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Abstract 

This paper presents the design, analysis, and fabrication of a membrane sculpture based on the Costa 

minimal surface. The work was developed during the Spring of 2016 at Princeton University as a 

pedagogical exercise combining the mathematics of minimal shapes with the major aspects of membrane 

structure design. Three different numerical form finding methods were employed independently to 

obtain a genus 2 Costa-Hoffman-Meeks minimal surface, which was subsequently fashioned into a 

unique and elegant art object. In the fabrication process, the 3D surface was first subdivided considering 

its inherent symmetries, resulting in three unique pattern shapes that were flattened, cut out from fabric, 

and finally sewn together. A bending-active tensioning system was designed and fabricated from 

initially straight fiberglass rods and custom 3D-printed connections. Although Costa surface has 

inspired at least a previous art installation and a membrane roof, the current sculpture innovates in the 

use of a bending-active support system, which renders the system self-supported, with remarkable 

adherence to the prescribed geometric parameters, yielding a smooth and well-stretched fabric surface, 

and providing a successful academic example of interface between art, engineering and science. 

Keywords: Fabric sculpture, membrane structure, minimal surface, Costa surface, non-linear analysis, 

bending-active, fabrication and design 

1. Introduction 

The study of minimal surfaces, characterized by the property of a minimal area within a fixed boundary, 

is important from both theoretical and practical point of views. They are also the solution geometry for 

a membrane constrained to that same boundary under an isotropic and uniform plane stress field 

(Eisenhart 1909 [9], Douglas 1931 [8], Isenberg 1978 [12]). These properties render minimal surfaces 

an interesting design option for membrane structures, since they are uniquely defined, for a given 

boundary, and provide economy of material and more regular fabric patterns.  

Minimal surfaces have also attracted the interest of scientists since the times of Lagrange (who solved 

the problem for some surfaces of the type) and Euler (who proved that minimal surfaces have zero-mean 

curvature everywhere, and therefore are either plane or anticlastic). In the nineteenth century, the 

Belgian physicist Joseph Plateau showed that analogue solutions to area minimization problems could 

be produced by dipping wire frameworks into a bath of soap solution.  

Less frequently studied are the evident sculptural qualities of minimal surfaces, such as double 

curvature, continuity, and intrinsic lightness. Although minimal surfaces have inspired many art works, 

their physical representations often contradict these qualities by using stiff and heavy materials, or rough 
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 finishes. Soap films successfully represent minimal surfaces, but their ephemeral nature does not 

permit long term exhibition. On the other hand, tension structures are both durable and express purity 

of form. There is little hidden in a prestressed membrane, which serves both as structure and the 

definition of form.  

Among the known minimal surfaces, the Costa surface is particularly interesting for its simplicity from 

afar and intricacy upon closer inspection. This paper explores a rendition of the Costa Surface as a 

tensile structure, and shows how mathematics can create inspiring forms. The Costa minimal surface 

was discovered by then-graduate student Celso de Jose Costa at the University of Brazil in 1982. He 

described in his doctoral dissertation (Costa 1982 [5]) a surface that, from afar, appeared as a catenoid 

radially bisected by a plane (or at least it would appear so a decade later when computers had advanced 

sufficiently to accurately portray this shape). However, closely observing, it can be seen that there is no 

intersection at all, and instead the “plane” flows smoothly around handles (holes in a surface) to join the 

catenoid. Costa’s discovery shattered a 200-year old conjecture that the plane, the helicoid, and the 

catenoid were the only topologically finite, complete, embedded minimal surfaces. Since the publication 

of Costa’s doctoral dissertation, research on embedded minimal surfaces has exploded and the surface 

was generalized for higher genus orders by (Hoffman and Meeks 1990 [10]). However, the original 

genus 1 version of the form remains the symbol of the research area. 

