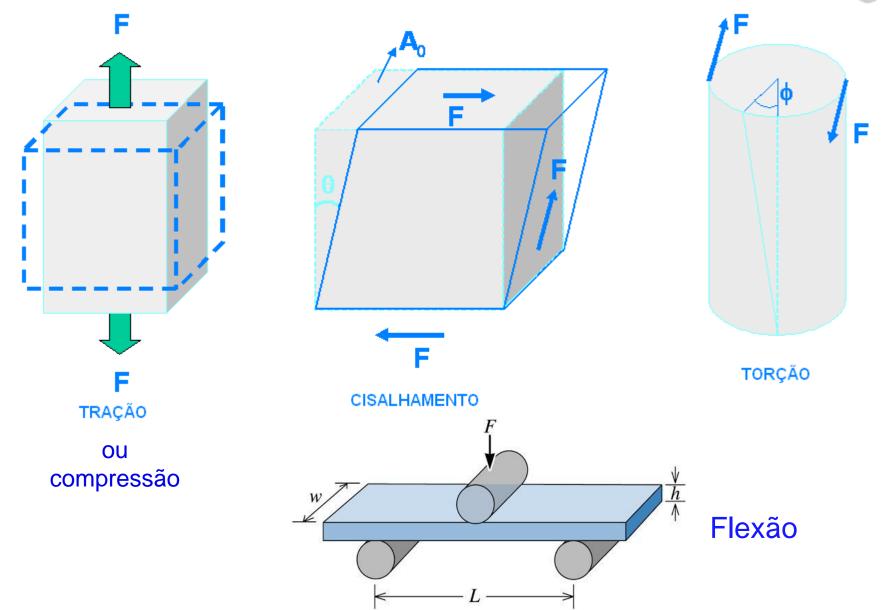

Universidade de São Paulo

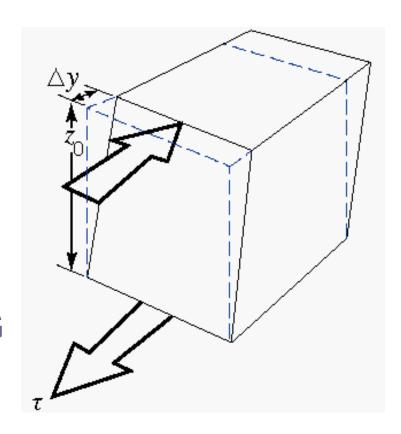
Escola de Engenharia de Lorena

Departamento de Engenharia de Materiais

Ensaios Mecânicos dos Materiais - Tração


Introdução à Ciência dos Materiais Prof. Dr. Cassius O.F.T. Ruchert, Professor Associado

Propriedades Mecânicas de Metais

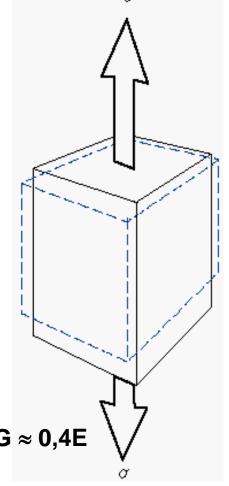

- Como os metais são materiais estruturais, o conhecimento de suas propriedades mecânicas é fundamental para sua aplicação.
- Um grande número de propriedades pode ser derivado de um único tipo de experimento, o ensaio de tração.
- Neste tipo de ensaio um material é tracionado e se deforma até fraturar. Mede-se o valor da força e do alongamento a cada instante, e gerase uma curva tensão-deformação.

TIPOS DE TENSÕES E DEFORMAÇÕES QUE UMA ESTRUTURA ESTA SUJEITA

Cisalhamento

- Uma tensão cisalhante causa uma deformação cisalhante, de forma análoga a uma tração.
 - □ Tensão cisalhante
 - $\tau = F/A_0$
 - onde A₀ é a área paralela a aplicação da força.
 - □ Deformação cisalhante
 - $= \gamma = \tan \alpha = \Delta y/z_0$
 - onde α é o ângulo de deformação
- Módulo de cisalhamento G

Coeficiente de Poisson


- Quando ocorre elongamento ao longo de uma direção, ocorre contração no plano perpendicular.
- A Relação entre as deformações é dada pelo coeficiente de Poisson v.

$$v = - \varepsilon_{x} / \varepsilon_{z} = - \varepsilon_{y} / \varepsilon_{z}$$

- o sinal negativo apenas indica que uma extensão gera uma contração e viceversa
- □ Os valores de v para diversos metais estão entre 0,25 e 0,35 (max 0,50)

$$E = 2G(1+v)$$

E = 2G(1+v) Para a maioria dos metais $G \approx 0.4E$

O coeficiente de Poisson (materiais isotropicos) pode ser usado para estabelecer uma relação entre o módulo de elasticidade e o módulo de cisalhamento de um material.

