SLC 0664 (Físico-Química) Lista de Problemas 2

1- Para a reação química,

$$2 \text{ NO} + \text{Cl}_2 = 2 \text{NOCl}$$

- a) Escreva a expressão para a constante de equilíbrio em termos das pressões parciais dos reagentes e produtos.
- b) Calcule a variação de entalpia, entropia e de energia livre padrão reação e determine a respectiva constante de equilíbrio a partir da tabela de dados termodinâmicos.
- c) Se a reação for realizada na temperatura de 80 0 C, usando a equação de van t'Hoff determine o valor de K_{p} nesta temperatura. Discuta seus resultados.
 - 2- O amoníaco (NH₃) é um gás industrial usado em diversos processos. Considerando os dados de pressão do gás em função da temperatura dados na tabela abaixo, calcule a entalpia de vaporização do NH₃ e seu ponto de ebulição normal.

3- Calcule o potencial, escreva a reação global e comente sobre a espontaneidade das seguintes pilhas:

4- A partir dos dados tabelados de potencial padrão, calcule as constantes de equilíbrio das seguintes reações:

$$Zn^{2+} + 4 CN^{-} = Zn(CN)_4^{2-}$$

PbSO₄(s) = Pb²⁺ + SO₄²⁻

5- Para a reação entre óxido nítrico e cloro gasoso,

$$2NO + Cl_2 \rightarrow 2 NOC1$$

Verificou-se que duplicando a concentração de ambos os reagentes, a velocidade aumenta por um fator 8. Porém se dobrarmos apenas a concentração de cloro, a velocidade aumenta por um fator 2. Quais são as ordens parciais de reação em relação ao NO e em relação ao Cl₂? Qual a ordem global desta reação?

6- Determinou-se que a oxidação do Fe²⁺ pelo O₂ dissolvido em solução é lenta e segue a lei cinética,

$$-d[Fe^{2+}]/dt = k[Fe^{2+}]P(O_2)$$

A constante de velocidade k é igual a 3,7 x 10^{-3} Lmol⁻¹atm h^{-1} (reação em meio HClO₄ 0.5 M e 35 °C). Considerando que a pressão parcial de O₂ é constante e igual a 0.2 atm, calcule o tempo de meia vida de uma solução de 0.1 M de Fe²⁺ nestas condições. Quantos dias seriam necessários para que a concentração de Fe²⁺ diminuísse para 0.01 M?

7- Os seguintes dados foram obtidos para a reação de decomposição de N_2O_5 em CCl_4 a 45 °C: $N_2O_5 \rightarrow 2 NO_2 + \frac{1}{2} O_2$

Tempo (s)	$[N_2O_5]$, $molL^{-1}$	Tempo(s)	$[N_2O_5]$, $molL^{-1}$
0	2.33	867	1.36
184	2.08	1198	1.11
319	1.91	1877	0.72
526	1.67	2315	0.55

Calcule a constante de velocidade para esta reação pelo método gráfico.

8- A constante de velocidade da reação do problema 7 tem os seguintes valores dependendo de temperatura:

T(K)	(k) , $s^{-1} 10^{-4}$
338	48,7
328	15,0
318	4,98
308	1,35
298	0,35

Utilizando a teoria de Arrhenius, calcule pelo método gráfico a energia de ativação e o fator pre-exponential desta reação.