The first computer rendering of the surface was done by David Hoffman at University of Massachusetts 

at Amherst with help of programmer James Hoffman in 1985 [11]. Afterwards, a limited number of 

artistic or architectural renditions of a Costa surface have been created. The sculptor Helaman Ferguson 

and his team built some large snow (1999) and stone (2008) Costa surfaces. On an architectural scale, 

the Australian Wildlife Health Center by MvS Architects (2006) features a tensile roof inspired by the 

form. To the best of the authors’ knowledge, this is the first tensile membrane manifestation of a Costa 

surface, followed only by an installation by Pauletti, first displayed at the University of São Paulo,   in 

2008, and later at the Universidad de la Republica, Montevideo, in 2011.  

This paper reports the collaborative work developed during the Spring of 2016 at Princeton University 

by the students enrolled at the graduate course CEE540, to combine the mathematics of minimal shapes 

with the major aspects of membrane structure design and production. The overall size, geometry, 

materials and production methods were all defined by the students, seeking an object that required a 

sophisticated production, and capable of attracting bystanders’ curiosity.  

2. Form finding 

The Costa surface is a topologically finite, complete, embedded surface (Hoffman and Meeks III 1985 

[11], Hoffman and Meeks 1990 [10], Meeks III and Pérez 2011 [14]). “Topologically finite” means that 

the surface can be made by puncturing a compact surface. In this case, a torus is punctured 3 times, and 

the surface is stretched to achieve the form. “Complete” means the surface has no boundary. The Costa 

surface is usually rendered as being cropped by an arbitrary enclosing surface, resulting in three 

“boundary rings,” while the surface continues asymptotically approaching an infinite plane and a 

catenoid. An “embedded” surface has no self-intersections.  

In this project, a generalized Costa surface with 6 holes (more specifically, a Costa-Hoffman-Meeks 

surface of genus 2) was chosen, since it allowed for the introduction of a stable, bending-active support 

system. The sculpture’s dimensions were predefined by prescribing the relative positions and sizes of 

the three boundary rings. The top and bottom rings were given a diameter of 1.5 m, and the middle ring 

a diameter of 2 m. The height of the membrane structure was set to be 1.5 m. A rough mesh (with 2821 

nodes and 5460 triangular membrane elements) that satisfies the boundary geometry and topological 

requirements mentioned above was created with Grasshopper (Figure 1), and then the associated 

minimum surface was sought by different numerical methods. 
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Figure 1: Initial mesh in perspective view 

 

2.1. Numerical Methods for Form Finding 

While it is possible to define the form of a Costa surface analytically, the authors used numerical 

methods instead. Two different approaches were used to find the required minimal surface. The first 

approach deals with an exclusively geometrical area minimization problem, which is solved using the 

dynamic relaxation method (DRM). The second approach relies on the analogy between minimal 

surfaces and soap films. The resulting non-linear mechanical equilibrium problem was solved by the 

standard Newton-Raphson method (NRM), as well as by the Natural Force Density Method (NFDM). 

In all, these two approaches yield three numerical methods that were independently applied, and the 

results were compared.  

2.1.1. Direct Area Minimization solved using the Dynamic Relaxation Method 

The necessary 1st order condition for the area of a surface spanned by a configuration vector r x x u    

to be an extremum is given by the non-linear equation   

  
*

* A
 
 u

p u 0
u

  (1) 

where A  is the surface area and u  is a displacement vector field, with respect to a reference 

configuration r
x  . Prescribed boundaries are imposed by the equality restriction  ,P P P C   x x 0 , 

where C   is the prescribed boundary curve, Px    is a vector spanning the prescribed coordinates and 

 p u  may be understood as a generalized internal load vector. That this extremum is a minimum can be 

verified ad hoc (Souza 2008 [22]). 

Analytical solution of the nonlinear Eq. (1)may be rather difficult for complex boundary geometries, 

leaving numerical solution such as the popular Newton-Raphson method (NRM) as the only general 

way to tackle the problem. In NRM the solution *
u   is sought starting from an initial estimative 0u   and 

iterating the recurrence formula  1

1i i i i



  u u H p , where the Hessian matrix is defined as 





p
H

u
. 