Propriedades Mecânicas dos Materiais

Força de tração

Força de compressão

Cisalhamento

Tensão

$$\sigma = \frac{F}{A_0}$$

Deformação

$$\varepsilon = \frac{\Delta 1}{1_0}$$

Módulo de Elasticidade

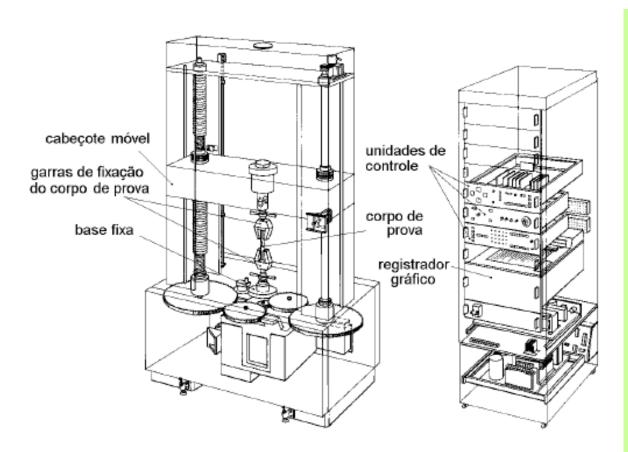
$$\sigma = E \cdot \varepsilon$$

Tensão

$$\tau = \frac{F}{A_0}$$

Deformação

$$\gamma = \tan \theta$$

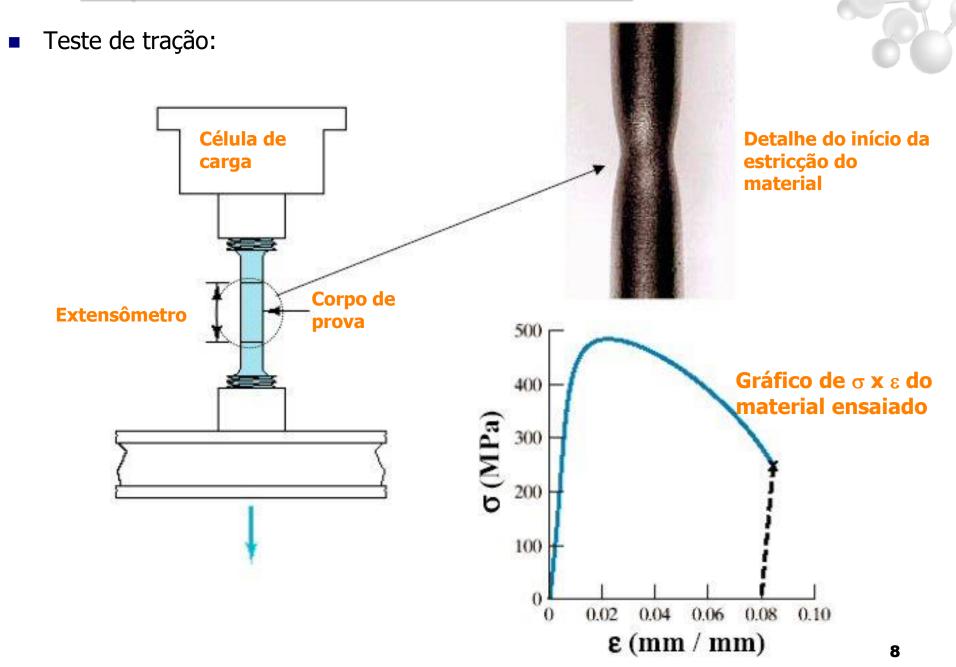

Módulo de cisalhamento

$$\tau = G \cdot \gamma$$

Razão de Poisson:
$$v = -\frac{\overline{A_0}}{2 \cdot \frac{\Delta}{1}}$$

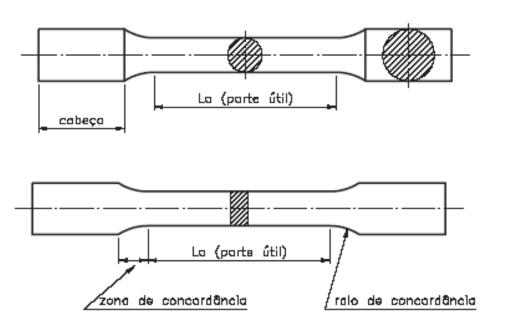
Equipamento para o ensaio de tração

O ensaio de tração geralmente é realizado na máquina universal, que tem este nome porque se presta à realização de diversos tipos de ensaios.



Máquina Universal de Ensaio de Tração.

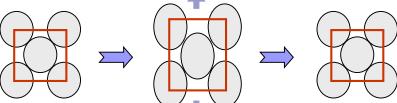
A máquina de tração


- É hidráulica ou eletromecânica, e está ligada a um dinamômetro ou célula de carga que mede a força aplicada ao corpo de prova;
- Possui um registrador gráfico que vai traçando o diagrama de força e deformação, em papel milimetrado, à medida em que o ensaio é realizado.

Propriedades Mecânicas dos Materiais

Corpos de prova

- Possuem características especificadas de acordo com normas técnicas.
 Suas dimensões devem ser adequadas à capacidade da máquina de ensaio;
- Normalmente utilizam-se corpos de prova de seção circular ou de seção retangular, dependendo da forma e tamanho do produto acabado do qual foram retirados, como mostram as ilustrações a seguir.

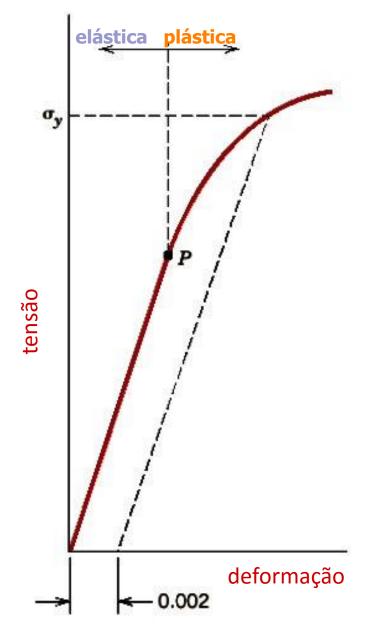


- A parte útil do corpo de prova, identificada na figura anterior por Lo, é a região onde são feitas as medidas das propriedades mecânicas do material.
- As cabeças são as regiões extremas, que servem para fixar o corpo de prova à máquina de modo que a força de tração atuante seja axial.

Corpos de prova para o Ensaio de Tração.

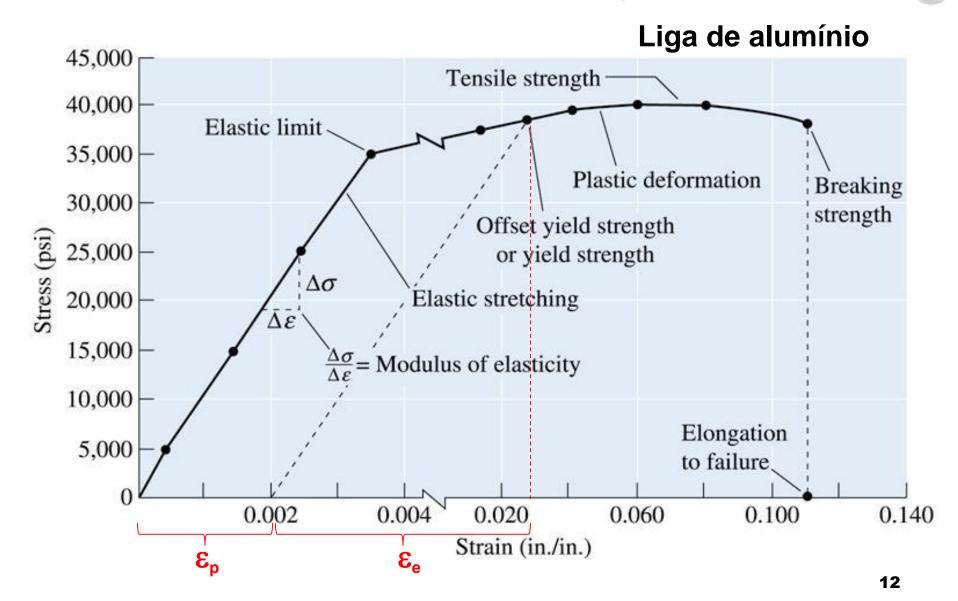
Deformação Elástica

Características Principais:

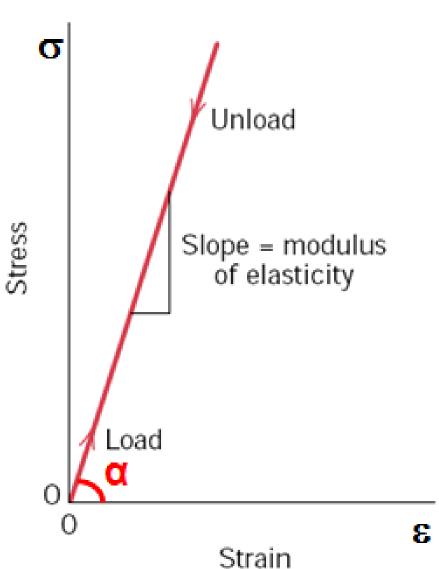


- A deformação elástica é resultado de um pequeno alongamento ou contração da célula cristalina na direção da tensão (tração ou compressão) aplicada;
- > Deformação não é permanente, o que significa que quando a carga é liberada, a peça retorna à sua forma original;
- \succ Processo no qual tensão e deformação são proporcionais (obedece a lei de Hooke) $\rightarrow \sigma$ =E ϵ (lembra F=KX-Mola);
- Gráfico da tensão x deformação resulta em uma relação linear. A inclinação deste segmento corresponde ao módulo de elasticidade

E


Propriedades Mecânicas dos Materiais

Comportamento σ x ε:



- Deformação elástica: é reversível, ou seja, quando a carga é retirada, o material volta às suas dimensões originais;
 - ✓ átomos se movem, mas não ocupam novas posições na rede cristalina;
 - \checkmark numa curva de σ X ε, a região elástica é a parte linear inicial do gráfico.
- Deformação plástica: é irreversível, ou seja, quando a cargá é retirada, o material não recupera suas dimensões originais;
 - ✓ átomos se deslocam para novas posições em relação uns aos outros.

