 0.37 0.37 0.37

�All coe¢ cients are signi�cant at the 5% level.
��Intercepts are common across both �rms in this speci�cation.

Table 2: Estimation Results from Incomplete Information Games

Variable NFXP 2STEP NPL
Common E¤ects

Population 1.90� 1.81 1.89
Retail Sales per capita 1.61 1.65 1.69

Urban 1.34 1.30 1.37
� 1.10 0.92 1.63

Wal-Mart Speci�c E¤ects
Intercept (Wal-Mart) -13.17 -13.00 -13.80

Distance to Bentonville, AK -1.03 -1.09 -1.04
South 0.58 0.67 0.63

Kmart speci�c E¤ects
Intercept (Kmart) -20.56 -20.75 -21.18

MidWest 0.34 0.31 0.30

�All coe¢ cients are signi�cant at the 5% level.
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Appendix: Glossary

� Complete Information game: A game in which each player�s payo¤ function (the
mapping from the full set of players actions to the focal players payo¤) is common

knowledge amongst all players.

� Incomplete Information (aka Bayesian) game: A game in which at least one

player is uncertain about another player�s payo¤ function.

� Nash Equilibrium: A strategy pro�le in which each player�s strategy is a best

response to their (correct) beliefs regarding rival play.

� Bayesian Nash Equilibrium: The Nash equilibrium of a Bayesian game.

� Revealed preference: The process by which a decision maker�s preferences can be
revealed through their choice behavior.

� Coherency: A coherent econometric model is one that yields a unique prediction for
the endogenous (dependent) variables as a function of the observed and unobserved

exogenous variables.

� Incomplete model: An econometric model in which the mapping from exogenous

variables to endogenous outcomes is a correspondence, rather than a function.

� Set (aka partial) identi�cation: An econometric model in which, even given access
to in�nite data, the parameters of interest cannot be point identi�ed, but only found

to lie within a non-singleton set. This often occurs when the researcher is unable (or

unwilling) to impose assumptions strong enough to achieve point identi�cation.

� Equilibrium Selection Rule: In a game with multiple equilibrium, a equilibrium

selection rule is mechanism that speci�es which equilibrium is actually played.

� Control Function approach: An econometric technique in which auxiliary variables
are used to break the correlation between endogenous covariates and the outcome

variables of interest.
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