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A B S T R A C T

To investigate the influence of spatial variability of hydraulic parameters on the flow in earth dams, saturated-
unsaturated seepage is numerically simulated combining Monte Carlo simulation and random field theory. The
van Genuchten model is adopted to represent soil-water characteristic curve (SWCC). The SWCC fitting para-
meters (a, n) and the saturated hydraulic conductivity parameter (ks) are considered as lognormal random fields.
An approach of logarithmic translation is used for generating lognormal variables with lower limits greater than
zero. The influence of the coefficient of variation (COV) and autocorrelation distance of hydraulic parameters on
the flow rate is studied and compared. Sensitivity analysis indicates that the COVs of SWCC parameter n and
saturated hydraulic conductivity ks have a larger effect on the flow rate than that of SWCC parameter a. A larger
horizontal autocorrelation distance corresponds to a larger mean and COV of the flow rate. Neglecting the spatial
variability of hydraulic parameters leads to overestimation of the mean and COV of the flow rate in earth dams,
which could lead to conservative design of dams.

1. Introduction

Accurate analysis of seepage process is essential in many applica-
tions in geotechnical engineering. The study of saturated-unsaturated
seepage is of particular interest because the distribution of matric
suction in both the saturated and unsaturated zones influences flow
rates, shear strength and stability of geotechnical structures. Modeling
unsaturated flow is very difficult as the hydraulic conductivity of un-
saturated soil depends on degree of saturation, and the degree of sa-
turation depends on suction. The relationship between hydraulic con-
ductivity and suction is nonlinear. Therefore, numerical simulations are
needed for solving unsaturated seepage problems. With the develop-
ment of computing technology, many authors began to investigate
unsaturated seepage problems in dams and/or soil slopes (van
Genuchten, 1980; Cho and Lee, 2001; Tsaparas et al., 2002; Rahimi
et al., 2010; Kim et al., 2012).

Most geotechnical analyses which adopt deterministic approaches
are based on the assumption that soil properties are deterministic va-
lues. However, many uncertainties exist in soils due to different de-
position environments and measurement errors. Extensive studies have
been carried out in geotechnical engineering to investigate the influ-
ence of parameter uncertainties on the stability, seepage or deformation

(Babu and Murthy, 2005; Lu et al., 2009; Juang et al., 2009, 2012,
2014; Tan et al., 2011; Chan and Low, 2012; Wang et al., 2013, 2015).
In these probabilistic studies, geotechnical parameters are often con-
sidered as random variables.

It is well known that soil properties often vary significantly from
point to point as a result of depositional and post-depositional pro-
cesses. Traditional probabilistic approaches cannot reflect the spatial
variability of soil properties. Random field theory is an effective tool for
modeling the spatial variability of soil parameters (Vanmarcke, 1977).
In a random field, variables exhibit autocorrelation, which is a tendency
for soil properties at one point to be correlated to soil properties at
nearby points. The spatial continuous variable in a random field should
be discretized into a sequence of values at different points (Qin et al.,
2006). The discrete values are mapped onto finite element or finite
difference mesh as input soil parameters for the numerical modeling of
seepage analysis. Monte Carlo simulation method (MCSM) is usually
adopted to perform stochastic simulations of seepage across saturated
and unsaturated regions of heterogeneous soil for investigating the
statistical characteristics of computed flow responses (Le et al., 2012;
Cho, 2012; Gui et al., 2000).

Saturated-unsaturated flow depends on the hydraulic conductivity
of unsaturated soil, which is a function of saturated hydraulic
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conductivity and curve fitting parameters of soil water characteristic
curve (SWCC). SWCC is a very important curve for unsaturated soil
because it can reflect the relationship between matric suction and water
content or the degree of saturation. Many fitting models have been
proposed for SWCC (Nam et al., 2009; Sillers and Fredlund, 2001).
Phoon et al. (2010) demonstrated that the variability of SWCC para-
meters is large and has significant impact on unsaturated seepage and
slope stability. In the stochastic analysis of earth dams or slopes, many
studies considered only the spatial variability of saturated hydraulic
conductivity (ks), and lognormal distribution was assumed for it
(Ahmed, 2009; Gui et al., 2000; Cho, 2012; Zhu et al., 2013). Recently,
some other parameters were also considered as random fields. For ex-
ample, Le et al. (2012) considered porosity (np) as a random field, and
thus the random fields of the saturated hydraulic conductivity (ks) and a
SWCC parameter (se) were generated by a functional relationship be-
tween ks or se and np. Li et al. (2009) considered three hydraulic
parameters as random fields to test the capacity of probabilistic collo-
cation method.

