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If the forcing function is periodic but not harmonic, it can be replaced by a sum of har-
monic functions using the harmonic analysis procedure discussed in Section 1.11. Using
the principle of superposition, the response of the system can then be determined by super-
posing the responses due to the individual harmonic forcing functions.

The response of a system subjected to any type of nonperiodic force is commonly
found using the following methods:

1. Convolution integral.
2. Laplace transform.
3. Numerical methods.

The first two methods are analytical ones, in which the response or solution is expressed in
a way that helps in studying the behavior of the system under the applied force with respect
to various parameters and in designing the system. The third method, on the other hand,
can be used to find the response of a system under any arbitrary force for which an analyt-
ical solution is difficult or impossible to find. However, the solution found is applicable
only for the particular set of parameter values used in finding the solution. This makes it
difficult to study the behavior of the system when the parameters are varied. This chapter
presents all three methods of solution.



Let us plot the function sin(wt) in the interval, say, [0..1] with We can modify slightly this reasoning and plot the function
w = 4m, as shown in the next figure. Now, on the same plot we (.406 cos(mz)+0.045 cos(37x)+0.016 cos(57x) and the line 0.5 —
add a function, say 0.8 cos(5wt)4-0.5sin(2wt) and we observe that z, as in the figure, and be convinced that the straight line can
the period of both waves is the same. We conclude with similar be well appraximated b_}r a sum of trigonnmetric functions.
examples that we can add as many trigonometric functions as we

wish, of any frequency larger than w and yet such a composed

function repeats itself every wt.
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Response Under a General Periodic Force

When the external force F(f) is periodic with period 7 = 27/ w, it can be expanded in a
Fourier series (see Section1.11):

= ?ﬂ E{ . COS jwt + ; b:sin jwt (4.1)
where
aj = %LTF(I) CoS jwt dt, J=012 ... (4.2)
and

) T
bj = —l} F(?) sin jotdt, j=1,2, ... (4.3)

T



Let a spring-mass-damper system, Fig. 4.2(a), be subjected to a periodic force. This is a
second-order system because the governing equation is a second-order differential equation:

mx + cx + kx = f(1) (4.7)

If the forcing function f(t) is periodic, it can be expressed in Fourier series so that the equa-
tion of motion becomes

o0 o0
. . a C
m¥ + cx + kx = F(1) = ?“ + Sajcos jor + Db;sin jot (4.8)
i=1 i=1
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Determine the response of a spring-mass-damper system subjected to a periodic force with the
equation of motion given by Eq. (4.8). Assume the initial conditions as zero.

Solution: The right-hand side of Eq. (4.8) is a constant plus a sum of harmonic functions. Using the
principle of superposition, the steady-state solution of Eq. (4.4) is the sum of the steady-state
solutions of the following equations:

mff+c.i:+kx=% (E.1)
mx + cx + kx = ajcos jot (E.2)
mx + c¢x + kx = b;sin jot (E.3)
Noting that the solution of Eq. (E.1) is given by
X)) =3 (E4)

and, using the results of Section 3.4, we can express the solutions of Egs. (E.2) and (E.3), respec-
tively, as



(a;/k)

V(1 = )2+ (24r)?
(bj/k)

V(1 - )2+ (24r)?

cos( jot — ¢))

sin( jot — ¢))
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Thus the complete steady-state solution of Eq. (4.8) is given by
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ANV - A+ (2¢in)?

+;§=;\/(1

= %)% + (24r)?

cos( jot — ¢))

sin jot — ¢))

It can be seen from the solution, Eq. (E.9), that the amplitude and phase shift corresponding to the th
term depend on j If jo = w,, for any j the amplitude of the corresponding harmonic will be com-
paratively large. This will be particularly true for small values of jand {. Further, as jbecomes larger,
the amplitude becomes smaller and the corresponding terms tend to zero. Thus the first few terms are
usually sufficient to obtain the response with reasonable accuracy.