However, it is intuitive to realize that the area of any smooth surface with fixed boundaries is indifferent 

to deformations involving infinitesimal displacements tangent to the surface itself. This is reflected in 

the fact that the Hessian matrix becomes more and more ill-conditioned, as any algebraic solution of Eq. 

(1) is approached. In practice, this characteristic overrules the direct solution of Eq. (1) by means of 

pure NRM. Because of this restriction in solving the problem of direct area minimization, NRM is 

usually replaced by other algorithms that avoid the exact inversion of the Hessian matrix, such as 

conjugate gradient methods (Souza 2008 [22] ) or the BFGS algorithm (Arcaro and Klinka 2009 [2]), 

which are capable of converging to one of the infinite solutions that exist for any given mesh topology. 
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 In this work, the dynamic relaxation method (DRM) was chosen due to its ubiquity in the field of 

tensile structure design. 

DRM offers an interesting alternative to solve complicated nonlinear equilibrium problems, replacing 

the static equilibrium problem by a pseudo-dynamic analysis, where fictitious masses and damping 

matrices are arbitrarily chosen to control the stability of the time integration process (Day 1965 [7], 

Otter 1965 [15], Barnes 1975 [4]). Thus, instead of solving Eq. (1), we follow the damped vibrations of 

the dynamic system    Mu Cu p u 0  , until it comes to a rest, at a solution of Eq. (1). Usually, 

damping coefficients close to the system’s critical damping are chosen, to speed up the convergence to 

the static equilibrium configuration. Moreover, since the mass and damping matrices are fictitious, they 

may be adjusted to keep the time-increments small enough to guarantee stability, but as large as possible 

to reduce the number of steps required for convergence to the static solution. Applied to the direct area 

minimization problem, the external vector, the damping matrix, and the mass matrix are generalized 

quantities with dimensions of [m], [s], and [s2], respectively. Furthermore, a popular technique 

associated with DRM, called kinetic damping (Cundall 1976 [6]) is to disregard the damping term 

altogether and arbitrarily zero the nodal velocities whenever a peak of generalized kinetic energy is 

detected. 

2.1.2. Soap Film Analogy solved using Newton-Raphson and the Natural Force Density Method 

It can be shown that the geometry associated with the equilibrium of an isotropic and uniform stress 

field is also the geometry that minimizes the area for that geometry. This notion, also known as the soap 

film analogy, can be traced back to the physicist J.A.F Plateau (1873 [20]) but has only been proved 

much more recently by Almgren and Taylor (1976 [1]). The soap film analogy provides a practical way 

to recast the problem of area minimization as a problem of membrane equilibrium under a prescribed 

stress field. DRM could also be used in this approach, but in this work, two alternative methods were 

selected as described below. The imposition of positive initial stress fields guarantees geometrical 

stiffness in the direction normal to the surface, while the definition of some elastic properties to the 

membrane guarantees stiffness in the tangential direction. Combined, these effects overcome the ill-

conditioning of the Hessian matrix discussed above, permitting the application of NRM. Starting from 

an arbitrary initial geometry, onto which a uniform and isotropic stress field is imposed, a viable 

equilibrium configuration is obtained, with a generally non-uniform stress field. The process is then 

repeated with the previous viable geometry assumed as a new initial one, but reimposing the original 

stress field, until convergence of both geometry and stresses is achieved.  