From the literature review, it emerges that the uncertainty in soil
properties affects the saturated-unsaturated flow significantly.
However, few attempts have been made to study the effect of the un-
certainties of both the saturated hydraulic conductivity and SWCC
parameters to the flow through saturated and unsaturated zones. The
objective of this paper is to investigate the influence of spatial varia-
bility of hydraulic parameters on the flow in a heterogeneous soil dam.
Spatial variability of the saturated hydraulic conductivity and two
SWCC parameters are taken into account by considering them as cor-
related lognormal random fields (Phoon et al., 2010; Wang et al.,
2015). The van Genuchten model is used for describing soil-water
characteristics. Monte Carlo simulation combined with finite difference
method is used for investigating the statistics of the flow rate. Fur-
thermore, the influence of the coefficients of variation and the auto-
correlation distances on flow rate are studied and compared.

2. Saturated-unsaturated seepage analysis

Soil is a porous material which includes soil particles and voids. A
soil is saturated when the voids are completely filled with water phase.
And when the voids are filled with both water phase and air phase, the
soil is unsaturated. For the unsaturated soil, relationship between the
saturation of water phase (Sw) and air phase (Sa) is: Sw + Sa = 1.

Seepage in unsaturated soils is very complicated because it is af-
fected by matric suction, water content, saturation, permeability, par-
ticle size, and etc. For the analysis of saturated-unsaturated seepage
process, soil-water characteristic curve (SWCC) and hydraulic con-
ductivity function are needed.

Soil-water characteristic curves (SWCCs) give the relationship be-
tween matric suction (hereinafter referred to as suction) and the degree
of saturation. They have been used extensively for the estimation of
unsaturated soil properties (Fredlund and Houston, 2009). According to
the SWCC fitting model proposed by van Genuchten (1980), the effec-
tive degree of saturation (Se) can be expressed as:

=
+

S
ψ a
1

(1 ( ) )n me
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where ψ= ua − uw is the suction, ua and uw are pore air pressure and
pore water pressure, respectively; a, n and m are curve fitting para-
meters and m= 1− 1/n. It should be noted that the value of m cannot
be negative and therefore the value of n cannot be less than 1.0.
Parameter a is a suction value corresponding to the inflection point on
the SWCC which is larger than the air entry value. Although it does not
affect the shape of the curve, it shifts the curve toward the higher or
lower suction regions of the plot. Parameter n is related to the rate of
change of the desaturation zone of the SWCC (Sillers and Fredlund,
2001). Note that parameter m is not an independent variable due to the
fixed relationship between n and m.

Hydraulic conductivity function gives the relationship between
suction (or degree of saturation) and the hydraulic conductivity of
unsaturated soils. Denoting the hydraulic conductivity of water phase
and air phase as kw and ka, respectively, therefore kw and ka are related
to the effective saturation by empirical laws of the van Genuchten form
(van Genuchten, 1980):
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From Eqs. (1) to (3), the uncertainty of hydraulic conductivity of
fluid phases are characterized by the uncertainty of two curve fitting
parameters of SWCC (i.e. a and n) and saturated hydraulic conductivity
ks. Thus, the hydraulic conductivity function varying from one point to
another can be represented by three random fields of a, n and ks.

3. Discretization of random fields

3.1. Theory of random field

Early probabilistic analysis of geotechnical engineering typically
modeled the material uncertainties using random variables for the
whole profile without including spatial variability. Vanmarcke (1977)
suggested that random field models could be used to describe the
spatial variability of soil properties. Random variables that vary con-
tinuously over a space domain are referred to as random fields. In a
random field, the variable exhibits autocorrelation, which is the ten-
dency for values of the variable at one point to be correlated to values at
nearby points. To characterize a random field, the mean, standard de-
viation (or coefficient of variation) and autocorrelation function are
required. The correlation function models the reduction in auto-
correlation with distance. Autocorrelation functions commonly used in
geotechnical engineering have been presented by many authors (Qin
et al., 2006; Jiang et al., 2014). In this study, an exponential auto-
correlation function is used (Jiang et al., 2014):
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where ρA is the autocorrelation coefficient of two points in space, whose
horizontal and vertical absolute distances are τx and τy, repectively; Lh
and Lv are the horizontal and vertical autocorrelation distances, re-
spectively. A large autocorrelation distance value implies that the soil
property is highly correlated over a large spatial extent, and a small
autocorrelation distance value indicates that the fluctuation of the soil
property is large (Stefanou, 2009).

3.2. Discretization of cross-correlated non-normal random fields

Because of the discrete nature of numerical methods such as finite
element or finite difference formulation, a continuous-parameter
random field must be discretized into random variables. This process is
commonly known as discretization of a random field. Many methods
have been developed to perform this task. The discretization methods
can be mainly split into three categories: point discretization methods,
average-type discretization methods, and series expansion methods
(Sudret and Kiureghian, 2002; Ji et al., 2012). Although the point
discretization methods are not as efficient as the series expansion
methods, they are still widely used due to simplicity and straightfor-
ward implementation (Cho, 2007; Papaioannou and Straub, 2012;
Ching and Phoon, 2013; Jiang et al., 2014). Therefore, midpoint
method, one type of point discretization method, is adopted in this
study to discretize random fields of soil hydraulic properties. In the
midpoint method, the value of a random field over each element is
represented by its value at the midpoint of that element.

