Escola Superior de Agricultura "Luiz de Queiroz" Universidade de São Paulo

Estimação

Professora Renata Alcarde Sermarini

Piracicaba maio 2016

Estimação dos Parâmetros

Estimação

Avaliar características da população com base em informações da amostra

Estimar os parâmetros

Mais utilizadas:

- média (μ)
- ullet proporção (π)
- variância (σ^2)

Estimação dos Parâmetros

Exemplos:

- produção média de determinada cultura;
- proporção média de área foliar atacada por uma praga;
- parâmetros estatísticos genéticos (variância genética, ambiental e fenotípica)...

Propriedades dos estimadores

Estimadores

Média:
$$\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$$

Proporção:
$$P = \frac{\text{número de sucessos}}{n}$$

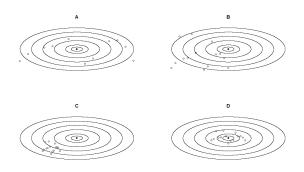
Variância:
$$S^2 = \frac{\sum_{i=1}^n (X_i - \bar{X})^2}{n-1}$$

Propriedades dos estimadores

Propriedades

- não viesado: média da distribuição amostral igual ao parâmetro
- preciso: variância amostral pequena
- acurado: erro amostral pequeno

Propriedades dos estimadores



A: não viesado, pouca precisão e pouca acurácia

B: viesado, pouca precisão e pouca acurácia

C: viesado, boa precisão e baixa acurácia

D: não viesado, boa precisão e boa acurácia

Estimativas pontuais e intervalares

Modelo probabilístico

 \downarrow

Estimar os parâmetros da distribuição

 \parallel

Amostra

Estimadores ⇒ **Estatísticas**

Estimativas pontuais

Média:
$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$

Proporção:
$$p = \frac{\text{número de sucessos}}{n}$$

Variância:
$$s^2 = \frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}$$

Estimativas intervalares

Intervalo de confiança

Seja (X_1, X_2, \ldots, X_n) uma amostra aleatória de tamanho n de uma população e θ o parâmetro de interesse. Sejam $\hat{\theta}_1$ e $\hat{\theta}_2$ estatísticas tais que:

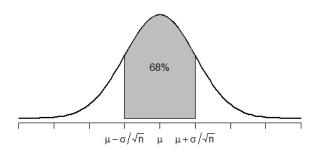
$$P(\hat{\theta}_1 < \theta < \hat{\theta}_2) = 1 - \alpha.$$

Então o intervalo $(\hat{\theta}_1; \hat{\theta}_2)$ é chamado intervalo de **100(1**- α **)% de confiança** para o parâmetro θ . Usualmente toma-se $1 - \alpha = 0.95$ ou 0,99.

Interpretação: De todos os possíveis intervalos que possam ser construídos, espera-se que $100(1-\alpha)\%$ deles contenham o verdadeiro valor do parâmetro θ .

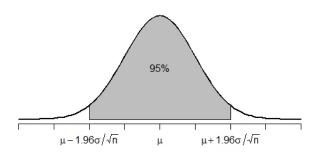
◆ロト ◆個ト ◆差ト ◆差ト を めなべ

Distribuição normal



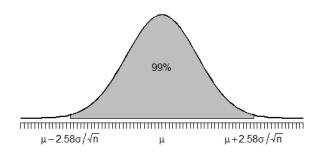
Podemos dizer que 68% dos possíveis valores da média de uma amostra aleatória simples de tamanho n não se afastam mais do que σ/\sqrt{n} .

Distribuição normal



Podemos dizer que 95% dos possíveis valores da média de uma amostra aleatória simples de tamanho n não se afastam mais do que $1,96\sigma/\sqrt{n}$.

Distribuição normal



Podemos dizer que 99% dos possíveis valores da média de uma amostra aleatória simples de tamanho n não se afastam mais do que $2,58\sigma/\sqrt{n}$.