An alternative method for finding equilibrium configurations of membrane structures that avoids the 

problems related to nonlinear analysis is the Natural Force Density Method (NFDM), an extension of 

the well-known Force Density Method (Linkwitz 1971 [13], Schek 1974 [21]). NFDM was first 

suggested by Pauletti in 2006 [16], based on the natural approach introduced by Argyris for the Finite 

Element Method (Argyris, Dunne et al. 1974 [3]). In this method, the prescribed initial stress field σ   

in triangular elements is converted into quantities called natural force densities, according to 

  2

1 2 3

Tn n n V   n T σL , where V   is the element volume,  1 2 3diagL  collects the element 

side lengths, and T  is a stress transformation matrix. It can be shown that the imposition of natural force 

densities linearizes the membrane equilibrium problem (Pauletti 2006 [16], Pauletti and Pimenta 2008 

[18], Pauletti 2011 [19]). If the NFDM is applied iteratively, re-imposing a uniform and isotropic stress 

field to the shape resulting at every iteration, the method will again converge to a minimum surface, 

through the solution of a series of linear systems. This is a clear advantage, if compared to NRM, which 

also converges to minimal configurations, but requires the solution of non-linear systems at every 

iteration. 
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 2.3. Results and Discussion 

Solutions for the minimal Costa surface, considering the three numerical approaches outlined above 

were obtained using a previously implemented MATLAB program named SATS (System for the 

Analysis of Taut Structures) (Pauletti 2008 [17]) with minor adaptations. All three approaches started 

with the same initial mesh generated in Grasshopper (Figure 1).  

 
(a) (b) (c) 

Figure 2: Direct area minimization using DRM: (a) Intermediate geometry showing the norm of displacements 

relative to the initial geometry, (b) Final geometry showing the norm of displacements relative to the 

intermediate geometry, (c) Final mesh with visible element distortion 

 

Figure 2 shows the results obtained for the area minimization problem using DRM. The calculation 

process took 1000 iterations with the geometry being updated after 500 iterations to speed up 

convergence. It can be observed from the final mesh configuration that a smooth geometry is achieved, 

but with significant element distortions, reflecting the fact the nodes are unconstrained in the tangential 

direction. These distortions correspond to the creases in the initially non-smooth geometry, which give 

rise to high unbalanced load vectors. In principle, distortion could be prevented by adding some artificial 

stiffness in the tangential direction, but that would mar the purely geometrical approach originally 

intended. In that case, a full mechanical analogy (discussed below) is preferred. 

 
(a)   (b) (c) (d) 

Figure 3: Solving soap-film analogy with NRM: (a/b) First and second principle stresses at final configuration. 

(c) Displacements from penultimate to final configurations. (d) Final mesh geometry 

 

Figure 3 shows the results obtained considering the soap film analogy solved by NRM: Multiple rounds 

of non-linear equilibrium analyses were performed, while reducing the error limits. After convergence 

for each round of calculations, the geometry was updated, adding up the obtained displacements and the 

original stress field was reimposed. The displacements between consecutive analyses gradually 

decreased. The final equilibrium configuration was reached after four rounds of non-linear equilibrium 

analyses, with a total of 22 iterations and a maximum displacement norm of less than 10-5 m between 

the penultimate and ultimate configurations. In the plotting of the stresses, it is seen that uniform 
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 maximum and minimum principle stress fields were obtained with small deviations between the two 

values, also indicating a fairly isotropic stress state. That means that the final surface is indeed minimal, 

within a numerical tolerance.  

Finally, Figure 4 shows the results obtained considering the soap film analogy solved by NFDM. As 

previously discussed, NFDM provides viable equilibrium configurations at every iteration, generally 

resulting in non-uniform stress fields. However, as for NRM, updating the geometry and reimposing the 

stresses allowed NFDM to converge to the minimal shape after only five rounds. Once again, the 

minimality of the surface can be verified by the uniformity and small variations between the first and 

second principle stress fields. In this case, displacements were not plotted since NFDM is formulated in 

terms of global coordinates.   

 
(a) (b) (c) 

Figure 4: Solving soap-film analogy with NFDM: (a/b) First and second principle stresses at final configuration. 