Consider Ns cross-correlated non-Gaussian random fields. Define the
number of discretization points of random fields as Ne, which is equal to
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the number of finite elements in the numerical analysis. Thus, the size
of cross-correlation coefficient matrix of Ns random fields, ρ, is Ns × Ns;
and the size of autocorrelation coefficient matrix of the k-th random
field, ρAk, is Ne × Ne, where k = 1, …, Ns. Denote the uncorrelated
standard normal space, correlated standard normal space, and corre-
lated non-normal space as U space, Y space and X space, respectively.
The main processes of the discretization of cross-correlated non-normal
random fields by the midpoint discretization method are summarized in
Fig. 1.

Fig. 1 shows the flowchart of the midpoint discretization method.
The main steps are explained as follows:

(1) Uncorrelated standard normal space (U space): A matrix of sample
points U, whose size is Ne × Ns, is generated randomly.

(2) Correlated standard normal space (Y space): The cross-correlation
coefficient matrix ρ0 (whose size is Ns × Ns) in Y space can be
calculated based on the cross-correlation coefficient matrix ρ in X
space, and the autocorrelation coefficient matrix ρAk (k= 1, …, Ns)
can be calculated according to Eq. (4). For lognormal random
variables, the relationship between ρ0 and ρ can be expressed as
(Jiang et al., 2014):

=
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where ρij is the cross-correlation coefficient between variables Xi and Xj

in the X space; δi and δj are the coefficients of variation of variables Xi

and Xj, respectively.
After obtaining the cross-correlation coefficient matrix ρ0 and the

autocorrelation coefficient matrix ρAk, their lower triangular matrix L1
and L2k can be derived by Cholesky decomposition: L1L1T = ρ0,
L2kL2kT = ρAk. And then, the discretized random field Hk

Y can be gen-
erated using the following equation:

= = …x y k NH L UL( , ) ( 1, , )k k s
Y

2 1
T (6)

where (x, y) is the spatial position of discrete points.

(3) Correlated non-normal space (X space): The discretized random

field Hk can be obtained by the isoprobabilistic transformation by
Eq. (7):

= = …−x y F Φ x y k NH H( , ) { [ ( , )]} ( 1, , )k k s
1 Y (7)

where F−1(·) is inverse of the cumulative distribution function of non-
normal distribution function F; and Φ(·) is the cumulative distribution
function of standard normal distribution. If the random variables are
lognormally distributed, the appropriate lognormal random fields can
be obtained by exponentiating the corresponding Gaussian field as
follows:

= + = …x y μ σ x y k NH H( , ) exp( ( , )) ( 1, , )k X X k sln ln
Y

k k (8)

where μlnXk and σlnXk are the mean and the standard deviation of the
logarithm of variable Xk and they can be calculated by Eqs. (9a) and
(9b), respectively (Babu and Murthy, 2005; Cho, 2012; Ahmed, 2009;
Zhu et al., 2013):

= + = +σ δ σ μln(1 ) ln(1 ( ) )X X X Xln
2 2 (9a)

= + = −μ μ δ μ σln( 1 ) ln 1
2X X X X Xln

2
ln
2

(9b)

where δX is the coefficient of variation of variable X.

3.3. Logarithmic translation

Some soil parameters have lower limits larger than zero. For ex-
ample, SWCC parameter n should be larger than 1.0 to ensure SWCC
parameter m is positive. The generation of a lognormal variable with a
lower limit can be performed by logarithmic translation (Phoon et al.,
2010).

The probability density function of a lognormal variable X is:
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If the lognormal variable X has a lower bound A, a translation of
variable X, X′= X− A, could be conducted. Similar to Eq. (10), the
probabilistic density function of the translation variable X′ can be

U space

Y space

X space

Generate randomly Ne sets of uncorrelated standard 

normal vectors Uij (i=1, …, Ne; j=1, …, Ns)

Calculate the cross-correlation coefficient matrix

0 and its lower triangular matrix L1

Calculate the autocorrelation coefficient matrix Ak

and its lower triangular matrix L2k (k=1,…,Ns)

Generate the discretized random field Hk
Y (the size 

of matrix Hk
Y is Ne×Ns)

