PEA 2597 Uso racional da energia

Fontes Renováveis de Energia

Biomassa Células a Combustível Geotérmica e outras

slide 1 / 23

Fontes Renováveis

Biomassa

Rejeitos Agricolas
Bagaço da cana
Fazendas energéticas
Incineração do lixo urbano
Biogás de esgostos domésticos
Biogás de efluentes industriais
Biogás de aterros

Oceânica

Marés
Corrente de maré
Ondas costeiras
Ondas do mar
Térmica Oceânica
Gradiente de salinidade

Geotérmica

Hidrotérmica Geopressurizada Rochas secas quentes Magma

Hidrelétrica

Pequena escala Média escala Grande escala

Solar

Heliotermelétrica
Solar térmica
Arquitetura solar
Fotovoltaica
Termoquímica
Fotoquímica

Eólica

Em terra firme No mar Bombas de ar



Rotas de conversão

Biomassa

Lodo de Esgoto, lixo, bagaço de cana, madeira etc.

Aplicações da biomassa

Sistemas estacionários:

Energia Elétrica Energia Térmica Motores a combustão
Turbinas a vapor e á gás,
caldeiras,
fornos,
célula a combustível (hidrogênio
reformado),
cogeração

Transporte: motores, célula a combustível

O que é o Processo de Gaseificação de Biomassa

- Biomassa contém carbono, hidrogênio, oxigênio e pequenas quantidades de outros elementos
- Na combustão com Ar: CO₂ e H₂O são gerados
- Na combustão com pouco Ar, ou sub-estequiométrica podem ser gerados produtos como CO e H₂: "queima mal feita".
- O gás resultante do processo de combustão subestequiométrica é o Gás Produzido (Gasogênio)

Combustão - Comparação

Combustível	A/C (ar/Comb)	Densidade Energética MJ/m³
Petróleo	18	2,83
Gás Natural	18	3,00
Gás Produzido	1.2	2.40
Biogás	11	2.30

Fonte: Biomass to Energy, IISc, Bangalore, 2003

Centrais de Biomassa

Usina Ankhur - Índia - 1,2 MW - Cascas de Coco Gaseificação

INCINERAÇÃO DE LIXO E BIODIGESTÃO

Possibilidades de conservação e produção de energia através da utilização de resíduos sólidos urbanos e rurais.

Conservação

Reciclagem

Redução

Reutilização

Recuperação energética

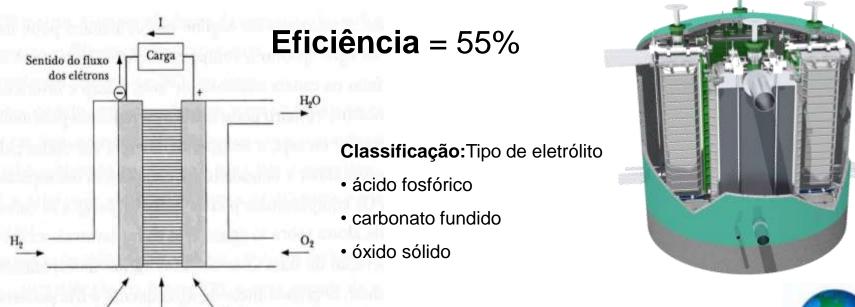
Combustão de material orgânico

Incineração de plásticos e pneus

Biodigestão de material orgânico

BIODIESEL

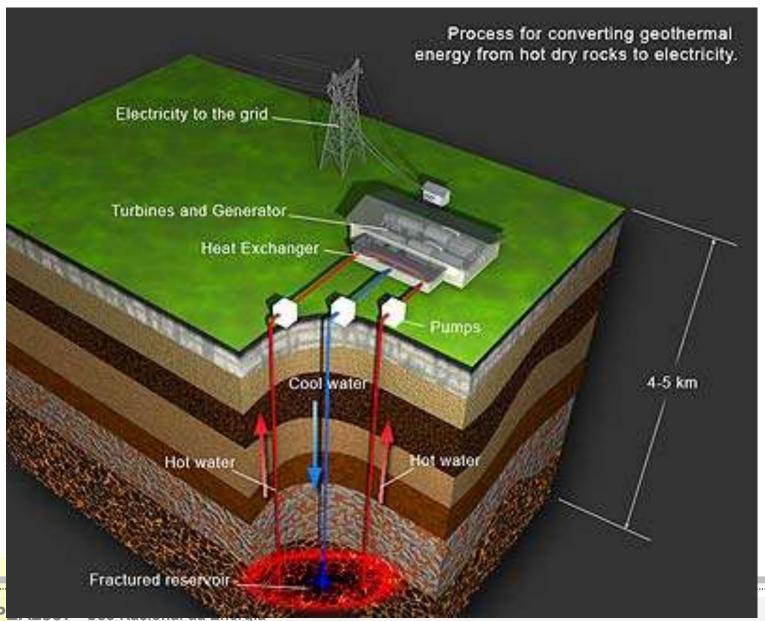
É obtido através da reação de óleos vegetais com um intermediário ativo, formado pela reação de um álcool com um catalisador, processo conhecido como **transesterificação**. Os produtos da reação química são um **éster (o biodiesel)** e **glicerol**.