(c) Final mesh geometry 

 

Table 1 compares the total surface area obtained with each of the three numerical methods, as well as 

the number of iterations required for convergence. The three methods effectively reduced the surface 

area of the initial mesh under the given boundary conditions, and created suitable final configurations 

that are close to the actual minimal surface, as can be concluded by inspection of the resulting stresses, 

displacements, and total areas. DRM required by far the largest number of iterations and was prone to 

severe mesh distortion. However, it is capable of solving the direct area minimization problem, 

something that cannot be achieved with pure NRM. As per the two-strategies used to solve the soap-

film analogy, both NRM and NFDM showed good convergence, with NFDM being considerably faster. 

 Table 1: Form finding results summary (Area of initial mesh: 10.49 m2) 

Method Surface area at convergence (m2) Iterations 

Direct area minimization 8.25 1000 

Newton-Raphson Method 8.28 22 

Natural Force Density Method 8.25 5 

3. Manufacturing and assembly 

The manufacturing of membrane structures is a relatively complex undertaking because they are usually 

characterized by double curvature, but produced from planar fabrics. The 3D surface must be subdivided 

into adequate patterns, and these patterns should be flattened. There is always an intrinsic error 

introduced by this process, which can only be minimized by increasing the subdivision. When working 

with architectural fabrics, which are characterized by relatively high stiffness, this error may introduce 

visible slackness or wrinkles if not properly managed. However, more flexible fabrics allow for a cruder 

patterning. The current work takes profit of the flexibility of the selected material in order produce a 

Costa surface sculpture with only three different patterns that reflect its internal symmetries (Figure 5). 
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 3.1. Pattern Finding and Optimization 

The final mesh obtained by NFDM was selected as the basis for patterning because it yielded the most 

regular mesh. The internally straight edges in the initial mesh were used to partition the final geometry 

(Figure 5a). Some of these lines are necessarily geodesic because they belong to planes of symmetry. 

However, geodesic cutting lines were not necessarily sought for all seams.  Due to the internal 

symmetries, it was possible to split the 3D surface into only three unique patterns depicted in Figures 

5a.  The patterning consisted of the following: 6x Pattern 1, 6x Pattern 2, and 6x Pattern 3 (Figure 5b-

d). To reduce the deformations intrinsic to the flattening process, Pattern 1 was further divided into two 

symmetric halves. Pattern 2 took profit of the existence of three horizontal straight lines in a genus 2 

Costa-Hoffman-Meeks surface.  

 
(a)   (b) (c) (d) (e) 

Figure 5: Final patterns of the 6-hole Costa surface 

 

The 3D mesh of each pattern was flattened in Rhinoceros using the Squish command. This is a built-in 

algorithm that maps a non-developable 3D mesh into a 2D one (Rhinoceros 5, 2015). In principle, 

flattening should seek uniform deformations throughout the patterns. However, this is not possible for 

the chosen subdivision, especially for Patterns 1 and 2, since they present large negative Gaussian 

curvatures. The Squish settings were adjusted to generate a pattern that will undergo only stretching in 

the pullback process. The 3D geometry was considered as unstressed for the flattening process, so the 

final 2D patterns were scaled down by a uniform compensation factor of 20%, which was determined 

experimentally for the selected fabric (composed of 18% spandex, 82% nylon). Because of numerical 

imprecision during the flattening process, expected symmetries in individual patterns were not fully 

observed and had to be reimposed by averaging the relevant sides’ lengths. Moreover, due to the fact 

that Squish considers each pattern independently during the flattening process, there was no guarantee 

that adjacent seam lines would have the same length between patterns. These differences were corrected 

through scaling factors, determined by using a least-squares method that minimized the absolute error 

between adjacent side lengths. The scaling factors for patterns 1, 2, and 3 were 1.032, 0.993, and 1.008, 

respectively. 

3.2. Active-Bending Tensioning System 

The model was designed with two primary tensioning systems: circular hoops for the three boundary 

conditions specified in the initial mesh, and a set of six bending-active rods to push apart the top and 

bottom rings, achieving a height of 1.5 meters as specified in the initial mesh. The pieces of the two 

tensioning systems are connected by 3D printed connectors.  