Generate the discretized random field Hk in the 

original correlated non-normal space

Begin

End

N=1

N=N+1

N >Nsim?
No

Yes

Fig. 1. Flowchart of midpoint discretization method.
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written as:
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where μlnX′ and σlnX′ are the mean and standard deviation of the loga-
rithm of variable X′, respectively. Similar to Eqs. (9a) and (9b), μlnX′ and
σlnX′ can be expressed by Eqs. (12a) and (12b), respectively.
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Therefore, if variable X is a lognormal variable with lower bound A,
random realizations of the normal variable lnX′= ln(X− A) can be
generated first, with the mean of μlnX′ and standard deviation of σlnX′.
Therefore, random realizations of variable X can be obtained by ex-
ponentiating the corresponding normal variable lnX′= ln(X − A) as
follows:

= ′ +X X Aexp(ln ) (13)

4. Analyses and results

4.1. The application-problem and boundary conditions

A two-dimensional dam model adopted in this study is shown in
Fig. 2. The height of the dam is 13.7 m and the width of dam crest is
4 m. The upstream and downstream side slopes are 1V:3H and 2V:5H,
respectively. The thickness of the dam foundation is 3.7 m and the in-
itial water table coincides with the surface of the dam foundation. The
upstream water table is assumed to rise to 11.7 m rapidly, and the sa-
turated-unsaturated seepage in the dam considering the spatial varia-
bility of soil parameters is analyzed. The finite difference code FLAC
(Itasca, 2006) is adopted for performing the saturated-unsaturated
seepage analysis.

Initially, soil in the embankment is unsaturated. The initial hydro-
static water pressure varies linearly with the vertical distance from the
water table, with positive pressure under the water table and negative
pressure above the water table. The initial pore air pressure is assumed
to be zero. The water head on the upstream boundary beneath the
water table is fixed and the soil above the water table is permeable to
gas. The downstream boundary is treated as seepage boundary. The
bottom boundary is impervious.

As described in Section 2, the uncertainty of hydraulic conductivity
of fluid phases is characterized by the uncertainty of two SWCC para-
meters (a, n) and the saturated hydraulic conductivity parameter (ks).
Many authors reported that the three hydraulic parameters a, n and ks
were lognormally distributed, and parameters a and n were negatively
correlated (Botros et al., 2009; Phoon et al., 2010; Wang et al., 2015).
Therefore, the three hydraulic parameters a, n and ks are assumed as
correlated lognormal random fields, denoted herein as X1, X2, and X3

(see Table 1), and the cross-correlation coefficient between parameter a
and n is −0.25. Because the variation in the hydraulic parameters is
influenced by many factors, different values are reported for the COVs
of these parameters. However, it is generally acknowledged that the
COV of SWCC parameter n is smaller than that of parameter a, and the
COV of saturated hydraulic conductivity ks is relatively large (Botros
et al., 2009; Dou et al., 2014). Although an isotropic autocorrelation
structure was often assumed in previous studies (Srivastava et al., 2009;
Le et al., 2012; Zhu et al., 2013), autocorrelations in the vertical di-
rection tend to have much shorter distances than those in the horizontal
direction (Ahmed, 2009; Gui et al., 2000; Cho, 2012). Based on la-
boratory tests (Li, 2017), different autocorrelation distances are as-
sumed for vertical and horizontal directions, and the statistical values
of the three random fields (X1, X2, and X3) are presented in Table 1.

For the mean values listed in Table 1, the corresponding SWCC and
hydraulic conductivity curves are shown in Fig. 3(a) and (b), respec-
tively.

4.2. Deterministic analysis

Prior to the seepage analysis considering spatial variability of hy-
draulic parameters, a deterministic analysis with mean input para-
meters is conducted to study the seepage behavior in the dam. A see-
page section is defined to represent the relationship between suction
and depth, and to represent the variation of flow rate with time. In
Fig. 4(a), the vertical dotted line at the middle of the dam represents
Section I and the sloping dashed line represents water table during the
seepage. Qu, Qs and Qf are flow rates that pass through Section I in the
unsaturated zone of dam body (above the water table), the saturated
zone of dam body (below the water table) and dam foundation, re-
spectively. The flow rate across Section I is calculated by adding the
nodal flow along this section, which can be seen more clearly from the
mesh and contour of node water pressure by FLAC in Fig. 4(b).

4.2.1. Variation of suction with depth and time
The suction-depth relationship at different seepage times through

Section I is shown in Fig. 5. The lower parts of the first four lines (e.g.,
1–5 d) move leftwards gradually, while the upper parts of these lines
remain nearly unchanged. It means that in the initial stage of seepage,
the suction of the lower part of the dam body reduces with time, while
the suction of the top part of the dam body remains unchanged. After
5 days of seepage from upstream to downstream of the dam, the flow
begins to influence the top part of the dam. Thus, the upper parts of
suction-depth curves in Fig. 5 begin to move left, which means that the
suction of the top part of the dam begins to reduce. The suction-depth
curves of the 30 d, 60 d and 90 d are very close in Fig. 5, which means
the flow process becomes nearly stable after 30 days of seepage.