The solution given by Eq. (E.9) denotes the steady-state response of the system. The transient
part of the solution arising from the initial conditions can also be included to find the complete
solution. To find the complete solution, we need to evaluate the arbitrary constants by setting the
value of the complete solution and its derivative to the specified values of initial displacement x(0)

and the initial velocity x(0). This results in a complicated expression for the transient part of the
total solution.



A nonperiodic exciting force usually has a magnitude that varies with time; it acts for a
specified period and then stops. The simplest form is the impulsive force—a force that has
a large magnitude F and acts for a very short time At¢. From dynamics we know that
impulse can be measured by finding the change it causes in momentum of the system [4.2].
If x; and x, denote the velocities of the mass m before and after the application of the
impulse, we have

Impulse = FAt = mx, — mx (4.12)

By designating the magnitude of the impulse F Ar by F, we can write, in general,
ot + At
F = / Fdt (4.13)
t

A unit impulse acting at 1 = 0 ( f) is defined as

t+At
f= lim / Fdt = Fdr =1 (4.14)
Ar—0 J,

It can be seen that in order for F dt to have a finite value, F tends to infinity (since dt tends
to zero).
The unit impulse, f= 1, acting at + = 0, is also denoted by the Dirac delta function as

f= fé(r) = &(1) (4.15)

and the impulse of magnitude F, acting at t = 0, is denoted as'

F = F §(1) (4.16)



4.5.1 We first consider the response of a single-degree-of-freedom system to an impulse excitation;

Response to this case is important in studying the response under more general excitations. Consider a
an Impulse viscously damped spring-mass system subjected to a unit impulse at t = 0, as shown in
Figs. 4.6(a) and (b). For an underdamped system, the solution of the equation of motion
mx +cx +kx =0 (4.17)
is given by Eq. (2.72) as
. xg + {w,x
x(t) = e ' {xﬂ cos wyt + 0+ Leno sin mdr} (4.18)
w4
where
c
¢ = (4.19)
2mw,

.22
w, = w,\V1 — %= \/E - (':—) (4.20)

W, = | — (4.21)

If the mass is at rest before the unit impulse is applied (x = x = 0 fort < Qoratt = 07),
we obtain, from the impulse-momentum relation,

Impulse = f=1=mx(t =0) —mx(t =07) = mxg (4.22)



Thus the initial conditions are given by

x(t=0) =x9p=0 (4.23)
1
X1 =0) =% = (4.24)
(1) x(1) = g(t)
A A
< L -
G T
4 FAr=1 0 T~ —— :
T~~~
m - “T#
O N -7 .
(1)
(a) (b) (c)

FIGURE 4.6 A single-degree-of-freedom system subjected to an impulse.
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In view of Egs. (4.23) and (4.24), Eq. (4.18) reduces to

E?_ gwn"

x(t) = g(t) = sin w,t (4.25)

mawg

Equation (4.25) gives the response of a single-degree-of-freedom system to a unit impulse,
which is also known as the impulse response finction, denoted by g(). The function g(?),
Eqg. (4.25), is shown in Fig. 4.6(c).

If the magnitude of the impulse is F instead of unity, the initial velocity xq is F/m and
the response of the system becomes

Fe~font

mawgy

x(1) sin wgt = Fg(t) (4.26)

If the impulse F is applied at an arbitrary time + = 7, as shown in Fig. 4.7(a), it will change
the velocity at t = 7 by an amount F/m. Assuming that x = 0 until the impulse is applied,
the displacement x at any subsequent time ¢, caused by a change in the velocity at time 7, is
given by Eq. (4.26) with 7 replaced by the time elapsed after the application of the impulse—
that is, r — 7. Thus we obtain

x(t) = Fg(t — 7) (4.27)

[ I — _
FAt=F
t
0 =
- T > <—AT
(a)
x(1)
Fe(t—1)

. \//\V/\_j

(b)
FIGURE 4.7 Impulse response.
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In the vibration testing of a structure, an impact hammer with a load cell to measure the impact force is
used to cause excitation, as shown in Fig. 4.8(a). Assuming m = 5kg, k = 2000 N/m, ¢ = 10 N-s/m,
and F = 20 N-s, find the response of the system.

