
Ensemble	methods
Ensemble	methods	combine	several	base	classifiers	in	order	to	improve	their	robustness	when	compared	to	their	predictions	alone.	Several
methods	have	been	proposed	in	the	machine	learning	literature.	Scikit-learn	provides	us	several	classes	to	fit	ensemble	method,	for
example,	VotingClassifier,	BaggingClassifier,	AdaBoostClassifier	and	RandomForestClassifier,	to	name	a	few.	These	classes	will	be	explained
in	the	sequence.

First	we	do	all	necessary	imports,	load	the	breast	cancer	dataset	and	define	a	method	to	plot	a	classifier's	decision	boundary.

In	[1]:

import	pandas	as	pd
import	numpy	as	np
import	matplotlib.pyplot	as	plt

from	sklearn.ensemble	import	VotingClassifier,	BaggingClassifier,	AdaBoostClassifier,	RandomForestClassifier
from	sklearn.tree	import	DecisionTreeClassifier
from	sklearn.neural_network	import	MLPClassifier
from	sklearn.neighbors	import	KNeighborsClassifier
from	sklearn.preprocessing	import	LabelEncoder,	StandardScaler
from	sklearn.model_selection	import	train_test_split
from	sklearn.metrics	import	accuracy_score

#	Random	seed.
seed	=	10

#	Loading	Iris	dataset.
data	=	pd.read_csv('data/iris.csv')

#	Creating	a	LabelEncoder	and	fitting	it	to	the	dataset	labels.
le	=	LabelEncoder()
le.fit(data['Name'].values)

#	Converting	dataset	str	labels	to	int	labels.
y	=	le.transform(data['Name'].values)

#	Extracting	the	instances	data.	In	this	example	we	will	consider	only	the	first	two	features	to	be	able	to
#	plot	the	data	and	the	decision	boundaries	of	the	classifiers.
X	=	data.drop('Name',	axis=1).values[:,	:2]

#	Splitting	into	train	and	test	sets.
X_train,	X_test,	y_train,	y_test	=	train_test_split(X,	y,	test_size=0.34,	stratify=y,	random_state=seed)

#	Method	to	plot	a	classifier's	decision	boundary.
#	This	code	is	based	on:
#	http://scikit-learn.org/stable/auto_examples/semi_supervised/plot_label_propagation_versus_svm_iris.html
def	plot_decision_boundary(classifier,	X,	y,	title):
				xmin,	xmax	=	np.min(X[:,	0])	-	0.05,	np.max(X[:,	0])	+	0.05
				ymin,	ymax	=	np.min(X[:,	1])	-	0.05,	np.max(X[:,	1])	+	0.05
				step	=	0.01

				xx,	yy	=	np.meshgrid(np.arange(xmin,	xmax,	step),	np.arange(ymin,	ymax,	step))

				Z	=	classifier.predict(np.hstack((xx.ravel()[:,	np.newaxis],	yy.ravel()[:,	np.newaxis])))
				Z	=	Z.reshape(xx.shape)

				colormap	=	plt.cm.Paired
				plt.contourf(xx,	yy,	Z,	cmap=colormap)

				color_map_samples	=	{0:	(0,	0,	.9),	1:	(1,	0,	0),	2:	(.8,	.6,	0)}
				colors	=	[color_map_samples[c]	for	c	in	y]
				plt.scatter(X[:,	0],	X[:,	1],	c=colors,	edgecolors='black')

				plt.xlim(xmin,	xmax)
				plt.ylim(ymin,	ymax)

				plt.title(title)

Voting	classifier

The	idea	of	the	Voting	Classifier	is	to	combine	different	types	of	classifiers	and	to	produce	a	prediction	as	the	majority	vote	among	them	or
the	argmax	of	the	mean	probability	of	a	class.	In	scikit-learn,	this	approach	is	implemented	in	the	VotingClassifier	class.