4.2.2. Variation of water table with time
Except for the suction-depth curves on a vertical section, the satu-

rated-unsaturated seepage process can also be expressed by the mi-
gration of water table (Fig. 6). The differences of water tables at dif-
ferent seepage times are significant in the initial stage of seepage. With
the increase of seepage time, the water tables become close gradually.
The water tables of the 30, 60 and 90 days are very close, which con-
firms that the flow process becomes nearly stable after 30 days of see-
page. In this case study, all the phreatic surfaces pass the intersection
point between the downstream dam slope and the dam foundation. Our
trial computation demonstrates that the phreatic surfaces can also in-
tersect the dam surface at a higher position if the saturated hydraulic
conductivity becomes larger.

4.2.3. Variation of flow rate with time
Flow rate is of conventional interest in seepage studies, as it in-

dicates the amount of water loss through the dam. The variation of flow
Fig. 2. Problem geometry and boundary conditions.
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rate through Section I with seepage time is shown in Fig. 7. In general,
the flow rates of Qu, Qs and Qf increase initially and then decrease and
tend to become steady after about 30 days of seepage. In the initial
stage of seepage, the flow rate in the unsaturated zone and the saturated
zone of the dam body (Qu and Qs, respectively) increase at nearly the
same speed, while the flow rate in the dam foundation (Qf) increases
more rapid than those of Qu and Qs. And the maximum value of Qf is
bigger than those of Qu and Qs. The reason is that Qf is the flow rate in
the dam foundation which is saturated all the time. And the hydraulic
conductivity of unsaturated soil increases with the increase of water
content, which can be seen from Fig. 3. However, after some time of
seepage, the flow rates of Qu, Qs and Qf begin to decrease and gradually
become steady. After about 30 days of seepage, Qu reaches a steady
value, and Qs and Qf are nearly close to their steady values. As shown in
Fig. 6, with the increase of seepage time, the water table moves to the
upper right direction. Therefore, the flow rate in the saturated zone of
the dam body (Qs) becomes larger than the flow rate in the saturated
zone of dam foundation (Qf). It should be mentioned that although the
stable value of Qu is smaller than those of Qs and Qf, the stable value of
Qu is not small enough to be neglected. After about 30 days of seepage,
the ratio of Qu to the summation of Qu and Qs is about 20%, which
means that about 20% of water flow in the unsaturated zone through
Section I of the dam body. Therefore, the flow rate is underestimated in
the traditional seepage analysis which ignores water flow in the un-
saturated zone.

Based on the above analysis, a seepage period of 30 days is adopted
in the following stochastic simulations.

4.3. Stochastic simulations

In stochastic simulations, the suction distribution, position of water
table and flow rate will be different from those of the deterministic

Table 1
Statistical properties of soil parameters.

Parameters Random field Mean (μ) Coefficient of variation (COV, or δ) Vertical autocorrelation distance (Lv) Horizontal autocorrelation distance (Lh)

a X1 50 kPa 0.4 2 m 20 m
n X2 1.5 0.2 2 m 20 m
ks X3 51.84 mm/d 0.6 2 m 20 m

(a) soil–water characteristic curve (b) hydraulic conductivity curve

Fig. 3. Soil property functions for the mean value of hydraulic
parameters.

(a) Definition of Qu, Qs and Qf (b) Contour of node water pressure. The interface between the

yellow and purple parts represents water table

Fig. 4. Definition of section and flow rate. (For inter-
pretation of the references to colour in this figure legend,
the reader is referred to the web version of this article.)

Fig. 5. Variation of suction with depth and time.

Fig. 6. Migration of water table in homogeneous dam.
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analysis due to spatial variability of hydraulic variables. Considering
the limitation of the length of this paper, only the flow rates of the
unsaturated zone and the saturated zone through Section I of the dam
body (Qu and Qs) are illustrated in this section.

The stochastic approach for obtaining the statistical response of
flow rate is performed by Monte Carlo simulation method (MCSM)
combined with finite difference method. In Monte Carlo simulation, a
series of random fields are generated in a manner consistent with their
probability distribution and correlation structure, and each set of dis-
crete values are considered as input soil parameters for each Monte
Carlo simulation. The process must be repeated many times so that the
estimated values such as the mean, standard deviation and probability
density functions of flow rates are not influenced by the occurrence of
extremely large or small events. Since the increase in number of si-
mulations also increases the computational efforts, a compromise be-
tween accuracy and computational time should be achieved by con-
vergence analysis.

To perform Monte Carlo Simulation of the seepage in the dam, a
MATLAB function and a FISH (the built-in programming language of
FLAC) function were written. The MATLAB function was used to gen-
erate various groups of discretized data for each random field. The
discretized data are then read into the FLAC code by the FISH function,
which was used to run the Monte Carlo Simulation.