Curva Típica σ x ε (tração)

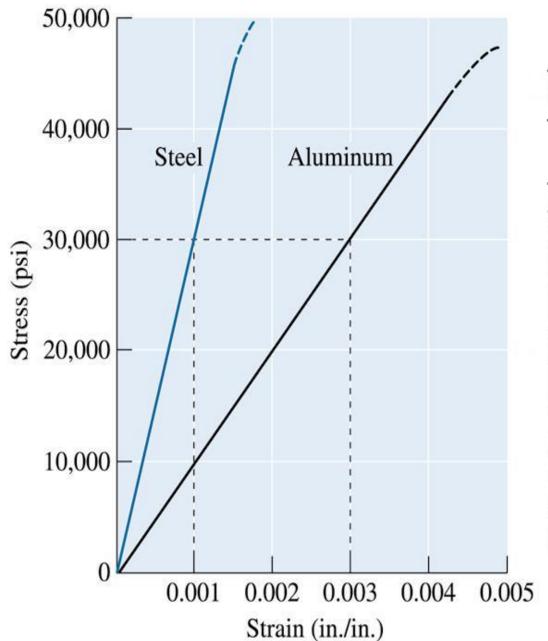
Módulo de Elasticidade (E)

$$\sigma = E\varepsilon$$

$$\tan g\alpha = \frac{\Delta S}{\Delta \varepsilon} = E$$

E = módulo de elasticidade ou Young (GPa)

σ = tensão <u>(MPa)</u>

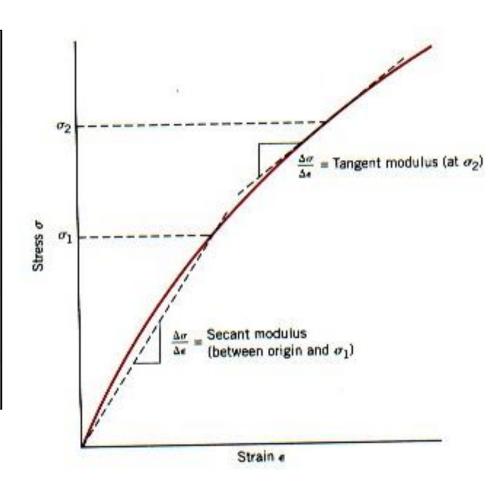

ε = deformação (mm/mm) ₁₃

Módulo de Elasticidade (E)

Principais características:

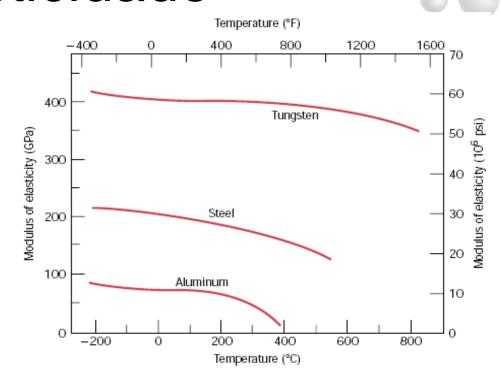
- Quanto maior o módulo, mais rígido será o material ou menor será a deformação elástica;
- ➤ O módulo do aço (≈ 200 GPa) é cerca de 3 vezes maior que o correspondente para as ligas de alumínio (≈ 70 GPa), ou seja, quanto maior o módulo de elasticidade, menor a deformação elástica resultante.
- O módulo de elasticidade corresponde a rigidez ou uma resistência do material à deformação elástica.
- O módulo de elasticidade está ligado diretamente com as forças das ligações interatômicas.

Módulo de Elasticidade – Aço vs. Alumínio


TABLE 2.5 Elastic and Shear Moduli and Poisson Ratios for Polycrystalline Metals^a

Metal (20°C)	E (GPa)	G (GPa)	ν
Aluminum	70.3	26.1	0.345
Cadmium	49.9	19.2	0.300
Chromium	279.1	115.4	0.210
Copper	129.8	48.3	0.343
Gold	78.0	27.0	0.440
Iron	211.4	81.6	0.293
Magnesium	44.7	17.3	0.291
Nickel	199.5	76.0	0.312
Niobium	104.9	37.5	0.397
Silver	82.7	30.3	0.367
Tantalum	185.7	69.2	0.342
Titanium	115.7	43.8	0.321
Tungsten	411.0	160.6	0.280
Vanadium	127.6	46.7	0.365

^a Adapted with permission from R. W. Hertzberg, *Deformation and Fracture Mechanics of Engineering Material*, New York: John Wiley, 1976, p. 8.


Comportamento não-linear

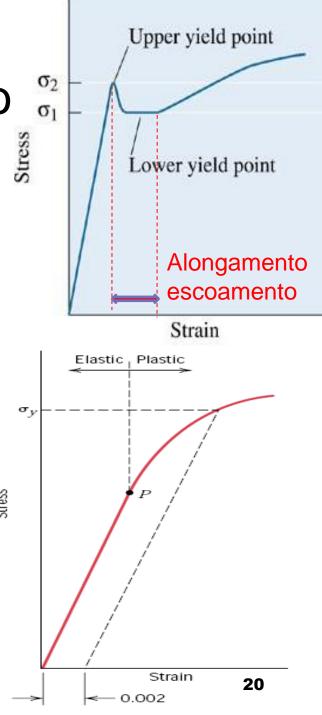
Alguns metais como ferro fundido cinzento, o concreto e muitos polímeros apresentam um comportamento não linear na parte elástica da curva tensão x deformação

Módulo de Elasticidade

- O módulo de elasticidade é dependente da temperatura;
- Quanto maior a temperatura o E tende a diminuir.

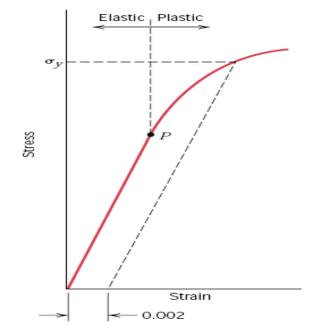
Valores típicos dos módulos de elasticidade a diferentes temperaturas.

	Módulo de Elasticidade, GPa.				
Material	20°C	205°C	427°C	538°C	649°C
Aço carbono	210	190	158	137	127
Ligas de Ti	116	98	75	71	
Ligas de Al	74	67	55		


Material	MÓDULO DE ELASTICIDADE OU YOUNG (E)		
* Polímero termoplástico ** Polímero termofixo			
*** Compósitos	GPa	10 ⁶ Psi	
Polietileno alto peso molecular *	0,7	0,1	
Resina Epóxi **	3,5	0,5	
Acrílicos	3,5	0,5	
Epóxi reforçado com fibra vidro ***	40	5,8	
Magnésio	45	6,5	
Alumínio	70	10	
Latão	97	14	
Titânio	107	15,5	
Cobre	110	16	
Níquel	207	30	
Aço	207	30	
Compostos grafite/epóxi ***	280	40,7	
Tungstênio	407	59	

Deformação Plástica

- > Para a maioria dos materiais metálicos, o regime elástico persiste apenas até deformações de aproximadamente 0,2 a 0,5%.
- À medida que o material é deformado além, desse ponto, a tensão não é mais proporcional à deformação (lei de Hooke) e ocorre uma deformação permanente não recuperável denominada de deformação plástica;
- > A deformação plástica corresponde à quebra de ligações com os átomos vizinhos originais e em seguida formação de novas ligações;
- > A deformação plástica ocorre mediante um processo de escorregamento (cisalhamento), que envolve o movimento de discordâncias.