In	[2]:

plt.figure(figsize=(8,	8))

#	Fitting	a	Decision	Tree.
tree	=	DecisionTreeClassifier(min_samples_split=5,	min_samples_leaf=3,	random_state=seed)
tree.fit(X_train,	y_train)
plt.subplot(2,	2,	1)
plot_decision_boundary(tree,	X_train,	y_train,	'Decision	Tree	decision	boundary')

#	Fitting	a	MLP.
mlp	=	MLPClassifier(hidden_layer_sizes=(10,),	max_iter=10000,	random_state=seed)
mlp.fit(X_train,	y_train)
plt.subplot(2,	2,	2)
plot_decision_boundary(mlp,	X_train,	y_train,	'MLP	decision	boundary')

#	Fitting	a	kNN.
knn	=	KNeighborsClassifier(n_neighbors=3)
knn.fit(X_train,	y_train)
plt.subplot(2,	2,	3)
plot_decision_boundary(knn,	X_train,	y_train,	'kNN	decision	boundary')

#	Fitting	a	Voting	Classifier	by	combining	the	three	above	classifiers.
voting_clf	=	VotingClassifier(estimators=[('Tree',	tree),	('MLP',	mlp),	('kNN',	knn)],	voting='hard')
voting_clf.fit(X_train,	y_train)
plt.subplot(2,	2,	4)
plot_decision_boundary(voting_clf,	X_train,	y_train,	'Voting	Classifier	decision	boundary')

plt.tight_layout()

plt.show()

Bagging	classifier

Bagging	applies	the	same	classifier	on	subsamples	(usually	with	the	same	size)	of	the	original	dataset	with	replacement.	In	scikit-learn,	this
method	is	implemented	through	BaggingClassifier	class.	Its	predictions	return	the	label	with	highest	mean	probability	among	the	base
classifiers.	If	the	base	classifiers	do	not	implement	the	predict_proba	method,	this	class	predicts	the	label	by	majority	voting.

As	mentioned	in	scikit-learn's	documentation,	the	bagging	method	usually	works	well	with	more	complex	models	(such	as	fully	fitted
decision	trees).



In	[3]:

plt.figure(figsize=(8,	4))

tree	=	DecisionTreeClassifier(random_state=seed)
tree.fit(X_train,	y_train)
plt.subplot(1,	2,	1)
plot_decision_boundary(tree,	X_train,	y_train,	'Decision	Tree	decision	boundary')

bagging_clf	=	BaggingClassifier(base_estimator=tree,	n_estimators=50,	random_state=seed)
bagging_clf.fit(X_train,	y_train)
plt.subplot(1,	2,	2)
plot_decision_boundary(bagging_clf,	X_train,	y_train,	'Bagging	Classifier	decision	boundary')

plt.tight_layout()

plt.show()

Boosting	classifier

The	Boosting	method	tries	to	combine	several	weak	classifiers	(i.e.,	classifiers	that	are	slightly	better	than	random	classifiers)	into	a	strong
classifier.	At	each	step,	the	procedure	fits	a	new	classifier	with	different	weights	on	the	objects	from	the	training	set.	The	idea	is	simple,
objects	that	are	assigned	the	wrong	label	will	have	their	weights	increased	in	the	next	iteration,	while	the	others	will	have	their	weights
decreased	in	the	next	iteration.

The	most	popular	boosting	algorithm	of	is	AdaBoost.	In	scikit-learn,	it	is	implemented	in	the	AdaBoostClassifier	class.

In	[4]:

plt.figure(figsize=(8,	4))

tree	=	DecisionTreeClassifier(min_samples_split=5,	min_samples_leaf=5,	max_depth=3,	random_state=seed)
tree.fit(X_train,	y_train)
plt.subplot(1,	2,	1)
plot_decision_boundary(tree,	X_train,	y_train,	'Decision	Tree	decision	boundary')

boosting_clf	=	AdaBoostClassifier(n_estimators=50)
boosting_clf.fit(X_train,	y_train)
plt.subplot(1,	2,	2)
plot_decision_boundary(boosting_clf,	X_train,	y_train,	'AdaBoost	Classifier	decision	boundary')

plt.tight_layout()

plt.show()



Random	Forest	classifier

Random	Forest	consists	of	an	ensemble	method	composed	by	multiple	decision	trees.	Each	tree	is	trained	with	a	subsample	with
replacement	from	the	original	dataset	and,	at	each	step,	a	node	split	is	performed	by	choosing	the	best	split	among	a	random	subset	of	the
features	instead	of	the	best	split	overall.

Many	experimental	machine	learning	studies	suggest	that	Random	Forest	is	one	of	the	best	classifiers	from	the	literature.	In	scikit-learn,	this
algorithm	is	implemented	through	RandomForestClassifier	class.

In	[5]:

random_forest_clf	=	RandomForestClassifier(n_estimators=50,	random_state=seed)
random_forest_clf.fit(X_train,	y_train)

plt.figure(figsize=(5,	5))
plot_decision_boundary(random_forest_clf,	X_train,	y_train,	'Random	Forest	Classifier	decision	boundary')
plt.show()