4.3.1. Convergence analysis
4.3.1.1. Discretization of random fields. As mentioned in Section 4.1,
hydraulic parameters a, n and ks are considered as lognormal
distributed random fields, and the midpoint discretization method is
used for generating the random fields of a, n and ks. A lower limit of
1.05 for parameter n is defined for ensuring a positive value of SWCC
parameter m. Results of a sample realization of the discretization of the
three random fields are shown in Fig. 8. The histograms represent
relative frequency distributions of the discrete data for all the discrete
points, and the curves represent the fitted lognormal probability
distribution functions. Note that the frequency distribution of the
discrete data does not fit lognormal distribution very well.
Furthermore, according to mathematical statistics, the means of the

three groups of discrete data of random fields a, n and ks are 45.15, 1.45
and 42.18, respectively, and the corresponding coefficients of variation
are 0.32, 0.14 and 0.48, respectively. Obviously, these values are not
consistent with the means and coefficients of variation shown in
Table 1.

However, with the increase of the number of realizations of the
discretization of random fields, the relative frequency distribution of
the discrete data tends to meet the target lognormal distribution very
well. Fig. 9 shows the histograms of generated parameters a, n and ks
together with the fitted lognormal distribution functions for 100 rea-
lizations. Agreement between the frequency distribution of the discrete
data and the fitted lognormal functions is very good. The means of the
100 discrete data sets for random fields a, n and ks are 49.95, 1.50 and
51.72, respectively, and the corresponding coefficients of variation are
0.39, 0.21 and 0.59, respectively. These statistical values are very close
to the corresponding values shown in Table 1. Therefore, 100 realiza-
tions of the discretization of random fields are sufficient for re-
presenting the statistics of random fields a, n and ks. It should be
mentioned that all the discrete data of parameter n are larger than 1.05,
which is shown by the histogram in Fig. 9(b). This is benefited from the
logarithm translation algorithm for parameter n.

4.3.1.2. Probability distribution of flow rate. To analyze the
characteristic of flow rates Qu and Qs more clearly, the probability
density functions Qu and Qs at different seepage times are shown in
Fig. 10(a) and (b), respectively, and the probability density functions of
ratio Qr (Qr = Qu/(Qu + Qs)) are shown in Fig. 10(c). It can be seen
that the distribution of flow rates Qu and Qs is lognormally distributed.
The probability density curves of flow rate Qu are very close to each
other after 20 days of seepage (Fig. 10(a)). In Fig. 10(b), the modes of
the lognormal distribution curves increase and the peaks of the
lognormal distribution curves decrease with time during the 30 days
of seepage. The curves tend to be closer and closer with increase in
seepage time. Fig. 10(a)–(b) demonstrates that the seepage in the
unsaturated zone of the dam body has become stable, and the seepage
in the saturated zone of the dam body tends to be stable after 30 days of
seepage.

Fig. 10(c) shows that the modes and peaks of the probabilistic
curves of Qr decrease and increase with seepage time, respectively. The
stable value of the mode of Qr is about 0.25, and many values of Qr are
larger than 0.25. In other words, water flow in the unsaturated zone
about water table of the dam body accounts for about 25% of the total
flow of the dam body. Neglecting the unsaturated flow in dam body will
lead to underestimation of water flow.

4.3.2. Influence factors on flow rate
In the stochastic analysis with consideration of spatial variability of

soil parameters, the flow rate of Qu and Qs will be influenced by the
coefficient of variation (COV) and the autocorrelation distance of soil
parameters. To analyze the influence of COV and autocorrelation dis-
tance on flow rate, four values of COVs (0.2, 0.4, 0.6, and 0.8) and five
values of horizontal autocorrelation distances (Lh) are considered (5,
10, 20, 100, and 1000 m). These values can represent the normal range

Fig. 7. Variation of flow rate with time.

(a) X1 (for parameter a) (b) X2 (for parameter n) (c) X3 (for parameter ks)

Fig. 8. Histogram of a sample realization of random field together with fitted lognormal distribution function.
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of COVs and autocorrelations of hydraulic parameters (Ahmed, 2009;
Botros et al., 2009; Srivastava et al., 2009; Gui et al., 2000; Phoon et al.,
2010; Le et al., 2012; Cho, 2012; Zhu et al., 2013; Dou et al., 2014;
Wang et al., 2015). The means, coefficients of variations and auto-
correlation distances listed in Table 1 are considered as reference va-
lues. To carry out the sensitivity analysis, different combinations of
COV and Lh are considered. In each combination, only one value is
changed (which is highlighted in bold letters in Table 2), and the other
values are set to be their reference values. In general, the COVs of
different parameters are different, but the autocorrelation distances of
different parameters are the same. Thus, there are 12 combinations of
COVs for the three parameters of a, n and ks. It can be seen from Table 2
that the combinations of COVs of No. 2, No. 5 and No. 11 are the same.
Thus, there are only 10 independent combinations of COVs. For each
group of COVs, three values of Lh (5, 20, and 1000 m) are considered,
respectively. Besides, for No. 2 combination of COVs, two other values
of Lh (10 and 100 m) are also adopted in the sensitivity analysis. Thus,
altogether there are 32 independent combinations of COVs and auto-
correlation distances. For each combination of parameters, 100 groups
of random field simulations are conducted and the simulation period for
each computation is 30 days for the balance of computing accuracy and
efficiency.