Limite de proporcionalidade e Tensão limite de escoamento

- ➤ O limite de proporcionalidade pode ser determinado como o ponto onde ocorre o afastamento da linearidade na curva tensão deformação (ponto P).
- ➤ A posição deste ponto pode não ser determinada com precisão. Por consequência foi adotada uma convenção: é construída uma linha paralela à região elástica a partir de uma pré-deformação de 0,002 ou 0,2%.
- A intersecção desta linha com a curva tensão – deformação é a tensão limite de escoamento (σ_ν)

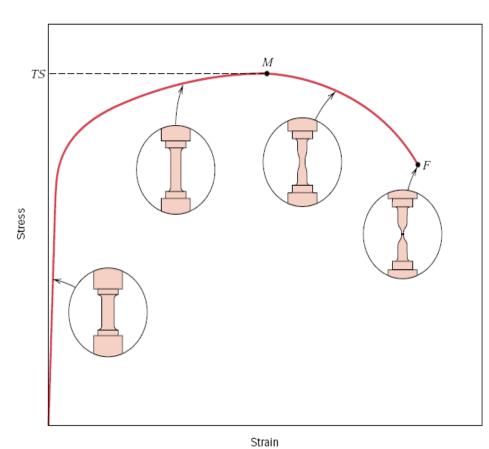
Limite de Escoamento

Quando não observa-se nitidamente o fenômeno de escoamento, a tensão de escoamento corresponde à tensão necessária para promover uma deformação permanente de 0,2% ou outro valor especificado (Ver gráfico ao lado)

Quando não nítido, utiliza-se da convenção de um deformação padrão

Metais e ligas em geral : $n = 0.2 \% (\epsilon = 0.002)$

Cobre e suas ligas: n = 0.5% ($\epsilon = 0.005$)


Ligas metálicas duras: $n = 0.1 \% (\epsilon = 0.001)$

Cerâmicos: $n = 0,1 \% (\epsilon = 0,001)$

Polímeros: $n = 0.5 \% (\epsilon = 0.005)$

Limite de resistência à tração

- ➤ Após o escoamento, a tensão necessária para continuar a deformação plástica aumenta até um valor máximo (ponto M) e então diminui até a fratura do material;
- Para um material de alta capacidade de deformação plástica, ο φ do CP decresce rapidamente ao ultrapassar o ponto M e assim a carga necessária para continuar a deformação, diminui até a ruptura final.

O limite de resistência à tração é a tensão no ponto máximo da curva tensão-deformação. É a máxima tensão que pode ser sustentada por uma estrutura que se encontra sob tração (ponto M).

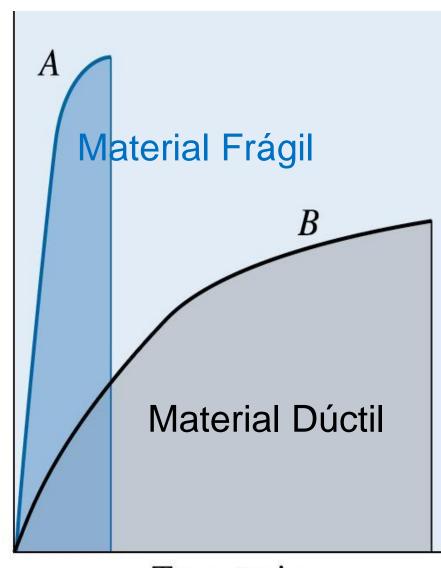
Ductilidade

Definição: é uma medida da extensão da deformação que ocorre até a fratura

Ductilidade pode ser definida como:

- \rightarrow Alongamento percentual %AL = 100 x (L_f L₀)/L₀
 - onde L_f é o alongamento do CP na fratura
 - uma fração substancial da deformação se concentra na estricção, o que faz com que %AL dependa do comprimento do corpo de prova. Assim o valor de L₀ deve ser citado.
- \triangleright Redução de área percentual %RA = 100 x(A₀ A_f)/A₀
 - onde A₀ e A_f se referem à área da seção reta original e na fratura.
 - Independente de A₀ e L₀ e em geral é ≠ de AL%

Tenacidade

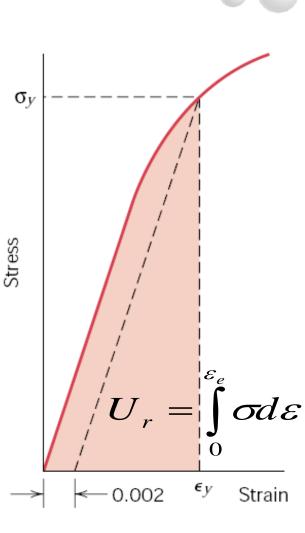

- Representa uma medida da habilidade de um material em absorver energia até a fratura;
- Pode ser determinada a partir da curva σxε. Ela é a área sobre a curva;
- ➤ Para que um material seja tenaz, deve apresentar resistência e ductilidade. Materiais dúcteis são mais tenazes que os frágeis.

Materiais Dúcteis

$$U_t = (\sigma_{esc} + \sigma_{LRT})/2$$
 $\epsilon_{fratura}$ em N.m/m³

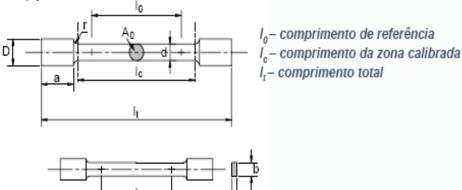
Materiais Frágeis

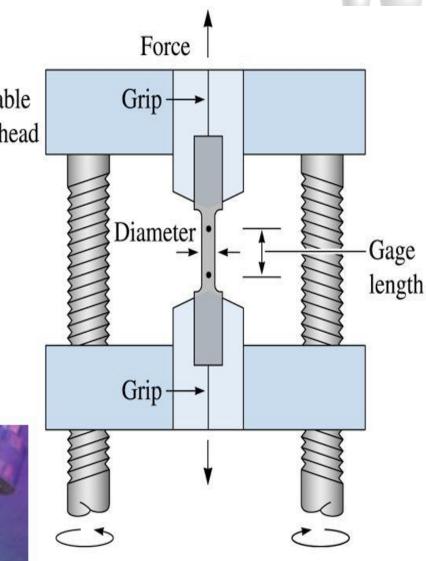
$$U_t = (2/3) \cdot \sigma_{LRT} \cdot \epsilon_{fratura}$$
 em N.m/m³



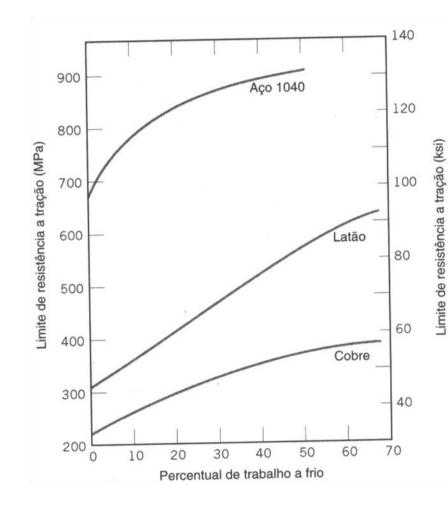
Resiliência

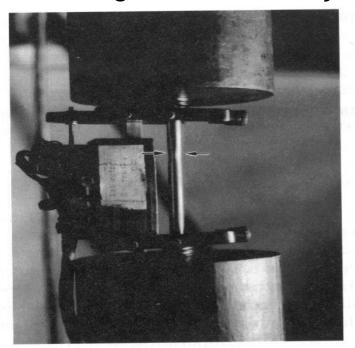
Definição: Capacidade de um material absorver energia sob tração quando ele é deformado elasticamente e devolvê-la quando relaxado (recuperar);

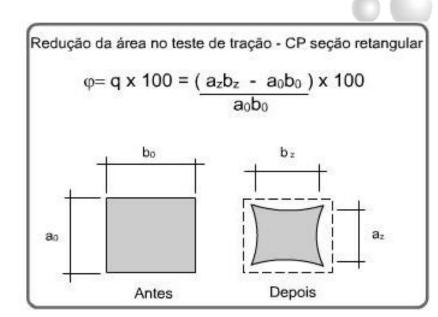

- ✓ para aços carbono varia de 35 a 120 MJ/m³
- ✓ O módulo de resiliência é dado pela área da curva tensão-deformação até $_{e}$ o escoamento ou através da fórmula: $U_{r} = \int \sigma d\varepsilon$
- ✓ Na região linear $U_r = \sigma_y \varepsilon_y /2 = \sigma_y (\sigma_y /E)/2 = \sigma_y^2/2E$

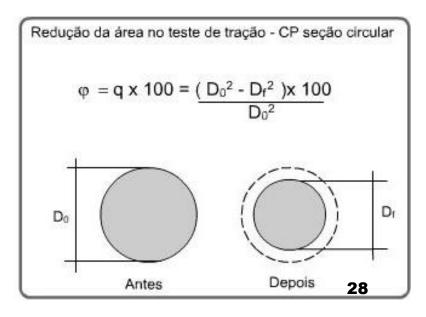

Assim, materiais de alta resiliência possuem alto limite de escoamento e baixo módulo de elasticidade. Estes materiais seriam ideais para uso em molas.