Estimativas intervalares

Intervalos de confiança para média populacional

Casos

- População Normal e Variância da população conhecida;
- População Normal e Variância da população desconhecida;
- População não Normal, grandes amostras (n>30).

População normal e variância populacional conhecida

$$X \sim N(\mu, \sigma^2) \Rightarrow \bar{X} \sim N(\mu, \frac{\sigma^2}{n}) \Rightarrow Z = \frac{\bar{X} - \mu}{\sqrt{\frac{\sigma^2}{n}}} \sim N(0, 1)$$

$$P\left(-z_T < \frac{\bar{X} - \mu}{\sqrt{\frac{\sigma^2}{n}}} < z_T\right) = 1 - \alpha$$

$$\dots$$

$$P\left(\bar{X} - z_T \sqrt{\frac{\sigma^2}{n}} < \mu < \bar{X} + z_T \sqrt{\frac{\sigma^2}{n}}\right) = 1 - \alpha$$

$$IC(\mu)_{1-\alpha} = \left(\bar{X} - z_T \sqrt{\frac{\sigma^2}{n}}; \bar{X} + z_T \sqrt{\frac{\sigma^2}{n}}\right)$$

População normal e variância populacional conhecida

Exemplo: A distribuição dos pesos de pacotes de determinadas sementes, enchidos automaticamente por uma certa máquina, é normal, com desvio padrão (σ) conhecido e igual a 0,20 kg. Uma amostra de 15 pacotes retirada ao acaso apresentou os seguintes pesos, em kg:

20,05	20,10	20,25	19,78	19,69	19,90	20,20	19,89
19,70	20,30	19,93	20,25	20,18	20,01	20,09	

Construir os intervalos de confiança de 95% e 99% para o peso médio dos pacotes de sementes.

População normal e variância populacional desconhecida

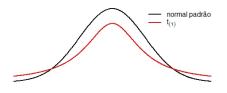
Nova estatística:

$$T = rac{ar{X} - \mu}{\sqrt{rac{S^2}{n}}} \sim t_{(n-1)}$$

Distribuição t de Student

- Simétrica em relação ao zero;
- Semelhante à distribuição normal padrão, porém com "caudas mais grossas";
- ullet Para $n o\infty$ $(n\ge 30)$ a distribuição t tende para a normal padrão

População normal e variância populacional desconhecida



$$IC(\mu)_{1-\alpha} = \left(\bar{X} - t_T \sqrt{\frac{S^2}{n}}; \bar{X} + t_T \sqrt{\frac{S^2}{n}}\right)$$

Utilização da tabela da distribuição t de Student

Exemplos:

- (a) número de graus de liberdade = 5 e α = 0,02. t_T ?
- (b) número de graus de liberdade = 15 e α = 0,10. t_T ?
- (c) Para no de graus de liberdade = 10, determinar t_T tal que $P(-t_T < T < t_T) = 0,95$
- (d) Para no de graus de liberdade = 4, determinar t_T tal que $P(-t_T < T < t_T) = 0,80$
- (e) Para n° de graus de liberdade = 10, determinar t_T tal que $P(T > t_T) = 0,05$
- (f) Para n° de graus de liberdade = 4, determinar t_T tal que $P(T < -t_T) = 0,20$
- (g) Para no de graus de liberdade = 24, determinar t_T tal que $P(T<-t_T)=0,01$

Utilização da tabela da distribuição t de Student

Exemplos:

- (h) Para no de graus de liberdade = 13, determinar t_T tal que $P(T > t_T) = 0,005$
- (i) Para no de graus de liberdade = 11, determinar t_T tal que $P(T < t_T) = 0,80$
- (j) Para no de graus de liberdade = 12, determinar t_T tal que $P(T>-t_T)=0,90$
- (k) Para 10 graus de liberdade, achar P(-3,169<T<3,169), P(T<3,169), P(T<3,169)
- (I) Para 5 graus de liberdade, achar P(-1,476<T<1,476), P(T<1,476), P(T<-1,476)