Solution: From the known data, we can compute

10

k 2000 c c
Wy = | — = /= = 20 rads, [ == - — 0.05
! \/; 5 ce 2Vkm  2V/2000(5)
wy; = V1 — o, =19.975 rad/s

Assuming that the impact is given at ¢ = (, we find (from Eq. (4.26)) the response of the system as

_gmnr oad ce
xi(1) = F - sinwgi e
o . It
0052007 §in 19.975t = 0.20025¢ " sin 19.975¢ m (E.I) tipact

=
o
3
=]
o
=
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(5)(19.975) ¢

1 —

t t+ T

(b)

FIGURE 4.8 Structural testing using an impact hammer.



4.5.2

Response to a
General Forcing
Condition

INTEGRAL DE CONVOLUCAO

Now we consider the response of the system under an arbitrary external force F(t), shown
in Fig. 4.9. This force may be assumed to be made up of a series of impulses of varying
magnitude. Assuming that at time 7, the force F(7) acts on the system for a short period of
time A7, the impulse acting atf = 7 is given by F(7) A7. At any time ¢, the elapsed time
since the impulse is + — 7, so the response of the system at ¢ due to this impulse alone is
given by Eq. (4.27) with F = F(7) A7t

Ax(r) = F(7) AT g(t — 1) (4.28)

The total response at time f can be found by summing all the responses due to the elementary
impulses acting at all times 7:

x(1) = > F(7)g(t — 7) AT (4.29)

Letting A7 — 0 and replacing the summation by integration, we obtain

/4
x(t) = /F(T}g(r — 7)dTt (4.30)
0
By substituting Eq. (4.25) into Eq. (4.30), we obtain
l nf
= —_— _{‘,'(U,;(f_'i') 3 —
x(t) mar, Jo F(7)e sinwy(t — 7) dt (4.31)

which represents the response of an underdamped single-degree-of-freedom system to the
arbitrary excitation F(7). Note that Eq. (4.31) does not consider the effect of initial conditions
of the system, because the mass is assumed to be at rest before the application of the impulse,
as implied by Egs. (4.25) and (4.28). The integral in Eq. (4.30) or Eq. (4.31) is called the
convolution or Duhamel integral. In many cases the function F(¢) has a form that permits an
explicit integration of Eq. (4.31). If such integration is not possible, we can evaluate numeri-
cally without much difficulty, as illustrated in Section 4.9 and in Chapter 11. An elemen-
tary discussion of the Duhamel integral in vibration analysis is given in reference [4.6].

L

L S —

0 /

T T+ AT

FIGURE 4.9 An arbitrary (nonperiodic)

forcing function.
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A compacting machine, modeled as a single-degree-of-freedom system, is shown in Fig. 4.10(a).
The force acting on the mass m (m includes the masses of the piston, the platform, and the material
being compacted) due to a sudden application of the pressure can be idealized as a step force, as
shown in Fig. 4.10(b). Determine the response of the system.
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Solution: Since the compacting machine is modeled as a mass-spring-damper system, the problem
is to find the response of a damped single-degree-of-freedom system subjected to a step force. By
noting that F(1) = Fj, we can write Eq. (4.31) as

— Fo f —{wy, (1-7) ¢;
x(t) = mﬂ’d‘/o e sinwy(t — 7) dT
_ R [e_{wnEI_T] {é’w“ sinwy(t — 7) + wycos wy(t — 1) }}f
mwy ({w,)? + (wg)? =0
F
_ j|:1 bt cog(wg — ¢)} (E1)
k 1 — 4_.’,’2

where

_ {
¢ = tan”' (71 = é‘z) (E.2)

This response is shown in Fig. 4.10(c). If the system is undamped ({ = 0 and w; = w,), Eq. (E.1)
reduces to

F
x(t) = ?D[l — COs wyt] (E.3)

Equation (E.3) is shown graphically in Fig. 4.10(d). It can be seen that if the load is instantaneously
applied to an undamped system, a maximum displacement of twice the static displacement will be
attained—that is, x,,, = 2Fy/ k.