Ensaio de tração uniaxial


- ➤ O ensaio de tração consiste na aplicação de carga uniaxial Movable crescente até a ruptura. Mede-se a variação do comprimento como função da carga e fornece dados quantitativos das características mecânicas dos materiais;
- ➤ Os CPs geralmente possuem seção transversal circular ou retangular com proporções geométricas normalizadas


Encruamento

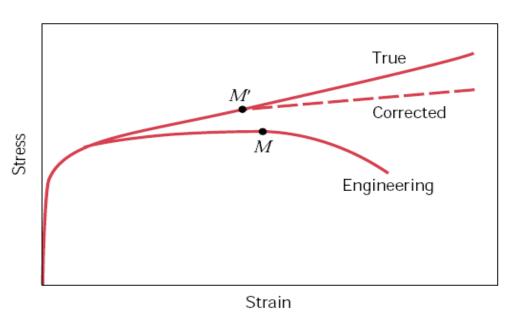

- A partir da região de escoamento, o material entra no campo de deformações permanentes, onde ocorre endurecimento por trabalho a frio (encruamento);
- Resulta em função da interação entre discordâncias e das suas interações com obstáculos como solutos e contornos de grãos. É preciso uma energia cada vez maior para que ocorra essa movimentação



Empescoçamento - Estricção

- Região localizada em uma seção reduzida em que grande parte da deformação se concentra;
- Ocorre quando o aumento da dureza por encruamento é menor que a tensão aplicada e o material sofre uma grande deformação.

Tensão Verdadeira (Real) e Deformação Verdadeira (Real)



A Tensão Verdadeira é definida como sendo a carga P dividido sobre a área instantânea, ou seja, área do pescoço após o limite de resistência à tração

$$\sigma_{_{V}}=rac{P}{A_{_{i}}}$$

A Deformação Verdadeira é definida pela expressão

$$arepsilon_V = \ln rac{l_i}{l_0}$$

Relações entre Tensões e Deformações Reais (Verdadeira) e Convencionais

Deformação

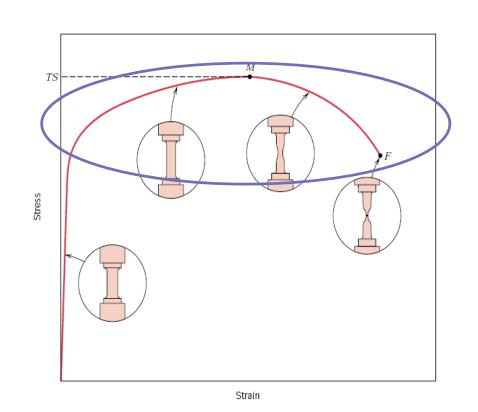
$$\varepsilon_C = \frac{\Delta l}{l_0} = \frac{l}{l_0} - 1$$

$$\frac{l}{l_0} = 1 + \varepsilon_C$$

$$\varepsilon_r = \ln \frac{l}{l_0} = \ln(1 + \varepsilon_C)$$

■ Tensão

$$\ln \frac{S_0}{S} = \ln \frac{l}{l_0} = \ln(1 + \varepsilon_C)$$


$$S = \frac{S_0}{1 + \varepsilon_C}$$

$$\sigma_r = \frac{P}{S} = \frac{P}{S_0} (1 + \varepsilon_C)$$

$$\sigma_r = \sigma_C (1 + \varepsilon_C)$$

TENSÃO PARA A REGIÃO DE DEFORMAÇÃO PLÁSTICA

$$\sigma = K \varepsilon^n$$

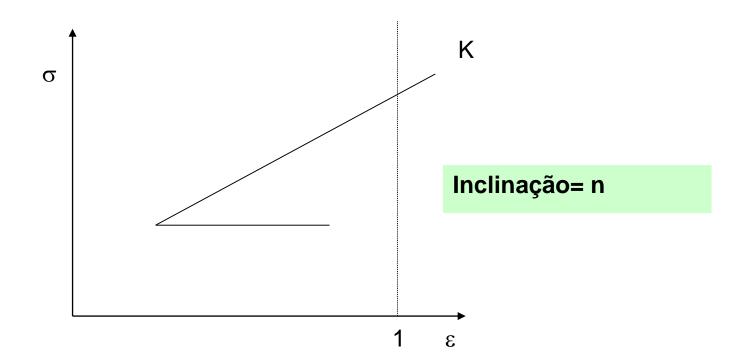
K e n são constantes que dependem do material e dependem do tratamento dado ao mesmo, ou seja, se foram tratados termicamente ou encruados

- > K= coeficiente de resistência (quantifica o nível de resistência que o material pode suportar)
- > n= coeficiente de encruamento (representa a capacidade com que o material distribui a deformação) 31

K e na para alguns materiais

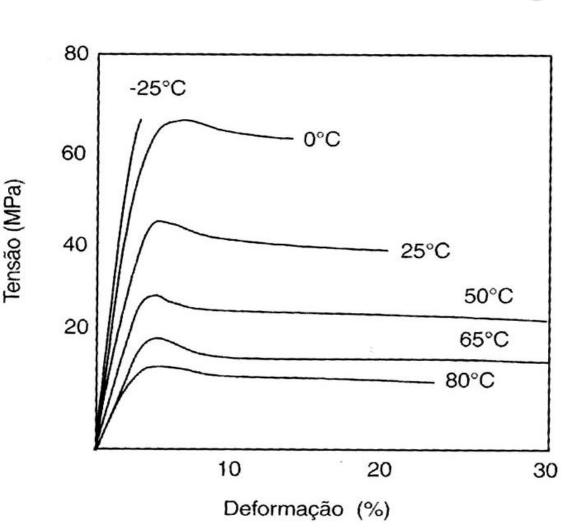
Material	n	K (MPa)
Aço baixo teor de carbono	0,26	530
recozido		
Aço 4340 recozido	0,15	640
Aço inox 304 recozido	0,45	1275
Alumínio recozido	0,2	180
Liga de Alumínio 2024 T	0,16	690
Cobre recozido	0,54	315
Latão 70-30 recozido	0,49	895

Determinação de K e n



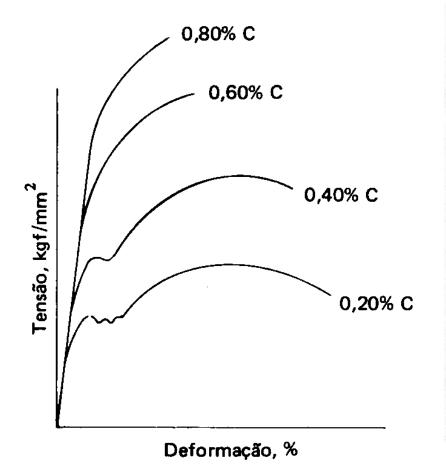
■Log σ =log k+ n log ε

Para
$$\varepsilon$$
= 1


extrapolando

$$\sigma = k$$

Efeito da temperatura


- A temperatura pode influenciar significativamente as propriedades mecânicas levantadas pelo ensaio de tração
- Em geral, a resistência diminui e a ductilidade aumenta conforme o aumento de temperatura