- Utilização de óleos vegetais para queima em motores de combustão interna para geração de eletricidade:
 - a) Utilização de misturas de óleos vegetais com Diesel
 - b) Utilização de ésteres de óleos vegetais
 - c) Utilização de óleos vegetais craqueados
- Utilização em motores multicombustível

Ex: Células de combustível : geração de energia elétrica e vapor (reforma do etanol)

Numa célula de combustível, o combustível, suprido constantemente em um dos eletrodos - o anodo -, reage eletroquimicamente com um oxidante (oxigênio) suprido no outro eletrodo. Entre os eletrodos encontra-se um eletrólito composto por material que permite o fluxo de íons, induzindo assim uma corrente elétrica através do circuito externo.

Anodo


Centrais Geotérmicas

Pode ser feita de quatro maneiras:

- Energia hidrotérmica: reservatórios de água quente e/ou vapor aprisionados entre rochas e sedimentos da crosta terrestre são utilizados para produção de calor;
- Rocha quente e seca: um poço profundo é perfurado e a água é injetada retirando-a aquecida de um outro poço de retorno;
- Reservatórios geopressurizados: contém uma mistura de água e metano saturada e sob uma pressão elevada;
- <u>Magma</u>: em certas regiões pode-se extrair calor do magma injetando-se água nesse magma criando uma espécie de buraco trocador de calor.

Centrais Geotérmicas

Centrais Geotérmicas

Mundo - 2010: 11 GW - 67.2 TWh de eletricidade

2011 - Operando em ao menos 24 países, principais:

• EUA: 3.1 GW

• Filipinas: 1.9 GW

• Indonésia: 1.2 GW

México:~ 1 GW

• Itália: 0.9 GW

Nova Zelândia: ~ 0.8 GW

Goenlândia: 0.6 GW

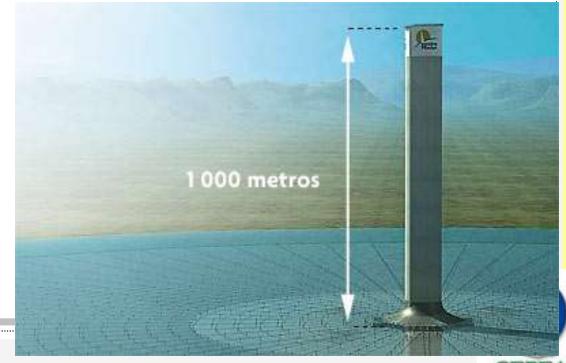
· Japão: 0.5 GW

Central Geotérmica Pico Vermelho - S. Miguel/Açores/Portugal

CG Pico Vermelho			
Potência	10 MW		
Produção anual	80 GWh		
Produção de vapor	56 T/hora		
Pressão	6 bar		
Fator de capacidade	0,9		
Participação no sistema elétrico Açoriano	37 %		

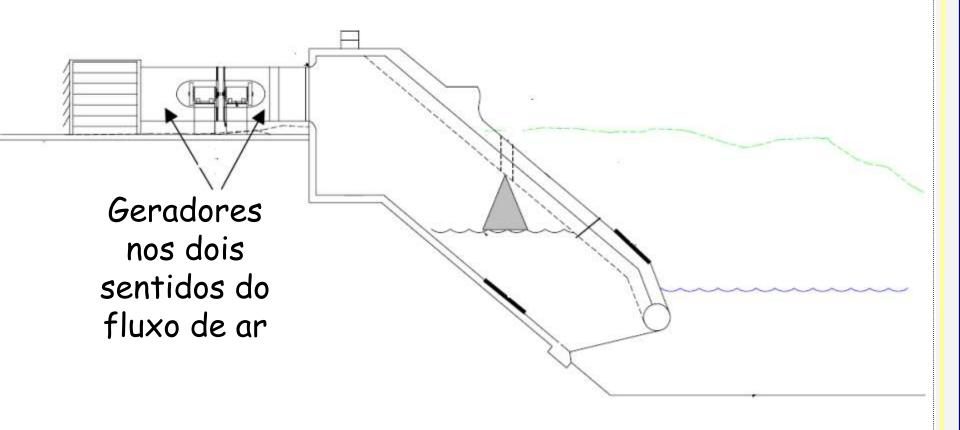
Centrais a Energia Solar Sistemas Hélio-convectivos

- Protótipo espanhol
 - Operação entre 82 89
 - Potência 50 kW


16 slide 16 / 23

Centrais a Energia Solar

Sistemas Hélio-convectivos


Projeto

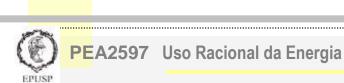
- Local: Deserto Austrália
- Torre de 1000 m altura e 130 m diâmetro;
- Mais alta construção do mundo;
- Painel solar de 20 km quadrados;
- Pronta em 2009
- 32 Turbinas no interior da torre;
- Geração de 200 MW.

Layout de uma central a ondas -Usina de Islay Escócia

Usina de Islay (500 kW) Escócia

Central a ondas

Central a ondas


2,25 MW em Portugal

Correntes marítimas

Irlanda Norte - 1MW Para correntes acima de 2,4 m/s