Due to the membrane action, the lower and upper rings of the Costa surface sculpture will be subjected 

to opposing vertical forces (when disregarding self-weight, which is relatively small). If self-weight is 

disregarded, the loads applied to the middle ring by the membrane produce a zero resultant, but the 

weight of this ring introduces a slight increase in stresses acting in the upper half of the membrane, and 

a corresponding decrease in the stresses acting in its lower half.  
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 The three circular rings act in compression and were built from straight fiberglass rod segments. The 

flexibility of these elements allowed them to be bent into shape in the elastic range, while their lightness 

was essential to minimize the stress variations imposed by the flexibility of the middle ring. Respecting 

the cyclic symmetry of the surface, the rings consisted of three segments connected by metal ferrules, 

inserted in custom-designed 3D printed connectors. Using three 1.57 m-long rods allowed for three 

junctions on each 1.5 m-diameter hoop, which coincided with the symmetries of the patterns and served 

as joints in which to insert the bending-active rods. The hoops are inserted in sleeves along the edges of 

the fabric that coincided with the boundary conditions. 

  

(a)  (b)    

Figure 6: (a) Three straight rods connecting the upper and lower rings along vertical planes of symmetry - each 

rod will intersect the surface in three points; (b) three pairs of buckled rods, each rod passing through the center 

of a hole, without intersecting the surface, with two common points of intersection 
 

While the upper and lower rings could be pulled apart by a pair of external forces, a more elegant, self-

equilibrated system can be achieved by joining these rings with members acting in compression. The 

initial concept envisioned connecting the rings with straight rods passing through the holes. However, 

the geometry of the surface does not allow a straight line to connect the upper and lower rings without 

intersecting the surface, as shown in Figure 6a. Therefore, the concept naturally evolved to a bending-

active system, composed of three pairs of bent rods that push apart the upper and lower rings (Figure 

6b). Such a solution required a precise determination of the deformed geometry and initial straight length 

of the rods, as well as custom 3D printed connectors. The shape of the bending-active rods was 

calculated following the model of the planar elastica, such that the rods pass through the center of the 

holes.  

3.3. Manufacturing process 

Once the final patterns were determined, a paper model of the surface was assembled using the patterns 

found as described in the previous section. The paper model served three important functions: first, it 

provided insight into the most efficient assembly sequence; second, it served as a map during the sewing 

process to keep track of the many different pieces of fabric (24 individual pieces’ total); third, it provided 

a verification that gross errors were avoided in the patterning process.  

A uniform seam allowance was added to interior edges, while a larger allowance was added to the naked 

edges to form sleeves to accommodate the three boundary rings. With these added details, the three final 

patterns were used to create tracing templates from MDF using a laser cutter. These templates allowed 

for systematic production of the 24 fabric pieces, which were finally sewn together according to the 

predefined sequence (Figure 7). 
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Figure 7: Assembly Sequence 

 

Finally, the fiberglass rings were fabricated. 3D-printed four-way connectors were designed for the top 

and bottom rings to accept the buckled rods for the self-supporting mechanism. Once the rods were 

inserted into the fabric sleeves and bent into circles, the buckled rods were inserted into the connectors. 

Fully assembled, the surface showed no wrinkles and sat at a height of 1.5 meters as predicted by the 

computational model. It was necessary to tie the buckled rods together at their two ideal junctions to 

prevent out-of-plane buckling. 

 

   

 Figure 8: Assembled sculpture and close-up of connection details 

4. Conclusions 

The paper presented the design, analysis and fabrication of a membrane sculpture based on the Costa 

minimal surface, considering the use of an innovative bending-active support system, yielding a smooth 

and well-stretched fabric surface with remarkable adherence to the prescribed geometric parameters. 

The object required a sophisticated production and provided a successful academic example of interface 

between art, engineering and science.  
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