Efeito %C nas Propriedades de Tração

Diferentes limites de resistência para ligas de Fe-C(Aços)

- √ baixo % de carbono dúctil e tenaz
- ✓ alto % de carbono limite de escoamento convencional mais elevado que o de baixo C, assim ele é mais resiliente que o de baixo C
- ✓ E constante

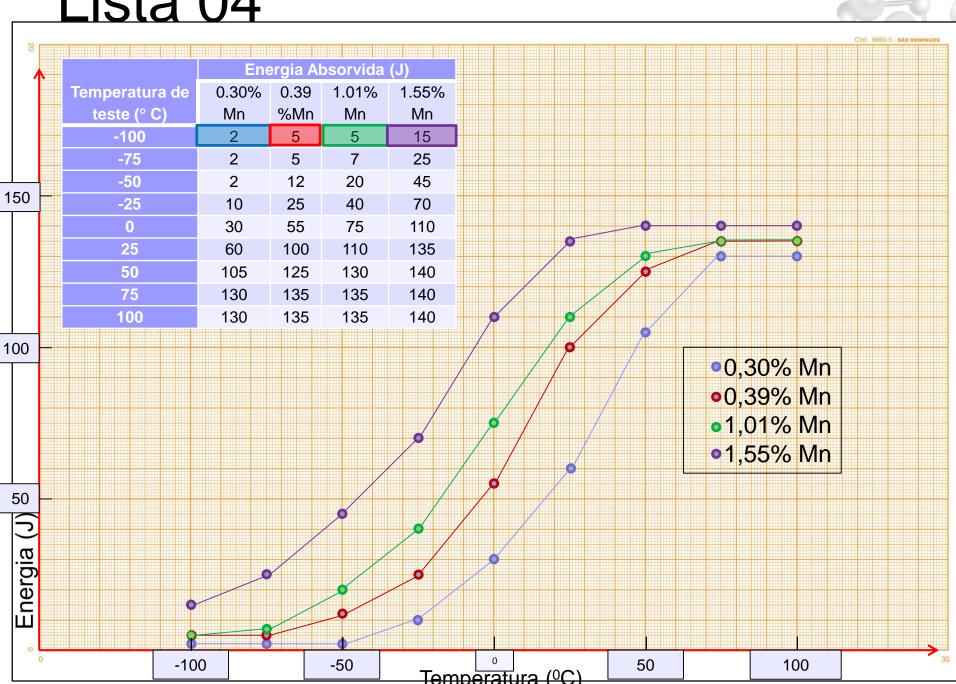
Designação	Carbono, %	Manganês, %	
1006 A	0,08 máx.	0,25 - 0,40	
1008 A	0,10 máx.	0,25 - 0,50	
1010 A	0.08 - 0.13	0,30 - 0,60	
1015 A	0,13-0,18	0,30 - 0,60	
1020 A	0,18 - 0,23	0,30 - 0,60	
1025 A	0,22-0,28	0,30 - 0,60	
1026 A	0,22 - 0,28	0,60-0,90	
1030 A	0,28 - 0,34	0,60-0,90	
1035 A	0,32 - 0,38	0,60 - 0,90	
1038 A	0,35 - 0,42	0,60-0,90	
1040 A	0,37 - 0,44	0,60 - 0,90	
1041 A	0,36 - 0,44	1,35 - 1,65	
1043 A	0,40 - 0,47	0,70 - 1,00	
1045 A	0,43 - 0,50	0,60 - 0,90	
1046 A	0,43 - 0,50	0,70-1,00	
1050 A	0,48 - 0,55	0,60-0,90	
1060 A	0,55 - 0,65	0,60 - 0,90	
1070 A	0,65 - 0,75	0,60 - 0,90	
1080 A	0,75 - 0,88	0,60-0,90	
1095 A	0.90 - 1.03	0,30 - 0,50	

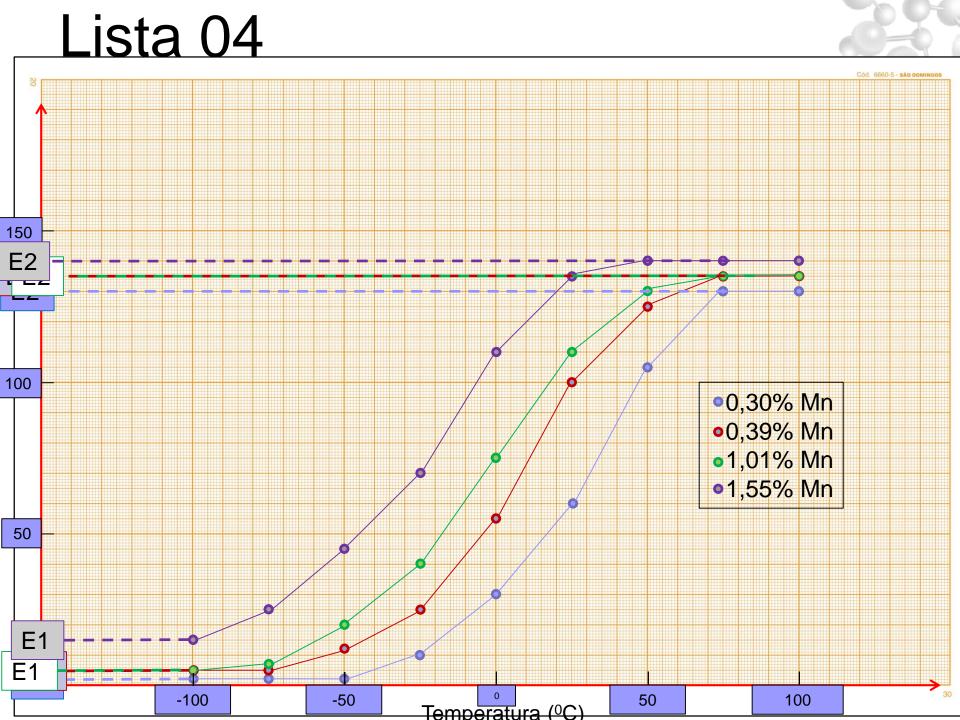
Propriedades – Exercício Realizar em Casa

1) Um aço carbono tratado termicamente (têmpera e resfriamento na água) foi submetido ao ensaio de tração (quadro abaixo). O diâmetro original da amostra era 12,5 mm e o diâmetro final 11,6 mm. Usando um instrumento de medida de 50 mm, obtiveram-se os seguintes dados:

Carga	Alongamento	Carga	Alongamento
(kN)	(mm)	(kN)	(mm)
25,9	0,051	88,6	0,508
36,0	0,071	93,4	0,711
46,6	0,092	98,8	1,016
54,4	0,107	107,2	1,524
70,8	0,152	113,5	2,032
74,8	0,203	117,5	2,541
80,5	0,305	121,0	3,048
85,0	0,406	123,3	3,560

Determine:


- (a) Diagrama tensão x deformação de engenharia e verdadeiro
- (b) Determinar o limite de escoamento convencional a 0,2%.
- (c) Determinar o módulo de elasticidade
- (d) Determinar o limite de ruptura
- (e) O %RA e o %AL O material exibe comportamento dúctil?
- (f) Resiliência
- (g)Tenacidade a tração


Lista 04 – Exercício Impacto

- Q11 Os dados a seguir foram obtidos com uma série de ensaios de impacto Charpy em quatro tipos de aço, cada um deles com um teor de manganês distinto. Trace o gráfico utilizando papel milimetrado de energia absorvida-temperatura e determine:
- (a) a temperatura de transição em função do teor de manganês definida pela média das energias absorvidas nas regiões dúctil e frágil;
- (b) a temperatura de transição em função do teor de manganês definida como a temperatura correspondente a 50 J de energia absorvida.
- (c) Qual seria o teor mínimo de manganês para que o aço pudesse ser empregado em uma peça usada a 0°C?