4.3.2.1. Effects of coefficient of variation of hydraulic parameters on mean
flow rate. Variation of mean flow rate (μ(Qu) and μ(Qs)) with seepage
time and different coefficients of variation of parameters (δa, δn, and
δks) are shown in Figs. 11 and 12.

As seen in Figs. 11 and 12, COVs of hydraulic parameters a, n, and ks
affect the mean flow rates of both the unsaturated zone and saturated
zone. The mean flow rates (μ(Qu) and μ(Qs)) decrease with the increase
in COVs of a, n, and ks. Among the three parameters, the COV of
parameter n affects μ(Qu) and μ(Qs) greatly, while the COVs of para-
meter a and ks affect μ(Qu) and μ(Qs) very slightly.

On the other hand, the value of μ(Qu) increases with time for the
first 25 days and then μ(Qu) begins to decrease. However, the value of
μ(Qs) keeps increasing during the 30 days of seepage simulation, and a
steady tendency can be predicted reasonably from these curves. This
characteristic is similar to that of Fig. 10, which can be found from the
variation of curves with time.

The horizontal autocorrelation distance Lh is assumed to be 20 m in
Figs. 11 and 12. Similar results can be found with different Lh values
(such as 10 m or 1000 m), although they are not presented herein. Si-
milar relationship between mean flow rates and COVs was obtained by
Griffiths and Fenton (1993) and Srivastava et al. (2009) in their study
on seepage in spatially random soil. The decrease in flow rates with the
increase of COVs of hydraulic parameters is an important observation
from the point of view of design. The traditional design method may
rely on this variability to reduce flow rates on average.

4.3.2.2. Effects of coefficient of variation of hydraulic parameters on
coefficient of variation of flow rate. Variation of the COVs of flow rates
(δ(Qu) and δ(Qs)) with seepage time (T) and different COVs of hydraulic
parameters (δa, δn, and δks) are shown in Figs. 13 and 14. Because the
mean flow rate μ(Qs) is zero at T= 5 d (Fig. 12), the COV of Qs at T = 5
d is infinite, and they are not shown in Fig. 14. The horizontal
autocorrelation distance is set to be 20 m for Figs. 13 and 14. Similar
results can be found with different Lh values (such as 10 m or 1000 m),
although they are not presented herein.

Figs. 13 and 14 indicate that COVs of parameters a, n, and ks affect
COVs of both the unsaturated zone (Qu) and the saturated zone (Qs).
The COVs of flow rate (δ(Qu) and δ(Qs)) increase with the increase of
COVs of a, n, and ks. The COV of parameter n affects δ(Qu) and δ(Qs)
greatly, while the COV of parameter a barely affects δ(Qu) and δ(Qs).
The influence of the COV of ks is moderate among the three parameters.
However, the variation of δ(Qu) and δ(Qs) with time is different from
that of μ(Qu) and μ(Qs). The values of δ(Qu) and δ(Qs) decrease with
increasing seepage time, which means the seepage tends to be stable
with increase in time.

Comparing Figs. 13 and 14 with Table 2, it can be seen that the
values of δ(Qu) and δ(Qs) are much larger than those of δa, δn or δks, and
δ(Qu) is larger than δ(Qs). This means that the seepage, especially in the
unsaturated zone, varies greatly due to the variability of hydraulic
parameters. The traditional deterministic approach does not reflect the
variability of saturated-unsaturated seepage. A stochastic modeling
approach must be used to account for this variability.

4.3.2.3. Effects of horizontal autocorrelation distance of hydraulic
parameters on mean flow rate. Variations of mean of flow rates (μ(Qu)

(a) X1 (for parameter a) (b) X2 (for parameter n) (c) X3 (for parameter ks)

Fig. 9. Histogram of 100 realizations of random fields together with fitted lognormal distribution function

(a) Qu (b) Qs (c) Qr

Fig. 10. Probability density functions (PDFs) of flow rate at different seepage times.
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and μ(Qs)) with seepage time and different horizontal autocorrelation
distances (Lh) of soil parameters are shown in Fig. 15, with the COVs of
three hydraulic parameters set to their reference values. It is evident
that Lh affects μ(Qu) greatly. A large value of Lh leads to a large value of

μ(Qu), and the difference of μ(Qu) of different Lh increases with time. A
reasonable explanation is that a realization of random field with higher
autocorrelation distance tends to have more elements of similar
properties close together, which in turn implies that the most

Table 2
Combinations of coefficients of variation and autocorrelation distances.