Rectangular Pulse Load

If the compacting machine shown in Fig. 4.10(a) is subjected to a constant force only during the time
0 =1t = 1y (Fig. 4.12a), determine the response of the machine.

Solution: The given forcing function, F(r), can be considered as the sum of a step function Fi(7) of
magnitude +F, beginning at 1 = 0 and a second step function F»(#) of magnitude —Fj, starting at
time t = fg, as shown in Fig. 4.12(b).

Thus the response of the system can be obtained by subtracting Eq. (E.1) of Example 4.10 from
Eq. (E.1) of Example 4.9. This gives

Fi]e §wn.r

x(r) = kﬂ[—cm (wgt — @) + et cos{wy(t — 1)) — ctr}:| (E1)

with

_ ¢
¢ = tan™' (—_1 = gz) (E.2)

To see the vibration response graphically, we consider the system as undamped, so that Eq. (E.1)
reduces to

x(1) = [cm wy(t — 1) — cos wﬂ1:| (E.3)

The response is shown in Fig. 4.12(c) for two different pulse widths of #, for the following data
(Problem 4.90): m = 100 kg, ¢ = 50 N-s/m, k = 1200 N/m, and F; = 100 N. The responses will
be different for the two cases 1 > 7,/2 and ty > 7,/2, where 7, is the undamped natural time
period of the system. If ry > 7,/2, the peak will be larger and occur during the forced-vibration era
(that is, during 0 to t;) while the peak will be smaller and occur in the residual-vibration era (that is,
after tg) if 1o > 7,/2. In Fig. 412(c), 7, = 1.8138 s and the peak corresponding to 7y = 1.5s is
about six times larger than the one with 7y = 0.1 s.
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FIGURE 412 Response due toa pulse load.




4.16

4.18

EXERCICIOS

Sandblasting is a process in which an abrasive material, entrained in a jet, is directed onto the
surface of a casting to clean its surface. In a particular setup for sandblasting, the casting of
mass m 1s placed on a flexible support of stiffness k as shown in Fig. 4.44(a). If the force
exerted on the casting due to the sandblasting operation varies as shown in Fig. 4.44(b), find
the response of the casting.

A compressed air cylinder is connected to the spring-mass system shown in Fig. 4.45(a).
Due to a small leak in the valve, the pressure on the piston, p(7), builds up as indicated in
Fig. 4.45(b). Find the response of the piston for the following data: m = 10 kg, £k =1000 N/m,
andd = 0.1 m.
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4.26 A camcorder of mass m is packed in a container using a flexible packing material. The stiff-
ness and damping constant of the packing material are given by k and c, respectively, and the
mass of the container is negligible. If the container is dropped accidentally from a height of
h onto a rigid floor (see Fig. 4.50), find the motion of the camcorder.

Camcorder

(m)

<— Container

ki2 tﬁ ki2

A R R R R T

FIGURE 4.50



4.38 The wing of a fighter aircraft, carrying a missile at its tip, as shown in Fig. 4.57, can be approx-
imated as an equivalent cantilever beam with EI = 15 X 107 N-m? about the vertical axis and
length [ = 10 m. If the equivalent mass of the wing, including the mass of the missile and its
carriage system, at the tip of the wing is m = 2500 kg, determine the vibration response of the
wing (of m) due to the release of the missile. Assume that the force on m due to the release of
the missile can be approximated as an impulse function of magnitude F = 50 N-s.

T~ — T

N
[ .
" N7

, Bending axis

el———

(a) Real system

FIGURE 4.57
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