População normal e variância populacional desconhecida

Exemplo:

Os resíduos industriais jogados nos rios, muitas vezes, absorvem o oxigênio necessário à respiração dos peixes e de outras formas de vida aquática. Uma lei estadual exige um valor médio não inferior a 5ppm de oxigênio dissolvido, cujo conteúdo seja suficiente para manter a vida aquática. Seis amostras de água retiradas de um rio revelaram os índices:

Construir o intervalo com 95% de confiança para a verdadeira média do oxigênio dissolvido, em ppm, e interpretar.

• População normal e variância populacional desconhecida

Exemplo:

Para avaliar o peso médio ao nascer de bezerros da raça Ibagé foi examinada uma amostra de 20 partos, obtendo os dados a seguir:

24,58	26,64	28,01	23,76	26,98	23,47	26,92	27,53	26,69	23,34
24,38	28,31	26,21	29,92	28,93	26,34	28,14	28,91	25,35	28,23

Supondo que a distribuição dos dados de peso ao nascer é aproximadamente normal,

- (a) Determinar estimativas por ponto para a média e para a variância dos pesos para essa amostra;
- (b) Construir um intervalo de 95% de confiança para μ ;
- (c) Calcule o tamanho de n da amostra necessária para que se obtenha um intervalo de confiança de 95% com precisão de 2% da média.

População não normal, grandes amostras (n > 30)

Pelo Teorema Central do Limite, se n for razoavelmente grande (n > 30), então

$$rac{ar{\mathcal{X}}-\mu}{\sqrt{rac{\mathcal{S}^2}{n}}}\sim extsf{N}(0,1)$$

e o intervalo de $100(1-\alpha)\%$ de confiança para a média μ da população é dada por:

$$IC(\mu)_{1-\alpha} = \left(\bar{X} - z_T \sqrt{\frac{s^2}{n}}; \bar{X} + z_T \sqrt{\frac{s^2}{n}}\right)$$

População não normal, grandes amostras (n > 30)

Exemplo: Para se avaliar a intensidade da infestação de uma área por uma espécie de lagarta, foram observadas 32 parcelas quanto ao número de lagartas, obtendo-se uma média de 3,3 lagartas por parcela e variância 3,2 (lagartas por parcela)². Construir os intervalos de 95% e 99% de confiança para o número médio de lagartas na área total.

- (a) Calcular o tamanho n da amostra necessária para que se obtenha um intervalo de 95% de confiança com precisão d=0,4 lagartas por parcela.
- (b) Calcular o tamanho n da amostra necessária para que se obtenha um intervalo de 99% de confiança com precisão d=0,4 lagartas por parcela.

Intervalo de confiança para proporção

$$IC(\pi)_{1-\alpha} = \left(\hat{\pi} - z_T \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}; \hat{\pi} + z_T \sqrt{\frac{\hat{\pi}(1-\hat{\pi})}{n}}\right)$$

Exemplo: Coletou-se uma amostra de 35 peixes da espécie *Xenomelaniris brasiliensis*, na localidade da praia da Barra da Lagoa, Florianópolis, SC, a qual apresentou 45,7% de peixes com comprimento total acima de 50 mm. Encontre um intervalo com 95% de confiança, dentro do qual deve estar a verdadeira proporção de peixes dessa espécie com comprimento acima de 50 mm.

Qual o tamanho da amostra necessário para que tenhamos 95% de confiança de que o erro de nossa estimativa não seja superior a cinco pontos percentuais (0,05)?

Intervalo de confiança para proporção

Exemplo: Em um experimento, 320 de 400 sementes germinaram. Determine o intervalo de confiança de 99% para a verdadeira proporção de sementes que germinaram. Para realizar o teste de germinação, quantas sementes serão necessárias utilizar, se desejarmos um intervalo de confiança de 99%, com precisão de quatro pontos percentuais?