Tabela 2 – Energia absorvida de um aço para diferentes teores de Mn.

	Energia Absorvida (J)				
Temperatura de teste (° C)	0,30%Mn	0,39%Mn	1,01%Mn	1,55%Mn	
-100	2	5	5	15	
-75	2	5	7	25	
-50	2	12	20	45	
-25	10	25	40	70	
0	30	55	75	110	
25	60	100	110	135	
50	105	125	130	140	
75	130	135	135	140	
100	130	135	135	140	

$$E_{trans} = \frac{E2 + E1}{2} + E1$$

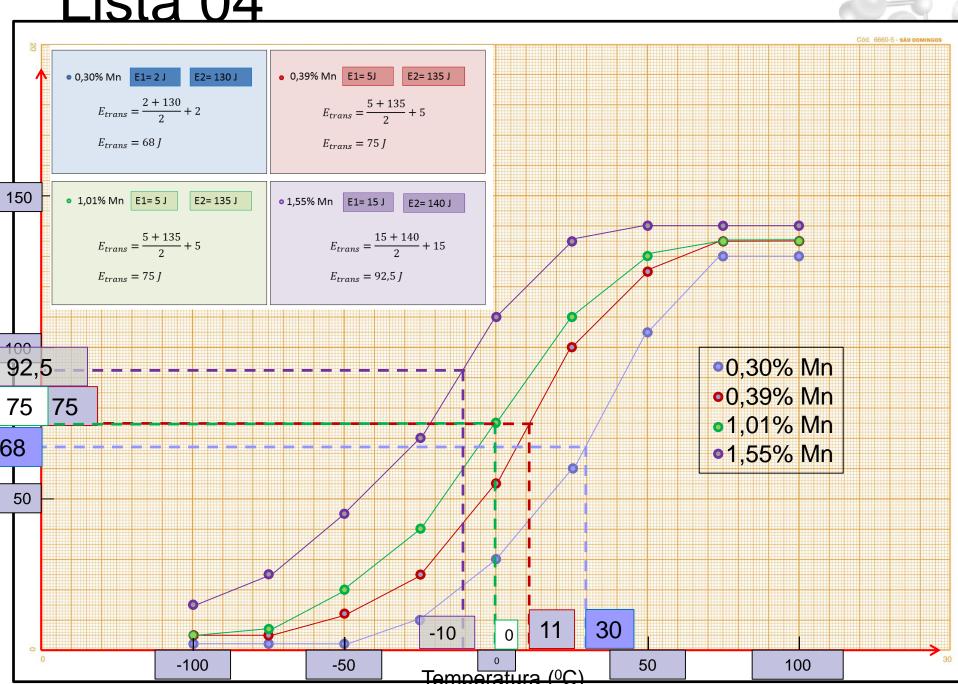
$$E_{trans} = \frac{2 + 130}{2} + 2$$

$$E_{trans} = 68 J$$

Mn

$$E_{trans} = \frac{5 + 135}{2} + 5$$

$$E_{trans} = 75 J$$


$$E_{trans} = \frac{5 + 135}{2} + 5$$

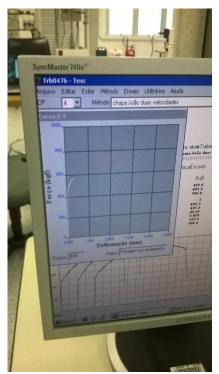
$$E_{trans} = 75 J$$

Mn

$$E_{trans} = \frac{15 + 140}{2} + 15$$

$$E_{trans} = 92,5 J$$

Lista 04 150 100 ●0,30% Mn ●0,39% Mn •1,01% Mn •1,55% Mn 50 -45 -17 17 -100 -50 100 50 Temperatura (°C)



Q7 — Os valores de P e Δ I estão dados na tabela abaixo e correspondem a parte inicial do gráfico de ensaio de tração para liga de alumínio 7075 T651. O diâmetro inicial de ensaio foi de 9,07mm e o comprimento inicial L_0 era 58,8mm.

- (a) Desenhe o gráfico tensão-deformação de engenharia e verdadeiro.
- (b) Determine a tensão de escoamento para uma deformação de 0,002.
- (c) Qual a força necessária para causar escoamento para uma barra fabricada com a mesma liga porém com diâmetro inicial de 20 mm. Compare os valores e explique a diferença em função do diâmetro das barras (9,07 e

20	ľ	Υ	ľ	Υ	1	١.
					•	

P (N)	∆l (mm)
0	0
7220	0,0839
14340	0,1636
21060	0,241
26800	0,308
31700	0,380
34100	0,484
35000	0,614
36000	0,924
36500	1,279
36900	1,622

Tensão-deformação de Engenharia (Convencional)

$$\sigma_c = \frac{P}{A_0} \qquad \qquad \varepsilon_c = \frac{\Delta l}{l_0}$$

Tensão-deformação Verdadeiro (Real)

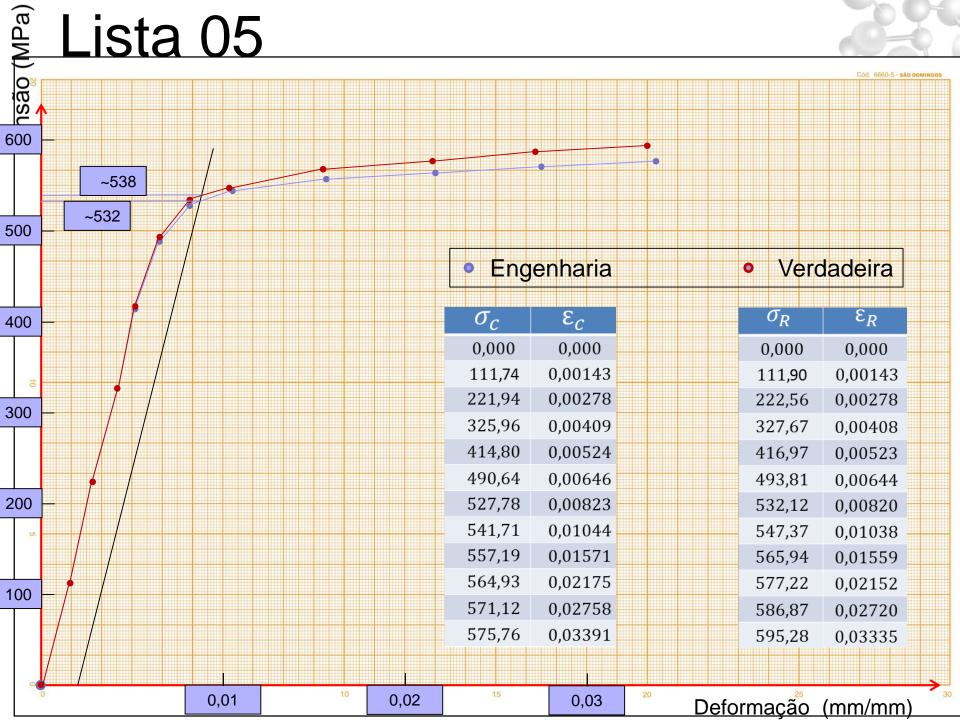
$$\sigma_R = \sigma_c (1 + \varepsilon_c)$$

$$\varepsilon_R = \ln(1 + \varepsilon_c)$$

Q7 – Os valores de P e Δl estão dados na tabela abaixo e correspondem a parte inicial do gráfico de ensaio de tração para liga de alumínio 7075 T651. O diâmetro inicial de ensaio foi de 9,07mm e o comprimento inicial L₀ era 58,8mm.