No. 1 2 3 4 5 6 7 8 9 10 11 12

Coefficient of variation (COV, or δ) δa 0.2 0.4 0.6 0.8 0.4 0.4 0.4 0.4 0.4 0.4 0.4 0.4
δn 0.2 0.2 0.2 0.2 0.2 0.4 0.6 0.8 0.2 0.2 0.2 0.2
δks 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.2 0.4 0.6 0.8

Autocorrelation distance Lh1/Lh3/Lh5 5/20/1000 m (Calculated for each group of COVs)
Lh2 10 m (Calculated only for COV No. 2)
Lh4 100 m (Calculated only for COV No. 2)

(a) COV of parameter a (b) COV of parameter n (c) COV of parameter ks

Fig. 11. Variation of mean flow rate μ(Qu) with seepage time and COVs of parameters.

(a) COV of parameter a (b) COV of parameter n (c) COV of parameter ks

Fig. 12. Variation of mean flow rate μ(Qs) with seepage time and COVs of parameters.

(a) COV of parameter a (b) COV of parameter n (c) COV of parameter ks

Fig. 13. Variation of COV of flow rate δ(Qu) with seepage time and COVs of parameters.

(a) COV of parameter a (b) COV of parameter n (c) COV of parameter ks

Fig. 14. Variation of COV of flow rate δ(Qs) with seepage time and COVs of parameters.
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permeable paths are likely to be less tortuous and water can flow
through these elements easier. However, the influence of Lh on μ(Qs) is
very small. Therefore, not considering the spatial variability of soil
parameters has little influence on the estimation of flow rate in the
saturated zone, but it will lead to overestimation of flow rate in the
unsaturated zone. This conclusion is consistent with the study by
Ahmed (2009).

4.3.2.4. Effects of horizontal autocorrelation distance of hydraulic
parameters on coefficient of variation of flow rate. Variations of the
COVs of flow rates (δ(Qu) and δ(Qs)) with seepage time and different
horizontal autocorrelation distances (Lh) of soil parameters are shown
in Fig. 16, with the COVs of three hydraulic parameters set to their
reference values. Similar to Fig. 14, the COVs of Qs at T = 5 d are not
shown in Fig. 16(b). As can be seen, although Lh values have little
influence on μ(Qs), they affect δ(Qs) greatly. Increasing values of Lh
corresponds to increasing values of δ(Qu) and δ(Qs). In the traditional
probabilistic method, spatial variability of soil parameters is not
considered, which in fact assumes that the autocorrelation distance is
infinite (Jimenez and Sitar, 2009). In reality, the correlation lengths of
soil parameters are usually short. Therefore, the variability of flow rate
is overestimated in the traditional probabilistic methods.

5. Conclusions

Spatial variability of soil parameters affects seepage behavior of
earth dams. This paper combines Monte Carlo simulation, random field
theory and finite difference modeling to analyze the effect of spatial
variability of hydraulic parameters on saturated-unsaturated seepage
behavior in an earth dam. The van Genuchten model is adopted for
representing soil-water characteristic curve (SWCC). The SWCC para-
meters (a and n) and saturated hydraulic conductivity (ks) are con-
sidered as cross-correlated lognormal random fields. The midpoint
method is adopted for discretizing random fields, and logarithmic
translation is used for generating lognormal variable with a lower limit.

In order to investigate the influence of coefficients of variation
(COVs) and the horizontal autocorrelation distance (Lh) of hydraulic
parameters on the flow rate in the dam body, four values of COVs and

five values of Lh are assumed for the three hydraulic parameters (a, n,
ks). The results indicate that the water flow in unsaturated zone above
water table should not be neglected for the accurate analysis of seepage
behavior, and the uncertainties of three hydraulic parameters have
great influence on the flow rate.

When the autocorrelation distances of hydraulic parameters are
fixed, the increase in COVs of hydraulic parameters leads to decrease in
mean flow rates in both unsaturated zone (Qu) and saturated zone (Qs)
of dam body, but leads to increase in the COVs of flow rates Qu and Qs.
Among the three hydraulic parameters, parameter n affects the mean
and COV of flow rate greatly, while parameter a affects the mean and
COV of flow rate slightly.

When the COVs of hydraulic parameters are fixed, the mean flow
rate μ(Qu) and the COVs of both Qu and Qs increase with horizontal
autocorrelation distance, but the mean flow rate μ(Qs) remains nearly
unchanged. Not considering the spatial variability of hydraulic para-
meters will lead to overestimation of mean and COV of flow rate in the
dam body. This observation is very useful in design of dams.

It can be found that the influence of COVs of hydraulic parameters n
and ks on flow rate is greater than that of horizontal autocorrelation
distance. More attention should be paid on accurate measuring of the
COVs of hydraulic parameters n and ks in engineering practices.
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