$$A_0 = \pi \times \left(\frac{D_o}{2}\right)^2$$
 $A_0 = \pi \times \left(\frac{9,07}{2}\right)^2$ $A_0 = 64,61 \text{ mm}^2$

$$l_0 = 58,8 \ mm$$


$l_0 = 58.8 \, mm$ Lista 05

 $A_0 = 64,61 \, mm^2$

P (N)	∆l (mm)	σ_c	ϵ_c	$1+\varepsilon_c$	σ_R	$oldsymbol{arepsilon}_R$
0	0	σ_c =0, B 9/0 A_0 s	$\epsilon_c = 0.000 l_0$	1,00000	$\sigma_R = 0$ $(0 \oplus \varepsilon_c)$	$\varepsilon_R \oplus 000 + \varepsilon_c$
7220	0,0839	111,74	0,00143	1,00143	111,90	0,00143
14340	0,1636	221,94	0,00278	1,00278	222,56	0,00278
21060	0,241	325,96	0,00409	1,00409	327,67	0,00408
26800	0,308	414,80	0,00524	1,00524	416,97	0,00523
31700	0,380	490,64	0,00646	1,00646	493,81	0,00644
34100	0,484	527,78	0,00823	1,00823	532,12	0,00820
35000	0,614	541,71	0,01044	1,01044	547,37	0,01038
36000	0,924	557,19	0,01571	1,01571	565,94	0,01559
36500	1,279	564,93	0,02175	1,02175	577,22	0,02152
36900	1,622	571,12	0,02758	1,02758	586,87	0,02720
37200	1,994	575,76	0,03391	1,03391	595,28	0,03335
D		Λ 1				

 $\sigma_c = \frac{P}{A_0}$ $\varepsilon_c = \frac{\Delta l}{l_0}$ $\sigma_R = \sigma_c (1 + \varepsilon_c)$ $\varepsilon_R = \ln(1 + \varepsilon_c)$

Cálculo do módulo de Elasticidade (E)

$$E = \tan \alpha = \frac{\Delta \sigma}{\Delta \varepsilon}$$

$$E = \frac{414,80 - 0}{0,00524 - 0}$$

$$E = 79 \ 160,30 \ MPa$$

$$E = 79,16 \, GPa$$

Limite de ruptura

$$\sigma_r = 575,76 MPa$$

Módulo de Resiliência

$$U_r = \frac{\sigma_{LP}^2}{2E} = \frac{\sigma_Y^2}{2E}$$

$$U_r = \frac{532^2}{2 \times 79160}$$

$$U_r = 1,78 N mm/mm^3$$

Alongamento percentual %AL

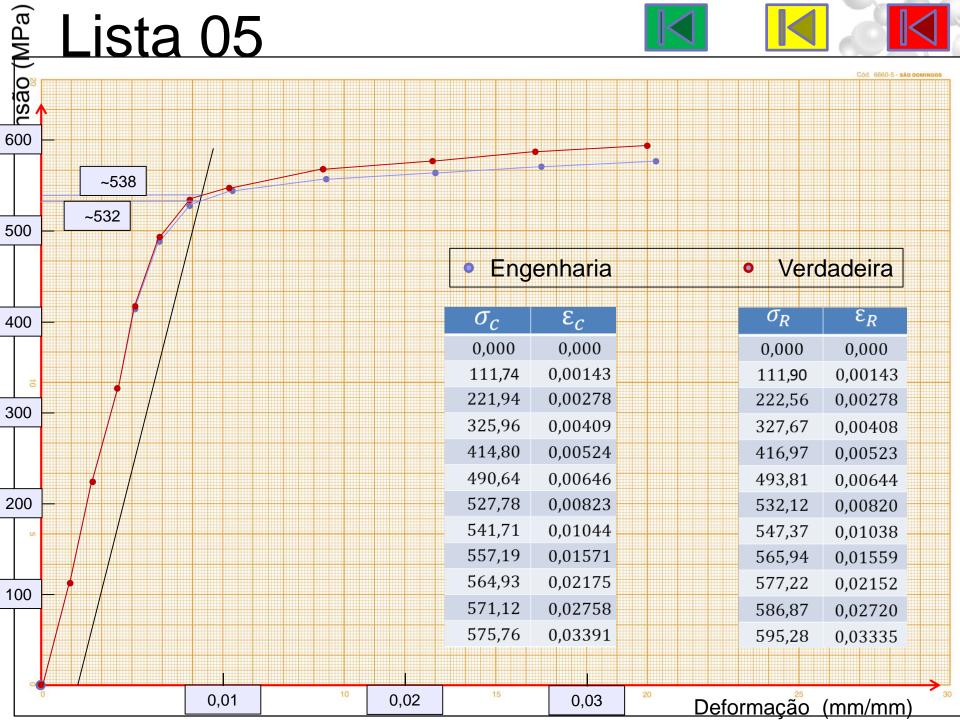
$$\%AL = 100 \times \frac{L_f - L_0}{L_0}$$
 $\%AL = 100 \times \frac{60,79 - 58,80}{58,80}$
 $\%AL = 3,38 \%$

Redução de área percentual %RA (Foi adotado Df=8,9mm)

$$%RA = 100 \times \frac{A_o - A_f}{A_0}$$
 $%RA = 100 \times \frac{64,61 - 62,21}{64,61}$ $%RA = 3,71 \%$

Módulo de tenacidade Ut

$$U_t = \frac{\sigma_Y + \sigma_r}{2} \times \varepsilon_f \quad U_t = \frac{532 + 575,76}{2} \times 0,03391$$


$$U_t = 18,78 \ Nmm/mm^3$$

Parâmetros k e n (região plástica – curva tensão realdeformação real) $\sigma_R = k \varepsilon_R^n \qquad \begin{cases} 547,37 = k \times 0,01038^n \\ 595,28 = k \times 0,03335^n \end{cases}$

 $n \approx 0.072$ $k \approx 760 \text{ MPa}$

Ver Gráfico

Ver Tabela

 $l_0 = 58,8 \ mm$

Lista 05

 $A_0 = 64,61 \, mm^2$

P (N)	∆l (mm)	σ_c	ϵ_c	$1+\varepsilon_c$	$\sigma_{\!R}$	$oldsymbol{arepsilon}_R$
0	0	0,000	0,000	1,00000	0,000	0,000
7220	0,0839	111,74	0,00143	1,00143	111,90	0,00143
14340	0,1636	221,94	0,00278	1,00278	222,56	0,00278
21060	0,241	325,96	0,00409	1,00409	327,67	0,00408
26800	0,308	414,80	0,00524	1,00524	416,97	0,00523
31700	0,380	490,64	0,00646	1,00646	493,81	0,00644
34100	0,484	527,78	0,00823	1,00823	532,12	0,00820
35000	0,614	541,71	0,01044	1,01044	547,37	0,01038
36000	0,924	557,19	0,01571	1,01571	565,94	0,01559
36500	1,279	564,93	0,02175	1,02175	577,22	0,02152
36900	1,622	571,12	0,02758	1,02758	586,87	0,02720
37200	1,994	575,76	0,03391	1,03391	595,28	0,03335

Bibliografia

☐ Ciência e Engenharia de Materiais — uma Introdução, Willian D. Callister, Jr. LTC 5. edição. Engineering of Materials, 4th ☐ The Science and ed Donald R. *Askeland* – Pradeep P. Phulé. □ *Dieter*, G.E. Metalurgia Mecânica 2.ed. Rio de Janeiro: Guanabara Dois, 1981. ☐ Ensaios Mecânicos de Materiais Metálicos, Fundamentos teóricos e práticos. 5º. Edição. Sérgio Augusto de **Souza** ☐ AMERICAN SOCIETY FOR TESTING AND MATERIALS. **ASTM E8M-**01A (2001). Standard test methods of tension testing of metallic materials. Metric. Philadelphia. AMERICAN SOCIETY FOR TESTING AND MATERIALS. ASTM E9-**89a00 (2000)**. Standard Test Methods of Compression Testing of Metallic Materials at Room Temperature

OBRIGADO PELA ATENÇÃO !!!